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ABSTRACT

Frames, which in finite dimensions are spanning sets of vectors, generalize the notion of bases and provide a useful
tool for modeling the measurement (or sampling) process in several modern signal processing applications. In the
digital era, the measurement process is typically followed by a quantization, or digitization step that allows for
storage, transmission, and processing using digital devices. One family of quantization methods, popular for its
robustness to errors caused by circuit imperfections and for its ability to act on the measurements progressively,
is Sigma-Delta quantization. In the finite frame setting, Sigma-Delta quantization, unlike scalar quantization,
has recently been shown to exploit the redundancy in the measurement process leading to a more efficient rate-
distortion performance. Nevertheless, on its own, it is not known whether Sigma-Delta quantization can provide
optimal rate-distortion performance. In this note, we show that a simple post-processing step consisting of a
discrete, random Johnson-Lindenstrauss embedding of the resulting bit-stream yields near-optimal rate distortion
performance, with high probability. In other words, it near optimally compresses the resulting bit-stream. Our
result holds for a wide variety of frames, including smooth frames and random frames.
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1. INTRODUCTION

A collection of vectors {fi}Ni=1 ⊂ Rd, where N is finite, is a finite frame for Rd if there are constants 0 < A ≤
B <∞ so that for any x ∈ Rd, we have

A‖x‖22 ≤
N∑
i=1

|〈fi, x〉|2 ≤ B‖x‖22. (1)

Denote by fi the rows of the N×d frame matrix F , and note that
∑N
i=1 |〈fi, x〉|2 = ‖Fx‖22. Thus, (1) implies that

for {fi}Ni=1 to be a frame, it is necessary and sufficient for F to be full rank. Finite frames have been investigated
as research topics in their own right, but also in the context of applications, where their redundancy (N ≥ d)
has proven particularly useful. Among other areas, they have found application in digital transmission(e.g.,
Refs. 2, 3), phase retrieval from magnitude data (e.g., Refs. 4, 5), and compressed sensing.6,7 They have
proven particularly useful at modeling the sampling (i.e., measurement) process in data acquisition systems. For
example, in imaging applications, multiplex systems8 collect linear combinations yi := 〈fi, x〉, i ∈ {1, ..., N} of
the pixels of interest x, viewed as a vector in Rd. When one collects more measurements than the ambient
dimension of the signal, the collection {fi}Ni=1 may constitute a frame and the vector of measurements can often
be expressed as

y := Fx ∈ RN . (2)

For example, imaging systems where the vector of measurements can the be represented using (2) have been
devised using coded apertures (see, e.g., Ref. 9), as well as digital micro-mirror arrays (e.g., Ref. 10). Similarly,
systems that acquire finite dimensional signals using filter banks also allow their measurement process to be
modeled via (2).11
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While (2) provides an idealized model of the measurement process, it does not take into account the process
of digitizing the measurements. This digitialization process consists of replacing elements of the vector y with
elements from a finite set called the quantization alphabet, which we refer to as A, and then assigning binary
codewords to the elements of AN . Since the resulting vector is of length N , we require at most N log2 |A| bits
to represent a quantized vector of measurements. Of course, such a quantization process is inherently lossy, as
the quantization map

Q : RN → AN (3)

is a many-to-one map. Even by tayloring the quantization process to the finite-frame scenario where the signals
x belong to a compact set X ⊂ Rd, (4) becomes

Q : FX → AN , (4)

but remains generally a many-to-one map. In this paper, we are interested in X = Bd2 , the Euclidean ball in
d-dimensions.

Despite the inherently lossy nature of quantization, one still seeks reconstruction schemes

∆ : AN → R
d (5)

that allow for good approximation of a signal x from its quantized vector of measurements q := Q(Fx). In
particular, one seeks quantization schemes and reconstruction maps whereby the error decreases as the resources
committed to the measurement and/or quantization process increase. For example, a reasonable requirement is
for the error to decreases as one increases the size of the alphabet A and the number of measurements N . In this
paper, we assume a fixed alphabet A and are interested in the tradeoff between the number of bits associated
with increasing the number of measurements, and the reconstruction error.

