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Abstract—We study one-bit compressed sensing for sig-
nals on a low-dimensional manifold. We introduce two
computationally efficient reconstruction algorithms that
only require access to a geometric multi-resolution anal-
ysis approximation of the manifold. We derive rigorous
reconstruction guarantees for these methods in the scenario
that the measurements are subgaussian and show that they
are robust with respect to both pre- and post-quantization
noise. Our results substantially improve upon earlier work
in this direction.

I. INTRODUCTION

We consider a union M of low-dimensional C1-
manifolds of dimension d in the Euclidean ball B(0, R)
in a high-dimensional space RD, d � D. We imagine
that we do not know M perfectly, and instead only
have access to a certain structured approximation forM,
called a Geometric Multi Resolution Analysis (GMRA)
approximation [1]. Given this data, our goal is to recover
an unknown signal x ∈M from m memoryless one-bit
quantized measurements

y = sign(Ax + ν + τ ), (1)

where A ∈ Rm×D is the measurement matrix, ν ∈ Rm
is a noise vector, and τ ∈ Rm is a vector of quantization
thresholds. We wish to recover x accurately using as
few measurements as possible, using a computationally
efficient algorithm. The recent work [2] introduced a
recovery algorithm for this problem in the setting where
A is standard Gaussian, ν = 0, τ = 0 and M⊂ SD−1.
The purpose of this note is to show that if one uses
dithering in the quantizer, i.e., uses a suitably chosen
random threshold vector τ , then superior results can
be obtained. We introduce two simple, computationally
efficient reconstruction algorithms and derive recovery
guarantees for subgaussian matrices and manifolds lo-
cated in B(0, R). Both methods are robust to noise before
and during quantization. In addition, our bounds on the
required number of measurements for accurate signal
recovery exhibit better parameter dependencies than [2].

II. PRELIMINARIES

Let us first fix some notation and terminology that
will be used throughout our presentation. We let B(z, r)
denote the Euclidean ball in RD with center z and radius

r. Throughout M denotes a union of finitely many d-
dimensional C1-manifolds in RD. We let

tuber(M) := {x ∈ RD : inf
y∈M

‖x− y‖2 ≤ r}

denote the closed r-neighbourhood (or tube) around M.
For any T ⊂ Rn we let |T | denote its cardinality. We
use star(T ) = {ρx : ρ ∈ [0, 1], x ∈ T} to denote
the star-shaped hull of T . A random vector X ∈ Rn is
called L-subgaussian if ‖〈X,x〉‖Lp ≤ L

√
p‖〈X,x〉‖L2

for all x ∈ Rn, and 1 ≤ p < ∞. We use dH(z, z′) =
|{i ∈ [n] : zi 6= z′i}| to denote the Hamming distance
of two bit strings z, z′ ∈ {−1, 1}n. Let PS(x) denote
the Euclidean projection of x onto a given convex set
S ⊂ RD. We use cα, Cα to denote positive constants
depending only on α, which may change from line to
line. Finally, we write a .α b if a ≤ Cαb and a 'α b if
both a .α b and b .α a hold.

To start our development, let us recall the definition
of a GMRA approximation of M.

Definition II.1 (GMRA Approximation to M [1], [3]).
Let J ∈ N and K1, ...,KJ ∈ N. Then a Geometric Multi
Resolution Analysis (GMRA) approximation of M is a
collection {(Cj ,Pj)}, j ∈ [J ] := {1, ..., J}, of sets Cj =

{cj,k}
Kj

k=1 ⊂ RD of centers and

Pj =
{
Pj,k : RD → RD

∣∣ k ∈ [Kj ]
}

of affine projectors which approximate M at scale j,
such that the following assumptions hold.
(1) Affine Projections: Every Pj,k ∈ Pj has an asso-

ciated center cj,k ∈ Cj and a matrix Φj,k ∈ Rd×D
satisfying Φj,kΦTj,k = Idd, such that

Pj,k(z) = ΦTj,kΦj,k(z− cj,k) + cj,k,

i.e., Pj,k is the projector PPj,k
onto a certain affine

d-dimensional linear subspace Pj,k containing cj,k.
(2) Centers: The number of centers is |Cj | = Kj and

Kj ≤ C2dj for an absolute constant C ≥ 1.
(3) Multiscale Approximation: There exist absolute

constants C1, C2 > 0 such that
(a) There exists a j0 ∈ [J − 1], such that cj,k ∈

tubeC1·2−j−2(M), for all j > j0 ≥ 1 and k ∈
[Kj ].



