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Abstract—Large datasets usually contain redundant informa-
tion and summarizing these datasets is important for better data
interpretation. Higher-order data reduction is usually achieved
through low-rank tensor approximation which assumes that the
data lies near a linear subspace across each mode. However, non-
linearities in the data cannot be captured well by linear methods.
In this paper, we propose a multiscale tensor decomposition to
better approximate local nonlinearities in tensors. The proposed
multiscale approach constructs hierarchical low-rank structure
by dividing the tensor into subtensors sequentially and fitting
a low-rank model to each subtensor. The proposed method is
evaluated on compressing 3 and 4-mode tensors containing video
and functional connectivity brain networks, respectively.

I. INTRODUCTION

There is a growing interest to collect and store a variety of
large originating from multiple sensors such as hyperspectral
images, high resolution videos and medical images, for a
variety of applications [1]–[3]. These large datasets, when
vectorized into elements of RD, are often assumed to be
lying near a lower d-dimensional manifold, or subspace, with
d�D. Many techniques including Principal Component Anal-
ysis (PCA), Independent Component Analysis (ICA), Mor-
phological Component Analysis (MCA) have been proposed
to discover these intrinsic lower dimensional subspaces from
high dimensional data [4]. However, these lower dimensional
bases obtained by linear methods may not efficiently encode
the data points belonging to nonlinear manifolds [5], [6]. To
address this issue, various approaches have been developed to
discover such embedded low dimensional manifolds [5]–[8].

In order to better deal with the curse of dimensionality,
both linear and nonlinear subspace learning methods have been
extended to higher order data reduction. In early work in the
area, Vasilescu and Terzopoulos [9] extended the eigenface
concept to the tensorface by using higher order SVD and
taking different modes such as expression, illumination and
pose into account. Similarly, 2D-PCA for matrices has been
used for feature extraction from face images without convert-
ing the images into vectors [10]. More recently, Higher Order
SVD (HoSVD) and Parallel Factor Analysis (PARAFAC)
have been proposed as direct extensions of SVD and PCA
to higher order tensors [11]–[14]. De Lathauwer [15] pro-
posed block-term decomposition which unifies PARAFAC and
HoSVD where PARAFAC decomposes the tensor into scalar
blocks and HoSVD fits a low n-rank representation to each
block. Alternatively, Hierarchical Tucker Decomposition (HT)
[16] and Tensor-Train Decomposition (TT) [17] have been
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developed to compress large tensor data into smaller core
tensors through matrix product forms. However, most of these
subspace learning algorithms are interested in fitting a low-
rank model to data which lies near a linear subspace and
are similar to PCA and SVD with the goal of finding the
best linear low-rank approximation. The major shortcoming
of these methods is that they are limited to discovering linear
structure and cannot capture nonlinearities.

More recently, many of the manifold learning approaches
have been extended from the vector case to tensors. He
et al. [18] extended locality preserving projections [19] to
second order tensors for face recognition. Moreover, Dai and
Yeung [20] presented generalized tensor embedding methods
such as the extensions of local discriminant embedding [21],
neighborhood preserving embedding [22], and locality pre-
serving projection [19] to tensors. Li et al. [23] proposed
a supervised manifold learning method for vector type data
which preserves local structures in each class of samples, and
then extended the algorithm to tensors to provide improved
performance for face and gait recognition. Similar to vector-
type manifold learning algorithms, the aim of these methods
is finding an optimal linear transformation for the tensor-
type data samples without vectorizing them and mapping these
samples to a low dimensional subspace while preserving the
neighbourhood information. In contrast, herein, we propose
novel unsupervised higher-order manifold learning approaches
for summarizing higher-order data by taking advantage of
multiscale structure to better deal with intrinsic nonlinearities.

In this paper, we propose a novel multiresoultion analysis
technique to efficiently encode nonlinearities in tensor type
data. The proposed method constructs data-dependent multi-
scale dictionaries to better represent the data. The proposed
algorithm consists of two main steps: 1) Constructing a tree
structure by decomposing the tensor into a collection of
permuted subtensors, and 2) Constructing multiscale dictio-
naries by applying HoSVD to each subtensor. Finally, we
apply the proposed algorithm to real datasets to illustrate the
improvement in the compression performance compared to
HoSVD.

