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ABSTRACT
As higher-order datasets become more common, re-

searchers are primarily focused on how to analyze and com-
press them. However, the most common challenge encoun-
tered in any type of data, including tensor data, is noise.
Furthermore, the methods developed for denoising vector
or matrix type datasets cannot be applied directly to higher-
order datasets. This motivates the development of denoising
methods for tensors. In this paper, we propose the use of
a multiscale approach for denoising general higher-order
datasets. The proposed approach works by decomposing
the higher-order data into subtensors, and then denoises the
subtensors by recursively exploiting filtered residuals. The
method is validated on both hyperspectral image and brain
functional connectivity network data.

Index Terms— Tensor algebra, higher order SVD, tensor
denoising

1. INTRODUCTION

With recent advances in information technology it is now pos-
sible to simultaneously collect, store, and process data from
multiple sources with different attributes. This type of data,
also known as higher-order data or tensor data, is encoun-
tered frequently in multimedia, hyperspectral imaging (HSI),
and seismic data analysis, as well as in multiple modality
neuroimaging applications [1–3]. Furthermore, higher-order
data encountered in such applications is often very noisy. Ex-
isting methods for data denoising primarily focus on either
vector or matrix type data, and their extensions to high or-
der data have been mostly limited to denoising each frame or
slice of a given tensor dataset independently from all other
frames/slices.

More recently, methods based on the higher-order sin-
gular value decomposition (HOSVD) and high-dimensional
wavelet transforms have been proposed for denoising tensor
type data [1, 3, 4]. These methods attempt to take advantage
of signal correlations across tensor frames/slices in order
to achieve better noise reduction. For example, Muti and
Bourennane [2] presented multimode Wiener filtering for
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noise removal in multidimensional seismic data. Chen and
Qian [1] applied bivariate Wavelet shrinking combined with
Principal Component Analysis to HSIs to do simultaneous
denoising and dimensionality reduction. Similarly, Othman
and Qian [5] proposed a hybrid method which performs both
spatial and spectral wavelet shrinkage for noise reduction in
HSIs. Yuan et al. [6] extended the total variation (TV) model
to tensors by making it spectrally and spatially adaptive. Low-
rank tensor approximation [7] and 3D wavelets [4] are also
used to denoise multidimensional datasets. More recently,
Zhang et al. [3] extended a HOSVD based image denoising
algorithm [8] to 3-way tensors and showed that applying the
algorithm recursively improves the denoising performance
on MRI data. Moreover, Peng et al. [9] proposed a dictio-
nary learning algorithm for tensors to denoise multispectral
images. The suggested technique applies HOSVD to overlap-
ping patches to eliminate spectral noise and takes the average
of non-locally similar patches to reduce spacial noise. How-
ever, most of these approaches are limited to specific order
of tensors such as 3-way tensors and specific data models
or types. In contrast, we propose more general denoising
approaches suitable for tensors of any order. Moreover, some
of these approaches are direct extensions of image denoising
algorithms to tensors, and and so are specifically designed
for denoising image-like datasets (e.g., hyperspectral im-
ages). In particular, wavelet based algorithms exploit both
spatial and spectral properties of a given dataset, and their
multiscale structure provides very effective denoising perfor-
mance. However, network-like datasets (for example) do not
generally exhibit the spatial and spectral characteristics on
which wavelet based methods rely.

In this paper, we propose a recursive and multiscale
denosing approach suitable for any type of tensor data. The
proposed algorithm consists of two main steps: (i) Cluster-
ing the tensor into lower dimensional subtensors which are
expected to have a lower rank and a more compact repre-
sentation, thereby leading to a better discrimination between
signal and noise, and then (ii) Denoising each subtensor. The
performance of the proposed method is evaluated on both a
3-way tensor containing a hyperspectral image, and a 4-way
tensor containing brain functional connectivity networks.



2. BACKGROUND

2.1. Tensor Algebra

A multidimensional array with N modes X ∈RI1×I2×...×IN is
called a tensor, where xi1,i2,..iN denotes the (i1, i2, ..iN)th ele-
ment of the tensor X . Vectors obtained by fixing all indices
of the tensor except the one that corresponds to nth mode are
called mode-n fibers. Basic tensor operations are reviewed
below [10].
Mode-n product The mode-n product of a tensor X ∈
RI1×...In×...×IN and a matrix U ∈ RJ×In is denoted as Y =
X ×n U, (Y )i1,i2,...,in−1, j,in+1,...,iN = ∑