(b) For each j ∈ [J ] and z ∈ RD let cj,kj(z) be one
of the centers closest to z, i.e.,

kj(z) ∈ arg min
k∈[Kj ]

‖z− cj,k‖2. (2)

Then, for each z ∈ M there exists a constant
Cz > 0 such that, for all j ∈ [J ],

‖z− Pj,kj(z)(z)‖2 ≤ Cz · 2−2j .

(c) For each z ∈M there exists C̃z > 0 such that

‖z− Pj,k′(z)‖2 ≤ C̃z · 2−j/2, (3)

for all j ∈ [J ] and k′ ∈ [Kj ] satisfying

‖z− cj,k′‖2 ≤ C2

√
j + log(R)

·max
{
‖z− cj,kj(z)‖2, C1 · 2−j−1

}
.

(4)

Remark II.2. Definition II.1 differs slightly from the
original GMRA axioms as proposed in [3] in two re-
spects. First, in [3] it is additionally assumed that the
centers are well-separated and organized in a tree-like
structure. Second, instead of (3c) it is assumed that if
‖z−cj,k′‖2 ≤ C2 ·max

{
‖z− cj,kj(z)‖2, C1 · 2−j−1

}
(a

stronger requirement), then ‖z − Pj,k′(z)‖2 ≤ C̃z · 2−j
(a stronger property).

For each level j, the union of manifoldsM is approxi-
mated by a union of d-dimensional affine subspaces Pj,k
described by the centers cj,k and the matrices Φj,k. The
centers are not required to lie on M but their distance
to M is controlled by property (3a). If we let j∗ be the
smallest integer exceeding j0 so that tubeC12−j−2(M) ⊂
B(0, 2R), then for all j ≥ j∗ property (3a) ensures that
Cj ⊂ B(0, 2R) and in particular that Pj,k∩B(0, 2R) 6= ∅
for all k ∈ [Kj ]. Below we will use

Uj =
⋃

k∈[Kj ]

Pj,k ∩ B(0, 2R) (5)

to denote the part of the j-th level of the GMRA
approximation contained in B(0, 2R).

Let us finally recall two standard notions to describe
the complexity of a set K ⊂ RD. We let N (K, ε) denote
the Euclidean covering numbers of K. Second, letting
g ∈ RD be standard Gaussian, the Gaussian complexity
of K is denoted by γ(K) = E supx∈K |〈g,x〉|. The
following Gaussian complexity bounds will be used in
our results below. The proof is a standard application of
Dudley’s inequality and therefore omitted.

Lemma II.3. For any j > j∗, γ(Cj) . R
√
jd. For any

δ > 0 and k ∈ [Kj ],

γ(star(Pj,k − Pj,k) ∩ B(0, δ)) . δ
√
d,

γ(star(Uj −Uj)∩B(0, δ)) . δ(
√
jd+

√
d log(eR/δ)).

III. MAIN RESULTS

We present two approaches to recover signals in M,
assuming that we have access to a GMRA approximation
of M and to a possibly corrupted vector of quantized
measurements yc satisfying dH(yc,y) ≤ βm for some
0 ≤ β < 1. The first approach is based on the
following observation. By GMRA property (3b), the
vector x̃ := Pj,kj(x)(x) ∈ Uj is close to x ∈ M in
terms of the Euclidean distance and as a consequence
the binary vectors y = sign(Ax + ν + τ ) and ỹ =
sign(Ax̃+ ν + τ ) differ only in few entries. Hence, we
can view the observed vector yc as a corrupted version
of sign(Ax̃ + ν + τ ). We can therefore recover x̃ by
using a reconstruction program for signals in Uj which
is robust to post-quantization noise, i.e., bit corruptions
of the quantized measurements. This reconstruction of x̃
will then be an accurate reconstruction of x as well.

The following two results from [4] form the foundation
for the two steps in this reasoning. Here and below we
will assume that A has i.i.d. symmetric, isotropic, L-
subgaussian rows, that ν has i.i.d. L-subgaussian entries
with mean zero and variance σ2, that τ has i.i.d. entries
which are uniformly distributed in [−λ, λ], and that A,
ν and τ are independent. The following two results are
immediate from the proofs of [4, Theorem 2.9] and [4,
Theorem 1.7], respectively.

