Automatic Problem Decomposition for Distributed Planning

Mark Iwen & Amol Dattatraya Mali,
EECS, University of Wisconsin, Milwaukee WI 53211

Phone: 1-414-229-6762, Fax: 1-414-229-2769, iwen2724@csd.uwm.edu, mali@miller.cs.uwm.edu

Content Areas: Distributed Planning, Graphplan

Abstract

(Appears in the proceedings of the International Con-
ference on Artificial Intelligence (IC-AI), Volume 1,
June 2002, Las Vegas, pp. 411-417.)

Distributed planning is highly useful in planning in
complex real-world domains. Several advances have
recently occurred in centralized plan synthesis under
classical assumptions. In this paper, we show how the
planning graph constructed by the influential plan-
ner Graphplan can be used to automatically and ef-
fectively decompose a problem so that the resulting
subproblems can be allocated to multiple planners.
We introduce interaction graphs which can be used
to automatically decompose a planning problem into
entirely independent subproblems under certain con-
ditions. The resulting subproblems can be passed to
efficient classical planners and their plans can be com-
bined. We present an empirical evaluation of three
two agent planners (D-FF, D-HSP and D-GP) which
solve subproblems generated by the interaction graph-
based decomposition. FEach of the three two agent
planners synthesizes plans faster than the correspond-
ing single agent planner (FF, HSP and Graphplan)
on several problems. Most of the work in distributed
planning has hitherto focused on important issues like
cooperation, coordination, communication and negoti-
ation among various planning agents. Our work shows
how recent advances in classical planning can be used
to improve the computational efficiency of distributed
planners.

1 Introduction

Distributed planning is the problem of finding a plan
that helps a set of agents in a given initial configu-
ration to collectively achieve their subgoals. In most
distributed planners, multiple agents synthesize indi-
vidual plans which are merged to get globally correct
plan. The plan merging process involves resolution of
conflicts. Importance of distributed planning is clear
from the DARPA initiative air battle management pro-
gram [Baker & Greenwood 1987], air campaign plan-
ning [Wilkins & Myers 1998], and the DARPA initia-
tive pilot’s associate program. A brief review of var-

ious distributed planning techniques is given in [Mali
& Kambhampati 2002].

Most of the research in distributed planning has fo-
cused on important issues of coordination, commu-
nication, cooperation and negotiation among various
agents. This is clear from various articles [Durfee 1999;
Grosz et al 1999; desJardins et al 1999; desJardins &
Wolverton 1999; Tambe & Jung 1999] in the special is-
sue of AI Magazine on distributed planning. Research
in centralized planning has focused on reducing plan
synthesis times and improving quality of plans. Sev-
eral advances have occurred in an efficient synthesis
of plans in centralized fashion (using only one agent)
under classical assumptions in last seven years. Our
work is motivated by our long term goal of extend-
ing/adapting recent advances in classical planning to
distributed planning in domains involving metric time,
resource quantities, quantifiers and conditional effects.

An important and perhaps the first step in solving
a distributed planning problem is to decompose the
given problem. Currently there are no general and au-
tomatic techniques to effectively decompose planning
problems into subproblems with limited interactions.
Effective automatic decomposition is very important
since it can reduce overall plan synthesis time. Most
distributed planners use a manually specified decompo-
sition. The ones that do a fully automatic decomposi-
tion don’t do it efficiently. Given a conjunctive goal like
(g1 Aga A ... Agp), these planners usually simply divide
it into n subgoals if there are n planning agents. These
planners do not consider interactions among subgoals.
Some planners do a semi-automatic decomposition us-
ing knowledge specified by humans. For example, if
different floors of a building are identified by a hu-
man as different regions, electrical and plumbing tasks
on different floors are assigned to different planners.
Similarly, if different rooms are identified as different
non-interacting or minimally interacting regions, tasks
to be carried out inside different rooms are assigned
to different planners. Omne of the recent advances in

classical planning is the Graphplan planner [Blum &
Furst 1997] which uses a compact representation called
“planning graph”. This graph can be constructed in
low order polynomial time. In this paper, we show how
information from planning graph can be used to auto-
matically split a given problem efficiently. We intro-
duce interaction graphs which can be used to achieve
a highly effective decomposition in certain domains.
An advantage of an interaction graph over a planning
graph is that interaction graph can also allow split-
ting of the initial state of a planning problem and that
it splits a problem into entirely independent subprob-
lems under certain conditions, eliminating the cost of
resolving conflicts among plans of individual agents.
This paper makes the following contributions:

e We show how information from planning graph can
be used to efficiently decompose goal and the set of
actions so that various subgoals and actions can be
allocated to various planning agents.