In
in=1 xi1,...,in,...,iN u j,in and

is of size I1× ...× In−1× J× In+1× ...× IN .
Tensor matricization Process of reordering the elements of
the tensor into a matrix is known as matricization or unfold-
ing. The mode-n matricization of tensor Y is denoted as
Y(n) and is obtained by arranging mode-n fibers to be the
columns of the resulting matrix. Unfolding the tensor Y =
X ×1 U(1)×2 U(2)...×N U(N) along mode-n is equivalent to
Y(n) = U(n)X(n)(U(N)⊗ ...U(n+1)⊗U(n−1)...⊗U(1))>, where
⊗ is the matrix Kronecker product.
Tensor Rank Unlike matrices, which have a unique defini-
tion of rank, there are multiple rank definitions for tensors
including tensor rank and tensor n-rank. The rank of a ten-
sor X ∈ RI1×...In×...×IN is the smallest number of rank-one
tensors that form X as their sum. The n-rank of X is the
collection of ranks of mode matrices X(n) and is denoted as:

n-rank(X ) =
(
rank(X(1)), rank(X(2)), ..., rank(X(N))

)
.
(1)

2.2. Higher Order Singular Value Decomposition

Any tensor X ∈ RI1×I2×...×IN can be decomposed as mode
products of a core tensor S ∈RI1×I2×...×IN and N orthogonal
projection matrices U(n) ∈ RIn×In which are the left singular
vectors of X(n) [11]:

X = S ×1 U(1)×2 U(2)...×N U(N), (2)

where S is computed as:

S = X ×1 (U(1))>×2 (U(2))>...×N (U(N))>. (3)

The noisy tensor X can be filtered by thresholding the
coefficients of the core tensor S as follows. Let S̄ be a de-
noised core tensor, Hτ(·) be the hard thresholding operator,
and S̄ (i) be the (i1, i2, ..., iN)th element of S̄ , then S̄ (i) is:

S̄ (i) = Hτ(S (i)) =
{

S (i), |S (i)| ≥ τ

0, |S (i)|< τ
, (4)

where τ =
√

2σ2 log10(∏
N
n=1 In) is the universal thresh-

old [12] and σ2 is the noise variance. The denoised tensor X̄
is then obtained by:

X̄ = S̄ ×1 U(1)×2 U(2)...×N U(N). (5)

3. MULTISCALE DENOSING FOR TENSORS

3.1. Tensor Denoising by Local HOSVD

In this section, we propose a new procedure to remove
noise from Nth order tensor X ∈ RI1×I2×...×IN named Lo-
cal HOSVD Denoising (L-HOSVD). The proposed method
applies the following two-step approach: (i) Reclustering the
noisy tensor X into subtensors, (ii) Denoising by HOSVD.

The tensor X is first decomposed into subtensors as fol-
lows. Tensor X ∈RI1×I2×...×IN is unfolded across each mode
yielding X(n) ∈ RIn×∏ j 6=n I j whose columns are the mode-n
fibers of X . For each mode, rows of X(n) are partitioned into
cn non-overlapping clusters by a clustering algorithm. Carte-
sian products of the partitioning labels coming from different
modes yields index sets of K =∏

N
i=1 ci subtensors X1,k where

k ∈ {1, 2, ..., K}. In our experiments, Local Subspace Anal-
ysis (LSA) [13] is used to identify the clusters.

Let Jn
0 and Jn

k be the index sets of the tensor X and
subtensor Xk for the nth mode, respectively where Jn

0 =
{1, 2, ..., In} and Jn

k ⊂ JN
0 with n ∈ {1, 2, ... N}. Index sets

of subtensors satisfy ∪K
k=1Jn

k = Jn
0 and Jn

k ∩Jn
l = /0 when k 6= l

for all k, l ∈ {1, 2, ..., K} . Therefore, index set of the first
subtensor X1 can be written as J1

1 × J2
1 × ...× JN

1 and kth
subtensor Xk is obtained by

Xk(i1, i2, ..., iN) = X (J1
k (i1), J2

k (i2), ..., JN
k (iN)),

Xk = X (J1
k × J2

k × ...× JN
k ),

(6)

where in ∈
{

1, 2, ..., Jn
k

}
. Each subtensor is then decomposed

as:
Xk = Sk×1 U(1)

k ×2 U(2)
k ...×N U(N)

k , (7)

where Sk and U(n)
k s correspond to the core tensor and pro-

jection matrices of Xk, respectively. In order to denoise sub-
tensors Xk, the procedure in section 2.2 is applied to each
subtensor Xk individually. First, the coefficients of Sk are

thresholded with τk =
√

2σ2 log10(∏
N
n=1 |Jn

k |) which yields

S̄k = Hτk(Sk). Then the denoised subtensors are obtained
by X̄k = S̄k×1 U(1)

1,k×2 U(2)
k ...×N U(N)

k . The denoised tensor
X̄ is formed by mapping all of the subtensors onto X̄k as
follows:

X̄ (J1
k × J2

k × ...× Jn
k ) = X̄k. (8)

A pseudo code of the algorithm is given in Algorithm 1.