Theorem III.1. There exist constants a1, ..., a4 depend-
ing only on L such that the following holds. Let T, T ′ ⊂
B(0, R). Fix ρ, λ > 0 and let r′ = a1ρ/

√
log(eλ/ρ).

For S = T and S = T ′ set Sr′ = (S − S) ∩ B(0, r′)
and assume

m ≥ a2
λ

ρ3
γ2(Sr′) + a2

λ

ρ
logN (S, r′). (6)

Then with probability at least 1− 8 exp(−a3mρ/λ), for
every z, z′ ∈ T ∪ T ′ with ‖z− z′‖2 ≤ r′/2,

1

m
dH(sign(Az + ν + τ ), sign(Az′ + ν + τ )) ≤ a4

ρ

λ
.

Theorem III.2. There exist constants b1, ..., b5 depend-
ing only on L such that the following holds. Fix δ > 0,
let T ⊂ B(0, R) and Uδ = star(T − T ) ∩ B(0, δ),
set λ ≥ b1(σ + R)

√
log(b1(σ +R)/δ) and let r =

b2δ/ log(eλ/δ). If m and β satisfy

m ≥ b3
((λγ(Uδ)

δ2

)2
+ λ2

logN (T, r)

δ2

)
, (7)

and β
√

log(e/β) ≤ b4
δ
λ , then, with probability at least

1−8 exp(−b5mδ2/λ2) the following holds: for any x ∈
T and any yc ∈ {−1, 1}m satisfying dH(yc,y) ≤ βm,
any Euclidean projection x# = PT ( λmATyc) satisfies
‖x# − x‖2 ≤ δ.

Using the above two results, we can derive a guarantee
for our first recovery algorithm.



Algorithm 1: Exhaustive search
Input: The GMRA, j, A, λ, m, yc, and R

I. For k = 1, . . . ,Kj compute Pj,k
(
λ
mATyc

)
.

II. Select k# to be

arg min
k∈[Kj ]

∥∥∥(PPj,k′∩B(0,2R) − Id
)( λ

m
ATyc

)∥∥∥
2

and output x# = PP
j,k#∩B(0,2R)(

λ
mATyc).

Theorem III.3. There exist constants c0, ..., c5 depend-
ing only on L such that the following holds. Fix δ, C∗ >
0, set r = c0δ/ log(eλ/δ) and suppose that the GMRA
approximation level j satisfies j > j∗ (as defined in
Section II) and 22j ≥ c1C∗/r. Suppose that

λ ≥ c2(σ +R)
√

log(c2(σ +R)/δ),

m ≥ c3
(λ2d(j + log(eR/r))

δ2
+
λ log3/2(eλ/δ)γ2(Mr)

δ3

+
λ log1/2(eλ/δ)

δ
logN (M, r)

)
,

and β̃ ≤ c4δ

λ
√

log(eλ/δ)
. Then, with probability at least

1−16 exp(−c5mδ2/λ2), for any x ∈M with Cx ≤ C∗
and any yc ∈ {−1, 1}m satisfying dH(yc,y) ≤ β̃m the
output x# of Algorithm 1 satisfies

‖x− x#‖2 ≤ δ + Cx2−2j . (8)

Proof : Condition on the events E1 and E2 of The-
orems III.1 for T = Uj , T ′ = M and III.2
for T = Uj (with Uj as defined in (5)), and
respective parameters ρ and δ that will be deter-
mined below. By GMRA property (3b), the vector
x̃ := Pj,kj(x)(x) satisfies ‖x − x̃‖ ≤ Cx2−2j . Let
us choose ρ so that

C∗2−2j ≤ a1ρ/
√

log(eλ/ρ).

Then E1 guarantees that 1
mdH(sign(Ax + ν +

τ ), sign(Ax̃ + ν + τ )) ≤ a4
ρ
λ . Clearly, x# =

PT ( λmATyc) for T = Uj . Hence, if c4 and ρ are
small enough to ensure that β := β̃ + a4(ρ/λ)
satisfies β

√
log(e/β) ≤ b4

δ
λ , then the event E2

implies that ‖x# − x̃‖2 ≤ δ and so (8) holds. One
readily verifies that

ρ = δ/(CL
√

log(eλ/δ)), (9)

where CL is a large enough constant depending
only on L, satisfies all the restrictions. It remains to
verify that E1 and E2 happen with high probability
under the stated assumption on m. By Lemma II.3,
for any 0 < η < R,

γ2(star(Uj−Uj)∩B(0, η)) . η2(jd+d log(eR/η)).