II. BACKGROUND

A. Tensor Algebra

An order N tensor is denoted as X ∈ RI1×I2×...×IN where
xi1,i2,..iN corresponds to the (i1, i2, ..iN)th element of the tensor
X . Vectors obtained by fixing all indices of the tensor except
the one that corresponds to nth mode are called mode-n fibers.



Mode-n product The mode-n product of a tensor X ∈
RI1×...In×...×IN and a matrix U ∈ RJ×In is denoted as Y =
X ×n U = (Y )i1,i2,...,in−1, j,in+1,...,iN = ∑

In
in=1 xi1,...,in,...,iN u j,in and

is of size I1× ...× In−1× J× In+1× ...× IN .
Tensor matricization Process of reordering the elements of
the tensor into a matrix is known as matricization or unfolding.
The mode-n matricization of tensor Y ∈ RI1×...In×...×IN is de-
noted as Y(n) ∈RIn×∏i∈{1,...,N}/{n} Ii and is obtained by arranging
mode-n fibers to be the columns of the resulting matrix.
Rank-One Tensors An N-way rank-one tensor X ∈
RI1×I2×...×IN can be written as the outer product of N vectors.

X = a(1) ◦a(2) ◦ ...◦a(N) (1)

where ’◦’ is the vector outer product.
Tensor Rank Unlike matrices which have a unique definition
of rank, there are multiple rank definitions for tensors includ-
ing tensor rank and tensor n-rank. The rank of a tensor X is
the smallest number of rank-one tensors that form X as their
sum.
The n-Rank Let X ∈ RI1×I2×...×IN be an N-way tensor, the
n-rank of X is the collection of rank of mode matrices X(n)
and is denoted as:

rankn(X ) =
{

rank(X(1)), rank(X(2)), ..., (X(n))
}

(2)

where n = 1,2, ...,N.

III. MULTISCALE ANALYSIS OF HIGHER-ORDER
DATASETS

In this section, we present a multiscale analysis procedure
named as Multiscale HoSVD (MS-HoSVD) for an Nth order
tensor X ∈ RI1×I2×...×IN . The proposed method recursively
applies the following two-step approach: (i) Low-rank tensor
approximation, (ii) Decomposing the residual (original minus
low-rank) tensor into subtensors.

A tensor X is decomposed using HoSVD as follows:

X = C ×1 U(1)×2 U(2)...×N U(N), (3)

where U(n)s are the left singular vectors of X(n)s. The low-rank
approximation of X is obtained by

X̂0 = C0×1 Û(1)×2 Û(2)...×N Û(N) (4)

where Û(n) ∈ RIn×rns are the truncated projection matrices
obtained by keeping the first rn columns of U(n) and C0 =
X ×1 Û(1),>×2 Û(2),>...×N Û(N),>. The tensor X can now
be written as

X = X̂0 +W0, (5)

where W0 is the residual tensor.
For the first scale analysis, to better encode the details of

X , we adapted an idea similar to the one presented in [24].
The residual tensor of 0th scale W0 is first decomposed into
subtensors as follows.

Tensor W0 ∈ RI1×I2×...×IN is unfolded across each mode
yielding W0,(n) ∈ RIn×∏ j 6=n I j whose columns are the mode-
n fibers of W0. For each mode, rows of W0,(n) are partitioned
into cn non-overlapping clusters by a clustering algorithm and
the Cartesian product of the partitioning labels coming from

different modes yields index sets of K = ∏
N
i=1 ci subtensors

X1,k where k ∈ {1, 2, ..., K}.
Let Jn

0 be the index set corresponding to the nth mode of W0
where Jn

0 = {1, 2, ..., In}, Jn
1,k be the index set of the subtensor

X1,k for the nth mode, where Jn
1,k ⊂ Jn

0 with n ∈ {1, 2, ... N}.
Index sets of subtensors satisfy ∪K

k=1Jn
1,k = Jn

0 and Jn
1,k∩Jn

1,l = /0
when k 6= l for all k, l ∈ {1, 2, ..., K}. For example, the index
set of the first subtensor X1,1 can be written as J1