3.2. Tensor Denoising by Multiscale HOSVD

In order to improve the performance of L-HOSVD, we
propose to use a two-scale procedure named as Multiscale
HOSVD Denosing (MS-HOSVD) by making use of recur-
sive regularization as in [3, 14]. In the first scale, the Nth
order tensor X ∈ RI1×I2×...×IN is denoised using HOSVD as
in section 2.2 which yields a tensor X̄ (1). In the second scale,



Algorithm 1 Denoising by Local HOSVD

1: Input: X ∈ RI1×I2×...×IN : tensor, C = (c1, c2, ..., cN): the de-
sired number of clusters for nth mode, σ2: the noise variance
.

2: Output: X̄ : denoised tensor
3: K←∏

N
i=1 ci

4:
[{

J1
1 , J2

1 , ..., JN
1 , ... J1

K , J2
K , ..., JN

K
}]

= cluster(X , C)
5: for k = 1 to K do
6: Xk = X (J1

k × J2
k × ...× JN

k )

7: Sk,
{

U1
k , U2

k , ...,U
N
k
}
← HOSVD(X(k))

8: τk =
√

σ22log10(∏
N
n=1 |Jn

k |)
9: S̄k← Hτk (Sk)

10: X̄k←Sk×1 Û1
k ×2 Û2

k ...×N ÛN
k

11: X̄ (J1
k , J2

k , ..., Jn
k ) = X̄k

12: end for

we adapted the idea of iterative regularization that adds fil-
tered noise back to the denoised image [15]. Then L-HOSVD
is applied to a combined tensor X (2) which is the sum of the
denoised tensor X̄ (1) and residual tensor R(1) = X − X̄ (1)

obtained from the first stage as:

X (2) = X̄ (1)+αR(1)

= (1−α)X̄ (1)+αX ,
(9)

where α ∈ [0, 1] is the relaxation parameter. The noise
variance σ2

2 used in second stage is estimated as σ2 =

α
√

σ2− ‖X −X̄ (2) ‖ . Applying L-HOSVD to X (2)

yields denoised tensor X̄ (2) (Algorithm 2).

3.3. Computational Complexity

Computational complexity of denosing an N-way tensor
X ∈RI1×I2×...×IN where I1 = I2 = ...= IN = I using HOSVD
is O

(
I(N+1)

)
. By assuming that the clustering is performed

using K-means with ci = c along each mode, then the com-
plexity of denoising by L-HOSVD becomes the sum of the
complexity of clustering along each mode N · O

(
IN · c · i

)
Algorithm 2 Denoising by Multiscale HOSVD

1: Input: X ∈ RI1×I2×...×IN : tensor, C = (c1, c2, ..., cN): the de-
sired number of clusters for nth mode, σ2: the noise variance,α:
the relaxation parameter .

2: Output: X̄2: denoised tensor
3: S1,

{
U1, U2, ...,UN}← HOSVD(X )

4: τk =
√

σ22log10(∏
N
n=1 |In|)

5: S̄ (i) = Hτ (S (i))
6: ¯X (1) = S̄ ×1 U(1)×2 U(2)...×N U(N).
7: X (2) = (1−α)X̄ (1)+αX

8: σ2 = α

√
σ2− ‖X −X̄ (1) ‖

9: ¯X (2) = L-HOSVD(X (2),C,σ2)

where i is the number of iterations and the complexity of
HOSVD for each subtensor cN · O

(
(I/c)(N+1)

)
. Simi-

larly, denoising using MS-HOSVD requires O
(

I(N+1)
)
+

N ·O
(
IN · c · i

)
+ cN ·O

(
(I/c)(N+1)

)
computations and order

of the complexity is similar to HOSVD when N · c · i is small
compared to I.