One can now verify that (for our choice of ρ) our
assumption on m ensures that the conditions (6) and
(7) are satisfied. Hence, by Theorems III.1 and III.2
we find P (Ec1 ∪ Ec2) ≤ 16 exp(−cLmδ2/λ2). This
completes the proof.

Remark III.4. By defining c = Pj,k(0), c = ‖c‖2,
and noting that the radius of the d-dimensional disk
Pj,k∩B(0, 2R) is given by

√
(2R)2 − c2, the projection

PPj,k∩B(0,2R)(z) can be computed in time O(dD) as

min
{∥∥ΦTj,kΦj,kz

∥∥
2
,
√

(2R)2 − c2
} ΦTj,kΦj,kz∥∥∥ΦTj,kΦj,kz

∥∥∥
2

+ c.

Algorithm 2: Two step method
Input: The GMRA, j, A, λ, m, yc, R, and τ

I. Identify a center cj,k′ close to x via

cj,k′ ∈ arg min
cj,k∈Cj

dH(sign(Acj,k + τ ),yc).

If dH(sign(Acj,k′ + τ ),yc) = 0, directly choose
x∗ = cj,k′ and omit step II.

II. If there is no center lying in the same cell as x, set

x∗ = PPj,k′∩B(0,2R)

(
λ

m
ATyc

)
.

The reconstruction method in Theorem III.3 is very
robust to noise on the analog measurements and to post-
quantization noise. On the other hand, the computational
effort needed to compute x# for a given signal x consists
in computing PPj,k∩B(0,2R)(

λ
mATyc) for all k ∈ [Kj ]

and determining k#, leading to a total computational cost
of O(|Kj |mD). Since in the worst case |Kj | scales as
2jd, this can quickly become prohibitive for applications
involving higher dimensional manifolds and/or high ac-
curacy demands.

To improve on this, we follow the main idea of [2] and
introduce a pre-processing step, leading to Algorithm 2.
As we will rigorously prove in Lemma III.6, under
appropriate conditions the first step of the algorithm
will identify a center cj,k′ satisfying (4). By GMRA
property (3b), this ensures that Pj,k′(x) will be close
to x in terms of the Euclidean distance. Hence, our
prior considerations show that x∗ will be an accurate
reconstruction of x.

Clearly, the computational cost of the second step is
O(mD). To execute the first step, one needs to compute
sign(Acj,k +τ ) for all centers, which can be performed
offline in time O(|Kj |mD). The online computation
cost amounts to nearest neighbor search (with respect
to the Hamming metric) of |Kj | binary vectors, which
can be performed efficiently (see, e.g., [5], [6]). Hence,
Algorithm 2 is substantially faster than our first algorithm
if we are interested in recovering multiple signals. On
the downside, the recovery guarantees for the second



algorithm will be worse. In particular, Algorithm 2 will
only be robust with respect to a small amount of noise
on the analog measurements (with variance of the order
O(2−j)). In what follows we will assume for simplicity
that ν = 0 and that no bit corruptions occur during
quantization (i.e., yc = y). It is, however, straightforward
to adapt the proofs to accommodate bit corruptions.

We need a variant of [4, Theorem 1.1] which can be
deduced from [4, Theorem 2.3]

Theorem III.5. There exist constants d0, ..., d4 depend-
ing only on L such that the following holds. Set

dA(z, z′) =
1

m
dH(sign(Az + τ ), sign(Az′ + τ ))

Fix 0 < δ < R. If T ⊂ B(0, R), λ ≥ d0R, and

m ≥ d1λ log(eλ/δ)δ−3γ2(T ), (10)

then with probability at least 1− 8 exp(−d2mδ/λ), for
any z, z′ ∈ conv(T ) such that ‖z− z′‖2 ≥ δ, one has

d3 ‖z− z′‖2 ≤ λdA(z, z′) ≤ d4
√

log(eλ/δ) ‖z− z′‖2 .