1,1× J2
1,1×

...× JN
1,1 and the kth subtensor X1,k is obtained by

X1,k(i1, i2, ..., iN) = W0(J1
1,k(i1), J2

1,k(i2), ..., JN
1,k(iN)),

X1,k = W0(J1
1,k× J2

1,k× ...× JN
1,k),

(6)
where in ∈

{
1, 2, ..., Jn

1,k

}
. Low-rank approximation for each

subtensor is obtained by applying HoSVD as:

X̂1,k = C1,k×1 Û(1)
1,k×2 Û(2)

1,k ...×N Û(N)
1,k , (7)

where C1,k and Û(n)
1,ks correspond to the core tensor and low-

rank projection matrices of X1,k with rank r(n)1,k < |J(n)1,k | ,
respectively. X̂1 is the 1st scale approximation of X formed
by mapping all of the subtensors onto X̂1,k as follows:

X̂1(J1
1,k× J2

1,k× ...× JN
1,k) = X̂1,k. (8)

Similarly, 1st scale residual tensor is obtained by

W1(J1
1,k× J2

1,k× ...× JN
1,k) = W1,k, (9)

where W1,k = X1,k−X̂1,k. Therefore X can be rewritten as:

X = X̂0 +W0 = X̂0 +X̂1 +W1. (10)

The jth scale approximation of X is obtained by decom-
posing W j−1,ks into subtensors X j,ks and fitting low-rank
model to each one of them. Finally, the jth scale decomposition
of X can be written as:

X =
j

∑
i=0

X̂i +W j. (11)

A pseudo code of the algorithm for a single scale decompo-
sition is given in Algorithm 1. This procedure can be easily
extended for multiple scales.

Algorithm 1 Multiscale HoSVD with 1-Scale Analysis

1: Input: X : tensor , C = {c1, c2, ..., cN}: the desired number of
clusters for each mode.

2: Output: X̂ : 1-scale low-rank approximation of X .
3: C0,

{
Û(1), ..., Û(N)

}
← truncatedHOSVD(X ).

4: X̂0 = C0×1 Û(1)×2 Û(2)...×N Û(N).
5: W0←X −X̂0.
6: Create subtensors X1,k and index sets Jn

1,k from W0 where k ∈
{1, 2, ..., K}, n ∈ {1, 2, ..., N} and K = ∏

N
n=1 cn.

7: for k = 1 to K do
8: C1,k,

{
Û(1)1,k , ..., Û(N)

1,k

}
← truncatedHOSVD(X1,k).

9: X̂1(J1
1,k× J2

1,k× ...× JN
1,k) = X̂1,k.

10: end for
11: X̂ = X̂0 +X̂1.



A. Computational Complexity
Computational complexity of HoSVD of an N-way tensor

X ∈ RI1×I2×...×IN where I1 = I2 = ...= IN = I is O
(

I(N+1)
)

[25]. By assuming that the clustering is performed using
K-means with ci = c along each mode, the complexity of
first scale MS-HoSVD analysis also includes the sum of the
complexity of clustering along each mode, N ·O

(
IN · c · i

)
,

where i is the number of iterations and the complexity of
HoSVD for each subtensor cN ·O

(
(I/c)(N+1)

)
. Therefore,

first scale MS-HoSVD requires O
(

I(N+1)
)
+N ·O

(
IN · c · i

)
+

cN ·O
(
(I/c)(N+1)

)
computations and order of complexity is

similar to HoSVD when N · c · i is small compared to I.