e We show how a distributed planner can use the plan-
ning graph-based decomposition to efficiently synthe-
size plans without losing soundness and completeness.
e We show how information from planning graph can
be used to reduce the cost of resolving conflicts among
plans of various agents at the time of merging them.
e We show how interaction graphs can be used to de-
compose problems.

e We show via empirical evaluation that interaction
graph-based decomposition allows three simple dis-
tributed planners D-GP, D-FF and D-HSP to synthe-
size plans faster than the corresponding centralized
planners Graphplan, Fast Forward planner [Hoffman
2001] and Heuristic Search Planner [Bonet & Gefiner
2001].

e Our work shows that distributed planners can ex-
ploit recent advances in classical planning in at least
two ways: (i) by using efficient classical planners and
(ii) by using effective automatic problem decomposi-
tion techniques.

2 Background

As in most classical planners, we use STRIPS rep-
resentation of actions. Predicates like on(A, B) can be
considered as propositions by rewriting them as on AB.
An action (e.g. move(A,B,C)) is a ground instance of
an operator (e.g. move(x,y,z)). Capitalized letters in
arguments of an action are specific objects and low-
ercase letters are variables. o; denotes an action. A
planning problem is specified as < I,G,0 >, where
I denotes completely specified initial state, G denotes
goal and O denotes the set of all actions in domain.
We assume that I contains only true propositions. O;

denotes the set of actions that agent ¢ can use to syn-
thesize its individual plan. Clearly, O; C O. I; and G;
respectively denote initial world state and conjunctive
goal of planning problem of agent i. n denotes num-
ber of agents doing planning. A4;,i € [1,7n] denotes an
agent. (G1 AGa2 A A G,) = G. FSS means forward
state space. PG stands for planning graph. IG stands
for an interaction graph.

Graphplan: Graphplan works in 2 phases. The first
involves growing a PG and is called the PG construc-
tion phase. This is a forward phase, beginning with
the initial state. The second phase is the solution ex-
traction phase. This is backward search phase starting
with the goal. PG has two kinds of levels called action
levels and proposition levels. The Oth proposition
level is the same as the initial state. In general, the ¢
th proposition level is immediately succeeded by the 4
th action level. And, the ¢ th action level immediately
precedes (i + 1) th proposition level.

The i th action level in the PG contains all actions
whose all pre-conditions appear in the ¢ th proposition
level. There is also a dummy action called a no-op,
maintenance action, or persistence action in the
i th action level for each proposition in the ¢ th propo-
sition level. The pre-condition and effect of this action
is the proposition for which the action was created.
This action is included in the PG because if no action
changing the truth of the proposition occurs, the truth
of the proposition remains same. The (i 4 1) th propo-
sition level is the union of the i th proposition level
and the effects of the actions in the ¢ th action level.
LA; denotes the set of actions in ¢ th action level in
the PG for the problem < I,G,0 >.

A key to the efficiency of Graphplan is the inference
of binary mutex (mutually exclusive) relations. Two
kinds of mutexes are found: (i) mutexes between ac-
tions, and (ii) mutexes between propositions. The PG
is grown by including an action level and a proposition
level if no solution is found in it by backward search
and the backward search is repeated. A PG is said
to level off if the none of the following change when
the PG is grown further: (i) the number of actions in
last action level, (ii) the number of propositions in last
proposition level, (iii) the number of pairs of actions
that are mutex in last action level, and (iv) the num-
ber of pairs of mutex propositions in last proposition
level. The PG in Fig. 1 has 3 proposition levels and 2
action levels. M1, M2, M3 and M4 are actions in the
domain. The pre-conditions and effects of these ac-
tions are shown on the left and right sides of the boxes
respectively. The goal is achievable with the plan Step
0: M2, Step 1: M1 & M3.

(Loitia Sate: A & B GoaSae E&F)

Action Descriptions

AC—>[MI——> B&F
B ——>[M2)c——> -B&D
DC—>MII—>E
F—>Mi——>c

‘NQP NQP M1 M4 NOP M3 M2 NOP ‘
|

T

Figure 1: A planning graph

3 PGs for Problem Decomposition

One can make following valid observations about a
PG.