Lemma III.6. There exist e0, e1, e2, e3 depending only
on L such that the following holds for any θ > 0. If
λ ≥ e0R and m ≥ e1λθ

−3 log(eλ/θ)(γ2(M) + R2jd),
then with probability at least 1− 16 exp(−e2mθ/λ) for
all x ∈M the center cj,k′ chosen in step I of Algorithm 2
fulfills ‖cj,k′ − x‖2 ≤ θ if dH(sign(Acj,k′ + τ ),y) = 0
and otherwise ‖x− cj,k′‖2 is bounded by

e3
√

log(eλ/θ) ·max
{
‖x− cj,kj(x)‖2, θ

}
.

Proof : Condition on the events E1 and E2 of Theo-
rems III.5 and III.1 for T =M∪Cj and parameters
δ = θ and ρ = cLθ

√
log(eλ/θ) for a suitably

large constant cL depending only on L. By E1,
‖cj,k′ − x‖2 ≤ θ if dH(sign(Acj,k′ + τ ),y) = 0.

Suppose now that dH(sign(Acj,k′ + τ ),y) > 0.
If ‖cj,k′ − x‖2 < θ then the claim is trivial, so we
may assume ‖cj,k′ − x‖2 ≥ θ. If

∥∥cj,kj(x) − x
∥∥
2
≥

θ, then by the event E1 and the definition of cj,k′

we find

d3 ‖cj,k′ − x‖2 ≤ λdA(cj,k′ ,x) ≤ λdA(cj,kj(x),x)

≤ d4
√

log(eλ/θ)
∥∥cj,kj(x) − x

∥∥
2
.

Similarly, if
∥∥cj,kj(x) − x

∥∥
2
≤ θ, then

d3 ‖cj,k′ − x‖2 ≤ cLa4
√

log(eλ/θ)θ

by E1 and E2. Finally, γ2(M∪ Cj) . γ2(M) +
R2jd by Lemma II.3. Hence our conditions on λ
and m ensure that E1 and E2 happen with the stated
probability.

We can now derive a performance guarantee for Algo-
rithm 2.

Theorem III.7. There exist constants f0, f1, ..., f5 de-
pending only on L such that the following holds. Fix
δ > 0, let r = f0δ/ log(eλ/δ) and suppose that the
GMRA approximation level j satisfies j > j∗ and
2j/2 ≥ f1C̃∗/r. Let C1, C2 be the GMRA constants. Set
θ = C12−j−1 and assume that C1, C2 are large enough
to ensure that e3

√
log(eλ/θ) ≤ C2

√
j + log(R). Sup-

pose that λ ≥ f2R
√

log(f2R/δ) and m exceeds

f3

[λ2 log(eR/r)d

δ2
+
λ log(eλ/θ)

θ3
(γ2(M) +R2jd)

]
.

Then, with probability at least 1−16 exp(−f4mδ2/λ2)−
16 exp(−f4mθ/λ), for any x ∈ M with C̃x ≤ C̃∗

the following holds: if Algorithm 2 receives yc = y =
sign(Ax + τ ), then its output x∗ satisfies

‖x− x∗‖2 ≤ θ + δ + C̃x2−j/2. (11)

Proof : Condition on the event E1 of Lemma III.6
for θ = C12−j−1. Then ‖cj,k′ − x‖2 ≤ θ if
dH(sign(Acj,k′+τ ),y) = 0 and so ‖x∗ − x‖2 ≤ θ
in this case. Otherwise, ‖x− cj,k′‖2 is bounded by

e3
√

log(eλ/θ) ·max{‖x− cj,kj(x)‖2, θ}.

and, since e3
√

log(eλ/θ) ≤ C2

√
j + log(R),

GMRA property (3c) implies

‖x− Pj,k′(x)‖2 ≤ C̃x2−j/2.

Analogously to the proof of Theorem III.3, (11) is
valid if we condition on the events E2 and E3 of
Theorems III.1 and III.2 for T = T ′ = Pj,k′ with
respective parameters ρ and δ satisfying (9).

It remains to verify that E1, E2, and E3 hap-
pen with the stated probability. Clearly, P (Ec1) ≤
16 exp(−cLmθ/λ). By Lemma II.3, for any 0 <
η < R, γ2(star(Pj,k − Pj,k) ∩ B(0, η)) . η2d and
it is clear that logN (Pj,k, η) . d log(eR/η). One
can now readily verify that our assumption on m
ensures that the conditions (6) and (7) are satisfied.
Hence, P (Ec2 ∪ Ec3) ≤ 16 exp(−cLmδ2/λ2).
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