IV. MEMORY COST OF THE FIRST SCALE DECOMPOSITION

Let X ∈RI1×I2×....×IN be the Nth order tensor. To simplify
the notation, assume that the dimension of each mode is the
same, i.e. I1 = I2 = ....= IN and denoted by I. Assume X is
approximated by HoSVD as:

X̂ = CH ×1 U(1)
H ×2 U(2)

H ...×N U(N)
H , (12)

by keeping the rank of each mode matrix fixed as rank(U(i)
H ) =

RH for i ∈ {1, 2, ..., N}. Let F(·) be a function that measures
the memory cost for the data, then the storage cost of X

decomposed by HoSVD is F(CH)+∑
N
i=1(F(U

(i)
H )) = RN

H +N ·
I ·RH .

For multiscale analysis at scale 1, X = X̂0 + X̂1. The
cost of storing X̂0 is F(C0)+∑

N
i=1(F(Û(i))) = RN

0 +N · I ·R0
where the rank of each mode matrix is rank(U(i)) = R0
for i ∈ {1, 2, ..., N}. The cost of storing X̂1 is the sum
of the storing cost of each K = ∏

N
i=1 c(i) subtensor X̂1,ks.

Assume c(i)= c for all i∈ {1, 2, ..., N} yielding cN subtensors
and each X̂1,k is decomposed using HoSVD as X̂1,k =

C1,k ×1 Û(1)
1,k ×2 Û(2)

1,k ...×N Û(N)
1,k . Let the rank of each mode

matrix be fixed as rank(Û(i)
1,k) = R1 for all i ∈ {1, 2, ..., N}

and k ∈ {1, 2, ..., K}. Then, the cost of the first scale is

∑
K
k=1(F(C1,k)+∑

N
i=1F(Û

(i)
1,k)) = cN(RN

1 +N · I
c
·R1). Choosing

R1 ≤
R0

c(N−1) assures that the storage cost does not grow ex-

ponentially since F(X̂1)< F(X̂0) and the total cost becomes

RN
0 (1 +

1
cN2−2N

) + 2N · I · R0. Similarly, picking R0 = RH/2
provides lower storage cost for the first scale analysis than
HoSVD.

V. RESULTS

A. Datasets
The proposed multiscale approach is applied to 3 and

4-mode tensors containing a video from PIE dataset [26]
and functional connectivity brain networks obtained from
EEG measurements, respectively. The proposed approach is
compared with HoSVD in terms of reconstruction error and
compression ratio. In the tables below, the error refers to
the normalized tensor approximation error ‖X −X̂ ‖F

‖X ‖F and the

compression ratio is computed as # total bits to store X̂
# total bits to store X , where

lower compression ratio indicates more compressed data.

1) ERN data: The proposed approach is applied to a set
of EEG data containing the error-related negativity (ERN).
The ERN is a brain potential response that occurs following
performance errors in a speeded reaction time task usually 25-
75 ms after the response [27]. EEG data from 63-channels
was collected in accordance with the 10/20 system on a
Neuroscan Synamps2 system (Neuroscan, Inc.) sampled at 128
Hz from 91 subjects. For each subject and response type, the
pairwise average phase locking value within the ERN time
window and theta frequency band was computed as described
in [28] yielding a 63× 63 connectivity matrix indicating the
average synchrony between brain regions. Then, a 4-mode
tensor Xt ∈R63×63×91×256 is created for ERN data where the
first and second modes represent the functional connectivity
brain networks while the third and fourth mode correspond to
the number of subjects and time points, respectively.

2) PIE dataset: A 3-mode tensor X ∈ R122×160×69 is
created from PIE dataset [26]. The tensor contains 138 images
from 6 different yaw angles and varying illumination condi-
tions collected from a subject where each image is converted
to gray scale.

B. Fixed Rank Experiments

In the following experiments, clustering is performed by
local subspace analysis (LSA) [29] and the cluster number
along each mode is chosen as ci = 2. The rank used in HoSVD
is selected based on the size of the datasets and gradually
increased to illustrate the relationship between reconstruction
error and compresion rate. In MS-HoSVD with 1-scale anal-
ysis, rank of each scale is selected according to the criterion

R1 ≤
R0

c(N−1) derived in Section IV.