(1) A PG of k action levels for < I, G, O > contains all
actions that occur in a plan of k steps for any planning
problem whose initial state is same as I.

(2) If an action o; does not occur in j th action level
of PG for < I,G,0 >, it cannot occur at any step
¢, 0 < ¢,q < j in any plan for any planning problem
whose initial state is same as I.

(3) A world state which contains (p A g) cannot be
achieved by any action sequence of k steps starting
from I, if p and g are mutex in k th proposition level
of the PG for < I,G,0 >.

(4) If a proposition p does not appear in k th propo-
sition level in the PG for < I,G,0 >, then any world
state containing p cannot be achieved by any plan of
k steps starting from I.

(5) If the PG is grown until its j th action level is
same as (j + 1) th action level, then actions that do
not appear in its 7 th action level are not relevant to
solving the planning problem. Note that such a PG is
not same as a leveled off PG.

(6) If the PG for < I,G,0 > is grown until its ¢ th
proposition level is same as (i — 1) th proposition level,
any proposition p that does not appear in (; — 1) th
proposition level can never be made true, starting from
I. As a result any world state or goal containing p is
not achievable from I.

Observations 3 and 4 have been reported in [Nguyen
& Kambhampati 2000]. Our problem decomposition
strategies below are based on the six properties of PG
stated above.

Guideline 1: If a conjunctive goal G is split into n
conjunctive subgoals G1,Gs,Gs ... G, then agent A;,
i € [1,n] can be given actions that appear in the ac-
tion level j of the PG for < I,G;,0 > whose (j + 1)
th proposition level contains all subgoals from G; such

that no two of them are mutex in this proposition level.
Note that this guideline is a heuristic because if there
is a ternary mutex among subgoals in GG;, some actions
needed to solve the problem of reaching G; from I may
not be present in the planning graph whose (5 + 1) th
proposition level does not contain any mutex between
two subgoals from G;. Such missing actions can be
provided to the agent later when it fails to find plan
with actions from such a planning graph.

Guideline 2: If Ul ,0; = Og, where Og is the
set of actions in last action level j of PG such that
LA; = LA;_;, then each action relevant to solving the
planning problem < I,G,0 > can be included in the
individual plan of some agent.

Note that if actions from the set Og rather than O
are used, some irrelevant actions may be eliminated
from consideration, since Og C O. Guidelines 1 and
2 show how PGs can be used to split set of only rel-
evant actions and assign them to agents such that (i)
each agent A; has all the actions needed to achieve its
goal G; and (ii) each action relevant to achieving G is
available to some agent for inclusion in its individual
plan.

Note that PG for < I,G,0 > contains more infor-
mation than individual PGs for problems < I,G;, O; >
,i € [1,n]. Information from the PG for the problem
< I,d, 0 > can reduce effort in resolving conflicts be-
tween individual plans. Conflicts that exist between
plans are: (i) mutex actions, and, (ii) subgoals not
achieved (or deleted). While merging individual plans,
conflicts are resolved by (i) removing actions and/or
(ii) reordering actions and/or (iii) including actions.
Algorithms for merging plans are reported in [Foulser
et al 1992]. Note that if an action o, does not appear
in the PG for < I,G,0 > at k th action level, it can-
not appear in global plan at step j,j € [0,k]. Thus
while reordering actions from individual plans at the
time of plan merging, o, should not be placed at any
step j,7 € [0,k]. In particular, information from PG
for < I,G, 0 > allows conflict resolver to identify use-
less reorderings, avoiding some failures. The conflict
resolver can introduce actions from O¢g that do not
appear in individual plans to avoid loss of complete-
ness. The leveled off PG has more information than
the PG for which LA; = LA;_; and this can be used
in efficient conflict resolution. For example, actions
that are mutex in the last action level of the leveled off
PG are always mutex for given I and O. These should
not be included at the same step in global plan.