4. RESULTS

4.1. Hyperspectral Image Denoising

In this experiment, we used a hyperspectral image from [16]
to create a 3-mode tensor X ∈R401×500×148 where the modes
are rows, columns and spectral bands respectively. Zero mean
Gaussian noise with varying signal to noise ratio between 5
to 20 dB was added to X , and HOSVD, L-HOSVD and
MS-HOSVD were applied to the noisy tensor. Clustering pa-
rameters cis for both L-HOSVD and MS-HOSVD are set to 2
for each mode yielding 8 subtensors to denoise. To select the
optimal relaxation parameter α for MS-HOSVD, different
α values in the interval [0, 1] are selected with a step size
of 0.1. As seen in Fig. 1 α = 0.5 maximizes the SNR for
all of the noise levels. All of the experiments were repeated
20 times and the average SNR values of the denoised data
were computed for each method (Table 1). As seen in Table
1, L-HOSVD provides better SNR than HOSVD while MS-
HOSVD gives the highest SNR for all of the experiments.
Slices from tensors denoised by HOSVD, L-HOSVD and
MS-HOSVD are illustrated in Fig. 2, and it can be seen that
the tensor denoised by HOSVD has more distortion than the
ones denoised by L-HOSVD and MS-HOSVD .
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Fig. 1: Mean SNR values computed for MS-HOSVD for
varying α values at 5, 10 ,15 and 20 dB noise levels.

4.2. Functional Connectivity Network Denoising

The proposed denoising approach MS-HOSVD is applied to
functional connectivity networks constructed from EEG data
containing the error-related negativity (ERN). The ERN is a
brain potential response that occurs following performance
errors in a speeded reaction time task usually 25-75 ms after



Table 1: Average SNR for the denoised 3-way tensor X ∈
R401×500×148 obtained by HOSVD, L-HOSVD and MS-
HOSVD approaches at varying noise levels over 20 trials.

Noise Level HOSVD L-HOSVD MS-HOSVD
5dB 16.49 17.19 17.60

10dB 21.70 22.62 23.45
15dB 25.54 26.41 27.33
20dB 28.47 29.12 30.04

SNR=5.01 dB

(a)

SNR=16.50 dB

(b)
SNR=17.21 dB

(c)

SNR=17.60 dB

(d)

Fig. 2: Sample tensor slices corresponding to 100th band of
the (a) 5dB Noisy image, (b) Denoised image by HOSVD (b)
Denoised image by L-HOSVD, (d) Denoised image by MS-
HOSVD.

the response [17]. Previous work [18] indicates that there is
increased coordination between the lateral prefrontal cortex
(lPFC) and medial prefrontal cortex (mPFC) within the theta
frequency band (4-8 Hz) and ERN time window. EEG data
from 63-channels was collected in accordance with the 10/20
system on a Neuroscan Synamps2 system (Neuroscan, Inc.)
sampled at 128 Hz from 91 subjects. A speeded-response
flanker task was employed, and response-locked averages
were computed for each subject. All EEG epochs were
converted to current source density (CSD) using published
methods [19]. For each subject during error (ERN) response,
the pairwise phase locking value in the theta frequency band
was computed as described in [20].

In this section, we constructed 4-way tensors X ∈
R63×63×14×91 for ERN data where the first and second mode
represent the adjacency matrix of the connectivity graphs
while the third and forth mode corresponds to time points and
the subjects respectively. We only considered the 25-75 ms
time interval which corresponds to the ERN response. We
applied MS-HOSVD to denoise the constructed tensor where

clustering parameters cis are set to 2 for each mode yielding
16 subtensors and the relaxation parameter α is selected as
0.5 empirically. The noise variance is estimated as 10 percent
of the data variance. In order to better interpret the denoising
performance of MS-HOSVD, the denoised networks were
clustered using a multiple graph clustering algorithm FCCA
(see [21] for details). As seen in Fig. 3, denoising the data
with MS-HOSVD yields more localized and more stable clus-
ters with each cluster having at least 4 nodes. Moreover, the
obtained clusters are in line with previous results indicating
that separable clusters are apparent relative to left and right
motor areas, and left and right lateral-PFC regions during
ERN [21].

(a) (b)

Fig. 3: Identified clusters from functional connectivity net-
works a) without applying noise removal, b) by applying MS-
HOSVD

5. CONCLUSIONS

In this study we introduced a new multiscale tensor denois-
ing technique. The method works by reclustering the tensor
data together into subtensors in a way which is expected to in-
crease the similarity of the signal data within each subtensor,
thereby improving discrimination between signal and noise.
An improvement of the proposed approach then makes use of
recursive regularization when denoising subtensors in order to
improve performance. The proposed approach is evaluated by
applying it to both 3-way and 4-way tensors constructed from
a hyperspectral image, and functional connectivity networks,
respectively. Future work will consider automatic selection
of parameters in the algorithm, e.g., the number of clusters
along each mode, and the relaxation parameter α . The pro-
posed method is currently limited to 2-scale analysis but can
be easily extended to multiple scales to allow finer scale de-
noising.
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