As seen in Figure 1, MS-HoSVD provides better compres-
sion performance for both datasets with the compression per-
formances of both approaches being very close to each other
in the PIE experiment. Moreover, compressing the tensors by
selecting smaller rank, i.e. lower compression ratio, increases
the normalized error for both MS-HoSVD and HoSVD as
expected. Therefore, as the compression rate goes down the
performance of HoSVD and MS-HoSVD become comparable.
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Fig. 1: Compression rate versus Normalized Error for MS-
HoSVD (blue line) and HoSVD (red line) for a) PIE dataset
and b) ERN data with fixed rank criterion. MS-HoSVD pro-
vides better compression performance with lower compression
ratio for both datasets.



C. Adaptive Rank Experiments

In this section, we evaluated the performance of MS-
HoSVD on 1-scale and 2-scale analysis compared to the
HoSVD. In the following experiments, clustering is performed
using local subspace analysis (LSA) [29] and the cluster
number along each mode is chosen as ci = 2. The rank used
in HoSVD is selected adaptively depending on the energy
criterion. Energy criterion determines the number of singular
values kept during the SVD of the unfolded tensors along
each mode such that the preserved energy is above a certain
threshold as:

r(n) = argmin
i

i

∑
a=1

σ
(n)
a s.t.

∑
i
a=1 σ

(n)
a

∑
I(n)
a=1 σ

(n)
a

> τ, (13)

where σ
(n)
a is the ath singular value of the matrix obtained

by unfolding the tensor X along the nth mode and τ is the
threshold.

Tables I and II explore the interplay between compression
and approximation error for MS-HoSVD approach in compar-
ison to the HoSVD for both ERN and PIE datasets. For ERN
dataset, comparing 1-scale MS-HoSVD with energy threshold
τ = 0.75 to HoSVD with τ = 0.9, we can see that the proposed
approach outperforms HoSVD with respect to compression
(Table I). Similarly, for PIE dataset, 2-scale MS-HoSVD with
τ = 0.75 outperforms HoSVD with τ = 0.92 with respect to
both error and compression ratio (Table II). Fig. 2 illustrates
the influence of scale on visual quality where it can be seen
that the visual quality improves with higher order scale.

TABLE I: Reconstruction error computed for compression of
a 4-mode ERN tensor.

ERN data size: 63×63×91×256
τ Compression Error

MS-HoSVD (1 scale) 0.7 0.1892 0.1609
MS-HoSVD (1 scale) 0.75 0.2996 0.1425

HoSVD 0.85 0.2637 0.1704
HoSVD 0.90 0.4180 0.1428

TABLE II: MSE computed for compression of a video from
PIE data.

PIE data size: 122×160×69
τ Compression Error

MS-HoSVD (1 scale) 0.7 0.0614 0.0710
MS-HoSVD (2 scale) 0.7 0.0869 0.0655
MS-HoSVD (1 scale) 0.75 0.1058 0.0566
MS-HoSVD (2 scale) 0.75 0.1310 0.0529

HoSVD 0.90 0.0914 0.0637
HoSVD 0.92 0.1413 0.0545

VI. CONCLUSIONS

In this paper, we proposed a new tensor decomposition
technique for better approximating the local nonlinearities in
generic tensor data. The proposed approach constructs a tree
structure by considering local similarities in the tensor and
decomposes the tensor into lower dimensionsional subtensors
hierarchically. A low-rank approximation of each subtensor is
then obtained by HoSVD. The proposed approach is applied
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Fig. 2: A single frame of the PIE dataset showing increasing
accuracy with scale (τ = 0.75).

to a set of 3-way and 4-way tensors containing real datasets
to evaluate its performance.

Future work will consider automatic selection of parameters
such as the number of clusters and the appropriate rank along
each mode. Parallelization of the algorithm will be considered
to make the algorithm faster such as parallel construction
of subtensors and paralel implementation of HoSVD. Faster
implementation will also enable us to implement finer scale
decompositions. Proposed algorithm currently constructs the
tree structure based on decomposing the tensor using HoSVD.
Integrating the proposed multiscale approach into other tensor
decomposition methods such as PARAFAC will also be con-
sidered.
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