Assuming that the n individual plans are merged
only after all of them are generated in parallel, the to-
tal planning time will be maximum of the individual

planning times plus the plan merging time. This can
be reduced by splitting G so as to reduce individual
planning times and cost of plan merging. The differ-
ences between the indices of the first proposition levels
in the PG for < I,G,0 > in which various subgoals
of various agents appear, and, the indices of the first
proposition levels in which they occur such that no two
of them are mutex, provides a very useful information
for splitting a problem. For example, consider the goal
(a AbA) which is split so that a is assigned to A; and
(bAc) is assigned to A, such that a,b and ¢ are propo-
sitions. Let the indices of the first proposition levels
in the PG for < I,(a Ab A ¢),O > in which a,b and
c occur be 4,5 and 6 respectively. Let the indices of
the first proposition levels in this PG in which all sub-
goals from the three pairs (a, b), (b, c¢) and (a, c) occur
such that no subgoals in same pair are mutex be 20, 5
and 6 respectively. Let the length of shortest plan for
this problem be 22. The individual plans may need a
significant modification at the time of plan merging in
this case where goal is split into a and (b A ¢). In this
problem, (a A b) and ¢ may be a better split. Higher
order mutexes (ternary, quaternary etc.) can provide
more useful information, though it is more expensive
to find them.

4 IG for Problem Decomposition

We denote a graph by < V|, E > where V is the set of
vertices in the graph and E is the set of edges. An IG is
an undirected, simple bipartite graph. Decomposition
based on this graph is obtained by detecting if it is
disconnected and finding its connected components if
it is disconnected. A graph is connected if there is a
path to reach any of its vertices from any other vertex.

An IG for the problem < I,G,0 > is constructed
in the following manner: Vertices are created for each
proposition true in initial state and each proposition
needed true in goal. Two vertices v; and v; are con-
nected only if the corresponding propositions have a
common primary object such that the proposition in
v; belongs to initial state and the proposition in v; be-
longs to goal. Vehicles, cities, airports and other loca-
tions in transportation logistics are secondary objects.
We assume that the planning domain contains both
primary objects and secondary objects and that each
proposition from goal contains at least one primary
object. In general, we assume that whether an object
is primary or secondary is specified. In blocks world
and transportation logistics domain, objects have lim-
ited types (blocks, table, plane, truck, city, airport
location etc.) and all predicates describing relations
between objects are unary or binary. We have an im-
plemented heuristic which correctly finds all secondary

objects in these two domains using the restricted na-
ture of relationships in these domains. We assume
that types of objects like block, package, truck, loca-
tion etc. are given under a separate category in prob-
lem specification and that they are not a part of ini-
tial state. So vertices for package(Py),package(Ps),
Truck(Ty), Truck(Ts), Airport(Heathrow) etc. do
not appear in an IG. The reason for ignoring these from
the IG is to keep the number of edges low. Proposi-
tions from I which contain only secondary objects are
not represented in the IG. Example of an IG is given
in Fig. 2. Blocks are primary objects and table is the
secondary object. Note that the size of an IG depends
only on I and G. It is not affected by O at all.

[e] [O]
Al [c] &l

Tital Sate God Siate

Figure 2: Disconnected IG. The IG has 2 components.

There is a polynomial time algorithm (pg. 274, [Deo
1999]) for testing if a graph is disconnected and find-
ing all of its connected components if it is disconnected.
We have implemented this to find the components of an
IG. Different planning problems corresponding to dif-
ferent components of the IG (when it is disconnected)
can be allocated to different agents. For plans of indi-
vidual agents to be free of conflicts, whether there are
shared resources must be considered. We consider a
plane to be one kind of resource, truck to be another
kind of resource etc. We have the following guideline
on the decomposition of a problem into p independent
subproblems:

Guideline 3: If an IG of a planning problem <
I,G,0 > has p connected components and there
are at least p resources of each kind, the planning
problem can be split into p independent subproblems
< I1,G1,01 >, < [,,G5,0, >, < I3,G3,03 >,
. I),Gp,0p >, such that I = (I AL A ... A L),
(Gl/\Gz/\Gg/\.../\GP) = G and O; C 0,02 C
0,.....,0p, C O, if any one object of each resource type
is enough for an agent i to generate its individual plan,
irrespective of the state of the resource object in I;.