Additionally, in many applications, practical considerations dictate that one must work with quantization
schemes that act progressively on the measurements. In other words, the quantization scheme does not have
access to the full vector of measurements y. Rather, at time i, it only has access to yi and possibly to some
of its immediate predecessors and to state variables that are updated on the fly. This practical requirement is
generally due to the difficulty associated with building circuitry that accurately stores analog quantities for long
periods of time. Importantly, such a constraint precludes the possibility of employing vector quantizers that
require access to the entire vector y. For example, one cannot apply a left inverse of F to y, thereby recovering
x, and then proceed to encode x directly.

Sigma-Delta (Σ∆) quantization schemes (see, e.g., Refs.12–14) are a family of quantization schemes that
satisfy the practical constraint of operating on the measurements progressively. At time i, they act on yi as well
as previous values of a state variable u to produce qi ∈ A. Furthermore, in the finite frame setting these schemes
have been shown to exploit the redundancy associated with increasing the number of measurements.15–18 On the
other hand, volume arguments show that in the X = Bd2 case, the optimal relationship between the number of bits
R needed to encode the ball and the associated (worst case) error D over all x ∈ Bd2 is given by D = O(e−cR/d)
for some absolute constant c.19 This optimal rate-distortion relationship can be achieved by directly encoding
the vectors x, see Ref. 1 for more details. In many scenarios, one does not have direct access to x (for example
when one can only measure y = Fx for some N × d matrix F with N ≥ d), and so is unable to recover x before
the digitization process. In such a case, one must quantize first and recover an estimate of x later. Of course,
ideally, one wishes to attain the optimal rate-distortion relationship in this case as well. Unfortunately, this
optimal relationship is not known to be attained for Σ∆ schemes under the constraints of this paper: a fixed
alphabet, and the inability to invert the frame matrix F prior to quantization. The best known rate-distortion

relationship, for progressive quantizers is achieved with Σ∆ schemes and is of the form D = O(e−c
√
R/d).18,20

2. CONTRIBUTIONS

To help remedy this situation and bridge the gap to the optimal performance, this paper introduces a potentially
lossy encoding stage, consisting of the map

E : AN → C,



where C is such that |C| � |AN |. Thus, log2 |C| bits are sufficient for digitally representing the output of this
encoder. To accommodate the additional encoding, the reconstruction is modified to approximate x directly
from C. In particular, we present a decoder

∆ : C → R
d,

where both the proposed decoder, ∆, and the proposed encoding map, E , are linear, hence computationally
efficient.

For stable Σ∆ quantization schemes, we show that there exists an encoding scheme E acting on the output
Q(Fx) of the quantization, and a decoding scheme ∆, such that

DΣ∆ := max
x∈Bd2

∥∥∥x−∆
(
E
(
Q(Fx)

))∥∥∥
2
≤ CN−α

RΣ∆ := ln |C| ≤ C ′d lnN,

 =⇒ DΣ∆ ≤ exp

(
−cRΣ∆

d

)
.

where α, C, C ′, and c are positive constants that depend on the Σ∆ scheme and d. More specifically:

1. We show that there exist frames (the Sobolev self-dual frames), for which encoding by random subsampling
of the integrated Σ∆ bit-stream (and labeling the output) yields an essentially optimal rate-distortion
tradeoff up to logarithmic factors of d.

2. We show that random Bernoulli matrices in Rm×d, with m ≈ d, are universal encoders. Provided one has
a good frame for Σ∆ quantization, such Bernoulli matrices yield an optimal rate-distortion tradeoff, up to
constants.

3. We show that in both cases above, the decoding can be done linearly and we provide an explicit expression
for the decoder.

These contributions are quantified and made explicit in Theorems 1 and 2.

3. SIGMA-DELTA QUANTIZATION

For concreteness, we now define some terminology and introduce Σ∆ quantization.

Fix an alphabet A and an integer r ∈ Z+, and initialize a state variable u via u0 = u−1 = · · · = u1−r = 0. A
scalar quantizer is a map Q : R→ A, defined via its action

Q(v) = arg min
q∈A

|q − v|.