Let us consider the example in Fig. 2. IG yields the
following problems < I;,G1,0; > and < Iy, G4, 02 >.
I, = (clear(B) A on(B,A) A on(A,Table)) and G; =
(on(A, B)Aon(B,Table)). Ir = (clear(D)Aon(D,C)A
on(C,Table)) and Go = (on(C, D) Aon(D,Table)). O

is set of all ground instances of move(z, y, z), such that
x # Table,x #y,y # z,x # z,x,y,z € {A, B,Table}.
O is set of all ground instances of move(z,y, 2),
such that x # Table,x # y,y # z,x # z,x,y,2 €
{C, D, Table}. Note that an action involving primary
objects of both agents like move(A, B, D) need not be
considered.

4.1 D-FF, D-HSP & D-GP

The FF planner is a forward state-space planner us-
ing a heuristic based on relaxed planning graph. This
planner won outstanding performance award at the
ATPS-2000 planning competition. The HSP 2.0 plan-
ner is a state-space planner computing estimates of
distance to goal from various world states. This plan-
ner did very well at the ATPS-1998 and 2000 competi-
tions. It allows a very flexible experimentation through
choice of direction of search, heuristic and weight value
to be used in computing path costs. The planners D-
FF, D-GP and D-HSP work in the following manner.
Planner X is FF or HSP or GP: (i) Construct an IG
for the given problem. If the IG is connected, perform
breadth-first F'SS search until a state I’ is found such
that the IG for < I',G,0 > is disconnected. In this
search, an IG is constructed for each world state vis-
ited. Visits to same world state are avoided. (ii) Form
two subproblems, each based on half the total number
of components of the IG. If there are an odd number
of components n, then one subproblem is formed using
ceiling of § components and the other subproblem is
formed using the remaining components. Thus the IG
is considered to have only two components. Proceed
to step (iii) only if restrictions on resources stated in
guideline 3 in section 4 are fulfilled. (iii) Solve each
subproblem using planner X independently. (iv) Com-
bine the two plans to get part of global plan. Append
this part of the global plan to the path in tree of FSS
planner that lead from I to I', to get final plan.

4.2 Relaxing the Assumptions

In section 4.1, we showed how independent subprob-
lems can be derived from an IG under certain assump-
tions about known nature of objects, I, G and resource
availability. The notion of constructing a graph con-
taining vertices for various propositions from I and G
and connecting a vertex from I to a vertex from G if
there is one or more common object between these two
is useful even if the assumptions in section 4.1 do not
hold. One can still construct such a graph and form
planning subproblems based on its components. These
problems can be given to various agents and their plans
could be merged. Some agents may not be able to gen-
erate plans achieving their subgoal if they do not have

arequired action. Such partial plans can be completed.
At the time of merging plans, the conflict resolver can
introduce actions from O¢ obtained from the PG for
< I,G,0 > to find a globally correct plan. This avoids
loss of completeness.

5 Empirical Evaluation

Our empirical results are shown in Fig. 3, 4 and
5. Several classical planners are publicly available for
experimentation. There are no such distributed plan-
ners to the best of our knowledge. The performance
of D-FF, D-HSP and D-GP could have been compared
with such planners. Our breadth-first FSS Code in
C, FF version 2.2, our implementation of Graphplan
in C++ and HSP 2.0 with hlplus heuristic, forward
direction and weight of 2 were used in these experi-
ments. The experiments were conducted on a Dual
Intel Pentium II 400 MHz SunOS 5.7 machine. The
times for D-FF, D-HSP and D-GP are found by adding
(i) FSS search time, (ii) time for construction of IGs
and testing for their disconnectedness, (iii) maximum
of planning times of the two agents, and, (iv) plan
merging time. Since the IG and FSS search-based
decomposition lead to independent subproblems, no
conflicts between plans of two agents had to be re-
solved. The times reported are cpu seconds, except
those stated to be in cpu miliseconds (ms). - denotes
that no speedup was obtained. The problems will be
made available to other researchers. The problems
with names starting with bw are from blocks world.
bw-large.a is a benchmark problem. Actions in this do-
main are ground instances of the operator move(z,y, z)
where x # y,y # z,x # z,x # Table. This means
moving block z from top of block y or table to top
of block z or table. Grippers are not represented in
the problem, so multiple blocks whose tops are clear
can be moved at same time. Other problems are from
the transportation logistics domain in which packages
are to be delivered to be appropriate locations using
planes and trucks. Speedup for planner D-X in Fig. 3
is found by dividing the time needed by planner X by
the time needed by D-X. Speedup of planner D-X is
denoted by S in the column next to the one for solving
times for D-X.

We did not obtain speedup on some problems mainly
because of the time needed by the FSS search to yield
subproblems. The problem bw-1 was difficult to split
for the automatic decomposition technique, because of
being very serial. Note that we do not claim to have
planners necessarily faster than HSP, FF or GP. The
aim of our experiments is to see if distribution of plan-
ning activity can improve performance of HSP, FF and
GP. On several problems from the ATPS-2000 compe-

tition which are very large or highly serial, the dis-
tributed planners either ran out of memory or took
longer.

The maximum number of actions in search spaces of
two planning subproblems (N1, N2) and in the search
space of given problem (N) are reported in the table in
Figure 4, along with information about objects in the
problems. The maximum number of actions is found
by computing the number of all ground instances based
on the objects that an agent had access to. The num-
ber of objects in blocks world was same as the num-
ber of blocks. The data for transportation logistics
problems shows the number of planes, cities, packages,
trucks, airport locations and non-airport locations re-
spectively. These results show that IG is very effective
at reducing the maximum number of actions. Loss of
plan optimality can be a significant problem in dis-
tributed planners. Global plans generated by D-GP
were close to optimal plans on some problems. Num-
ber of steps and actions in optimal plans and plans
generated by FF, D-FF, HSP, D-HSP, GP and D-GP
are shown in Fig. 5.

6 Conclusion

Most of the research in distributed planning so far
is about important issues of cooperation, communi-
cation, coordination and negotiation among agents.
Problem decomposition is one of the key problems
in distributed planning. Current distributed planners
do not use general and effective automatic problem
decomposition techniques. In this paper we showed
how planning graphs and interaction graphs can be
used to decompose problems effectively. Both repre-
sentations can be constructed in low order polynomial
time. We showed how distributed planners can use
decompositions based on PG and IG. Several efficient
classical planners have been developed in last seven
years. We showed via empirical evaluation that the
distributed versions of three such planners (HSP, FF,
and, GP) were significantly benefitted by the IG and
FSS search-based decomposition technique. Our work
shows that distributed planning can be benefitted by
recent progress in classical planning in at least two
ways: (i) by using efficient classical planners and (ii)
by using general and effective automatic problem de-
composition techniques.

Acknowledgement: This work is supported by NSF
grant I1S-0119630 to Amol Mali. The authors thank
Subbarao Kambhampati, Dana Nau, Ichiro Suzuki and
Dan Weld for useful comments on distributed planning.

References

[Baker & Greenwood 1987] T. C. Baker and J.
R. Greenwood, Star: An environment for development
and execution of knowledge-based planning applica-
tions, Proceedings of DARPA knowledge-based plan-
ning workshop, Dec. 1987.

[Blum & Furst 1997] Avrim Blum and Merrick
Furst, Fast planning through planning graph analysis,
Artificial Intelligence 90, 1997, 281-300.

[Bonet & Geffner 2001] Blai Bonet and Hector
Geffner, Heuristic search planner 2.0, AT Magazine,
Fall 2001, Volume 22, No. 3, pp. 77-80.

[Deo 1999] Narsingh Deo, Graph theory with appli-
cations to engineering and computer science, Prentice
Hall, 1999.

[Durfee 1999] Edmund H. Durfee, Distributed con-
tinual planning for unmanned ground vehicle teams,
AT Magazine, Volume 20, Number 4, Winter 1999, pp.
55-62.

[Foulser et al 1992] David E. Foulser, Ming Li and
Qiang Yang, Theory and algorithms for plan merging,
Artificial Intelligence journal, Volume 57, Number 2-3,
1992, pp. 143-182.

[Grosz et al 1999] Barbara J. Grosz, Luke Huns-
berger and Sarit Kraus, Planning and acting together,
AT Magazine, Volume 20, Numer 4, Winter 1999, pp.
23-34.

[Hoffmann 2001], Jorg Hoffmann, FF: The fast for-
ward planning system, AT Magazine, Volume 22, Num-
ber 3, Fall 2001, pp. 57-62.

[desJardins et al 1999] Marie E. desJardins, Ed-
mund H. Durfee, Charles L. Ortiz Jr., and Michael
J. Wolverton, A survey of research in distributed con-
tinual planning, AT Magazine, Volume 20, Number 4,
Winter 1999, pp. 13-22.