An rth-order Σ∆ quantization scheme with quantization rule ρ : Rr+1 → R and scalar quantizer Q computes
q ∈ AN via the recursion

qi = Q (ρ(yi, ui−1, ui−2, . . . , ui−r)) , (6)

ui = yi − qi −
r∑
j=1

(
r

j

)
(−1)jui−j (7)

for all i ∈ [N ]. Thus, when yi = 〈fi, x〉, the relationship between x, u, and q can be written in matrix-vector
notation as

Dru = Fx− q. (8)

Here the N ×N matrix D is the first-order difference matrix with entries given by

Di,j :=

 1 if i = j
−1 if i = j + 1
0 otherwise

. (9)



Henceforth, we focus on midrise alphabets of the form

AδK = {±(2n− 1)δ/2 : n ∈ [K]}, (10)

where δ denotes the quantization step size. We restrict our attention to stable rth-order schemes, i.e., schemes
for which (6) and (7) produce vectors u ∈ RN with ‖u‖∞ ≤ Cρ,Q(r) for all N ∈ N, and y ∈ RN with ‖y‖∞ ≤ 1.
Moreover, for our definition of stability we require that Cρ,Q : N 7→ R

+ be entirely independent of both N and
y. For example, stable rth-order Σ∆ schemes with Cρ,Q(r) = O(rr) exist,14,21 even when A is a 1-bit alphabet.
Of particular interest to us is the single-bit greedy first order Σ∆ scheme, characterized by r = 1, A = {±1} and
ρ : (yi, ui−1) 7→ yi + ui−1.

From a mathematical point of view, Σ∆ schemes have been investigated extensively in the case of bandlimited
functions (see, e.g. Refs. 13,14,21) where it has been shown14,21 that for certain quantization rules ρ, they can
yield (near optimal) reconstruction errors that decay exponentially fast with the sampling rate. These results
rely on choosing the order r as a function of the sampling rate. In the finite-frame scenario the best known
analogous results (e.g., Refs. 18, 20) yield reconstruction errors that decay root-exponentially fast with the
number of measurements, also by choosing the order r as a function of the sampling rate.

4. MAIN RESULTS

In what follows we will need a few definitions. We begin with the singular value decomposition of D, essentially
computed by von Neumann,22 and given by D = UΣV T , where

Ui,j =

√
2

N + 1/2
cos

(
2(i− 1/2)(N − j + 1/2)π

2N + 1

)
, (11)

Σi,j = δi,jσj(D) = 2δi,j cos

(
jπ

2N + 1

)
, (12)

and

Vi,j = (−1)j+1

√
2

N + 1/2
sin

(
2ij

2N + 1
π

)
. (13)

Note that the difference matrix, D, is full rank (e.g., see (12)).

Definition 1. The 1st order Sobolev self-dual frame18 is a frame formed from the (renormalized) last d columns
of U ,

F :=

√
N

2d
(UN−d+1 . . . UN ) . (14)

Definition 2. A random selector matrix is a matrix R ∈ {0, 1}m×N with exactly one nonzero entry per row,
which is selected uniformly at random.

For a full-rank N × d matrix A with N ≥ d, we denote its Moore-Penrose left-inverse by A† := (A∗A)−1A∗.

Theorem 1. Let ε, p ∈ (0, 1), and let R ∈ {0, 1}m×N be a random selector matrix. Denote by F the first order
Sobolev self-dual frame and by q the vector resulting from single-bit greedy first order Σ∆ quantization applied
to Fx, where x ∈ Rd. Then ∥∥∥x− (RD−1F

)†
RD−1q

∥∥∥
2
≤
√

2π√
1− ε

(
d

3
2

N

)
for all x ∈ Bd2 ⊂ Rd with probability at least 1 − p, provided that m ≥ (16/3)ε−2d ln(2d/p). Furthermore,
RD−1q can always be encoded using b ≤ m(log2N + 1) bits.

Proof. See Ref. 1 for the full proof.



Theorem 1 provides the desired exponentially decaying rate-distortion bounds. To see this, note that the
encoding can be computed linearly via

E : q 7→ RD−1q. (15)

Since D−1 is a discrete integrator, the encoding consists of simply tracking the running sum of the bits and
storing a few of them, chosen at random. The reconstruction is performed by applying (RD−1F )† to the
encoded bit-stream. Moreover, by choosing the smallest integer m ≥ (16/3)ε−2d ln(2d/p), the rate is

R = m(log2N + 1),

and the distortion is

D =

√
2πd3/2

N
√

1− ε
.

Expressing the distortion in terms of the rate, we obtain

D(R) =
2
√

2πd3/2

√
1− ε

· 2−R/m = C1(ε) · d3/2 exp

(
− R
C2(ε)d ln(2d/p)

)
. (16)

Above, C1(ε) = 2π ·
√

2
1−ε and 16

3 ln 2·ε2 + 1
d ln 2·ln(2d/p) ≥ C2(ε) ≥ 16

3 ln 2·ε2 .