[desJardins & Wolverton 1999] Marie desJardins
and Michael Wolverton, Coordinating a distributed
planning system, AI Magazine, Volume 20, Number
4, Winter 1999, pp. 45-54.

[Mali & Kambhampati 2002] Amol Mali and Sub-
barao Kambhampati, Distributed Planning, To ap-
pear in the Encyclopaedia of Distributed Computing,
Kluwer Academic Publishers.

[Nguyen & Kambhampati 2000] XuanLong
Nguyen and Subbarao Kambhampati, Extracting effec-
tive and admissible heuristics from the planning graph,
Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2000.

[Tambe & Jung 1999] Milind Tambe and Hyuckchul
Jung, The benefits of arguing in a team, AT Magazine,
Volume 20, Number 4, Winter 1999, pp. 85-92.
[Wilkins & Myers 1998] David E. Wilkins and
Karen L. Myers, A multiagent planning architecture,

Problem HSP D-HSP | S FF D-FF | S GP D-GP S
bw-1 0.11 4.25 - 0.02 | 4.25 - 3.481 4.29 -
bw-large.a | 0.2 0.66 - 0.02 | 0.61 - 12.55 1.65 7.6
bw-2 0.41 0.1 4.1 0.06 | 0.07 |- 39.22 0.43 91.2
bw-3 0.08 0.05 1.6 0.03 | 0.04 - 1.535 77 ms 19.9
bw-4 0.41 0.76 - 0.08 | 0.67 |- 15.98 4.09 3.91
bw-5 > 30 min. | 430.46 | > 4.18 | 4.06 | 2.62 1.55 > 30 min. > 30 min. | -
logistics-1 | 0.42 0.07 6 0.14 | 0.06 2.33 | > 30 min 72 ms > 25000
logistics-2 | 0.1 0.06 1.7 0.06 | 0.05 1.2 0.202 48 ms 4.21
logistics-3 | 1.2 0.12 10 0.3 0.09 3.33 | > 30 minutes | 0.169 > 10650
logistics-4 | 5.74 0.24 23.92 0.69 | 0.19 3.63 | > 30 minutes | 0.342 > 5263
logistics-5 | 26.81 24 11.17 6.22 | 1.59 3.91 > 30 min. > 30 min. | -
logistics-6 | 199.54 6.3 31.67 53.73 | 2.96 18.15 | > 30 min. > 30 min. | -
Figure 3: Empirical results - Planning times and speedup
Problem N1, N2 N Objects
bw-1 48, 18 294 7
bw-large.a | 294, 4 648 9
bw-2 180, 180 1584 | 12
bw-3 48, 48 448 8
bw-4 4, 448 900 10
bw-5 3840, 11638 | 57798 | 39
logistics-1 | 90, 90 1240 | 24,4444
logistics-3 | 130, 130 1536 | 2,484,444
logistics-4 | 402, 402 5820 | 2,6,6,6,6,6
logistics-5 | 3554, 3554 | 49224 | 2,12,12,12,12,12
logistics-6 | 4494, 4494 | 56712 | 2,12, 24, 12, 12, 12
Figure 4: Maximum number of actions and the number of objects
Problem D-GP | GP DFF | FF D-HSP | HSP | Optimal
bw-1 12/9 | 17/9 | 12/9 | 11/11 | 12/9 11/11 | 11/9
bw-large.a | 16/9 | 10/4 | 12/10 | 6/6 11/9 8/8 6/4
bw-2 12/6 | 12/6 | 12/6 | 12/12 | 12/6 12/12 | 12/6
bw-3 11/8 | 12/7 | 11/8 | 10/10 | 11/8 10/10 | 10/7
bw-4 17/8 | 16/5 | 18/16 | 15/15 | 16/14 | 12/12 | 11/5
logistics-1 | 50/12 | - 42/21 | 44/44 | 50/25 | 51/51 | 32/12
logistics-2 | 24/11 | 26/10 | 24/17 | 23/23 | 26/19 | 25/25 | 23/10
logistics-3 | 58/12 | - 50/25 | 52/52 | 62/31 | 63/63 | 40/12
logistics-4 | 50/11 | - 64/32 | 67/67 | 74/37 | 75/75 | 48/11

Figure 5: Number of steps and actions in plans.

Proceedings of international conference on artificial in-
telligence planning systems (AIPS), 1998, pp. 154-162.