While Theorem 1 provides an instance where Σ∆ quantization coupled with simple encoding and decoding
steps yields near-optimal rate-distortion performance, there is still room for improvement. Specifically, the
theorem pertains to first order Σ∆ and thus requires one to collect N measurements to obtain a reconstruction
error of O(N−1). Moreover, the theorem is tailored to Sobolev self-dual frames. To generalize Theorem 1 to
more general frames and Σ∆ schemes of arbitrary order, we now introduce some notation.

Definition 3. We will call a frame matrix F ∈ RN×d an (r, C, α)-frame if

1. ‖Fx‖∞ ≤ 1 for all x ∈ Bd2 , and

2. σd (D−rF ) ≥ C ·Nα.

Roughly speaking, the first condition of Definition 3 ensures that the frame F is uniformly bounded, while
the second condition can be interpreted as a type of smoothness requirement. We now may state a more general
theorem.

Theorem 2. Let ε, p ∈ (0, 1), B ∈ {−1, 1}m×N be a Bernoulli random matrix, and F ∈ RN×d be an (r, C, α)-
frame with r ∈ N, α ∈ (1,∞), and C ∈ R+. Consider q, the quantization of Fx via a stable rth-order scheme
with alphabet A2µ

A and stability constant Cρ,Q(r) ∈ R+ (see (6), (7), (10) and the subsequent discussion). Then,
the following are true.

(i) The reconstruction error (i.e., the distortion) satisfies∥∥∥x− (BD−rF )†BD−rq∥∥∥
2
≤ Cρ,Q(r) ·N1−α

C · (1− ε)

for all x ∈ Bd2 ⊂ Rd with probability at least 1− p, provided that m ≥ 4d ln(12/ε)+2 ln(1/p)
ε2/8−ε3/24 .

(ii) BD−rq can always be encoded using b ≤ m[(r + 1) log2N + log2A+ 1] bits.
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Figure 1. The maximum `2-norm error (in log10 scale) plotted against the number of bits per dimension (b/d). Here
d = 20 and Σ∆ schemes with r = 1, 2 and 3 are used to quantize the frame coefficients. A Bernoulli matrix is used for
encoding.

Theorem 2 provides exponentially decaying rate-distortion bounds with the encoder E : q 7→ BDrq and

decoder ∆ : z 7→ (BD−rF )
†
z. By choosing the smallest integer m ≥ 4d ln(12/ε)+2 ln(1/p)

ε2/8−ε3/24 , the rate is

R = m[(r + 1) log2N + log2A+ 1],

and the distortion is

D =
Cρ,Q(r) ·N1−α

C · (1− ε)
.

Expressing the distortion in terms of the rate, we obtain

D(R) =
Cρ,Q(r) · (2A)(α−1)/(r+1)

C · (1− ε)
· 2−(R(α−1)/m(r+1)) ≤ C̄ρ,Q(A, ε, α, r) · exp

(
− R
d · C3(ε, p)

)
. (17)

Above, C̄ρ,Q(A, ε, α, r) =
Cρ,Q(r)·(2A)(α−1)/(r+1)

C·(1−ε) and 4(r+1) ln(12/εp)
ln 2·(α−1)(ε2/8−ε3/24) + 1

d ≥ C3(ε, p) > 0.

It is worth noting that there are several examples of (r, C, α) frames for which the above theorem yields
reconstruction errors that decay exponentially with the number of bits used for encoding. These include random
frames whose entries are drawn independently from sub-Gaussian distributions, as well as smooth frames with
frame matrices whose columns are sampled from piecewise smooth functions.17 For more details, see Ref. 1.

5. NUMERICAL EXPERIMENT

To illustrate our results, we perform a numerical experiment whereby we fix d = 20, and generate 5000 points
uniformly from Bd2 . For various N , we draw an N×d matrix F whose entries Fij are Bernoulli random variables.
We use the Σ∆ schemes of Ref. 21 with r = 1, 2, and 3 to quantize the frame coefficients Fx. Finally, we use
Bernoulli matrices with m = 5d to encode. In Figure 1 we show the maximum error (over the 5000 instances of
x) versus the bit-rate. Note the different slopes corresponding to r = 1, 2, and 3.
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