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Abstract We study the problem of quickly estimating the best k-term Fourier
representation for a given periodic function f : [0, 2π] → C. Solving this
problem requires the identification of k of the largest magnitude Fourier series
coefficients of f in worst case k2 · logO(1)N time. Randomized sublinear-time
Monte Carlo algorithms, which have a small probability of failing to output
accurate answers for each input signal, have been developed for solving this
problem [17,18]. These methods were implemented as the Ann Arbor Fast
Fourier Transform (AAFFT) and empirically evaluated in [23]. In this paper
we present a new implementation, called the Gopher Fast Fourier Transform
(GFFT), of more recently developed sparse Fourier transform techniques [21,
22]. Experiments indicate that GFFT is faster than AAFFT.

In addition to our empirical evaluation, we also consider the existence of
sublinear-time Fourier approximation methods with deterministic approxima-
tion guarantees for functions whose sequences of Fourier series coefficents are
compressible. In particular, we prove the existence of sublinear-time Las Vegas
Fourier Transforms which improve on the recent deterministic Fourier approx-
imation results of [21,22] for Fourier compressible functions by guaranteeing
accurate answers while using an asymptotically near-optimal number of func-
tion evaluations.
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1 Introduction

In many applications only a few largest magnitude terms in the Fourier series
of a given periodic function, f : [0, 2π] → C, are of interest. In such situa-
tions the Fast Fourier Transform (FFT) [11], which approximates the function
by a trigonometric polynomial of degree N in O(N logN)-time, can be com-
putationally wasteful. This is especially true when f has a small number of
high-frequency Fourier coefficients with relatively large magnitudes (i.e., be-
cause N must be chosen to be much larger than the small number of energetic
frequencies in such cases). Functions of this type arise naturally in application
areas such as MR imaging [28] and wideband analog-to-digital conversion [27,
24]. In these settings the primary difficulty is acquiring enough function sam-
ples on which to reliably perform an (inverse) Fourier transform in the first
place. Over the past several years compressed sensing methods (e.g., see [14,
6,8]) have made astonishing progress toward reducing the number of function
evaluations required in order to approximate such Fourier sparse signals. How-
ever, despite their small sampling requirements, all aforementioned compressed
sensing methods have computational complexities which greatly exceed that
of a standard FFT. Hence, these methods are not well suited for large scale
problems (i.e., N large) when runtime is a dominant consideration.

This paper is primarily concerned with the computational complexity of
approximating high-degree trigonometric polynomials which have a small num-
ber of coefficients with relatively large magnitudes. In particular, we will focus
on sublinear-time Fourier approximation techniques which are capable of ap-
proximating such trigonometric polynomials more quickly than a standard
FFT. Fast algorithms of this type were first developed by Mansour et al.
for function learning problems [26,30,31]. Similar sublinear-time Fourier al-
gorithms based on discrepancy methods [9] were then developed by Akavia
et al. for cryptographic applications [2,1]. Later, Gilbert et al. reduced the
runtime complexity of such fast sparse Fourier methods to within logarithmic
factors of the optimal runtime dependence [17,18]. Their Fourier algorithm
[18] remained the only sublinear-time Fourier algorithm with both instance
optimal error bounds and a near-optimal runtime complexity until the recent
development of another such algorithm in [22]. In Section 3 of this paper an
implementation of the sparse Fourier approximation techniques from [22], the
Gopher Fast Fourier Transform (GFFT), is introduced. GFFT is then em-
pirically evaluated against both an existing implementation of [18], the Ann
Arbor Fast Fourier Transform (AAFFT) [23], and a highly optimized standard
Fast Fourier Transform implementation, FFTW3 [16]. This empirical evalua-
tion demonstrates that a variant of GFFT is generally faster than AAFFT.
Furthermore, it is demonstrated that both GFFT and AAFFT can reliably re-
cover high-degree trigonometric polynomials with a small number of nonzero
terms more quickly than standard FFT methods (i.e., faster than FFTW3).

Both AAFFT and the fastest GFFT variant evaluated in Section 3 be-
low are based on randomized algorithms which have small probabilities of
failing to approximate a given trigonometric polynomial to within a given tol-
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erance. Although these methods are capable of approximating Fourier sparse
signals faster than standard FFT methods, their randomized recovery guar-
antees can greatly complicate numerical methods in which they are utilized
as subroutines. For example, when utilized as part of a spectral method [5]
for solving multiscale homogenization problems as proposed in [13], such ran-
domized Fourier methods must be applied repeatedly during each iteration of
a time-stepping scheme. In this setting the randomized approximation guar-
antees of these Fourier algorithms ultimately force them to collectively use
a number of operations that scales superlinearly (e.g., quadratically) in the
number of required time steps in order to numerically solve the problem with
guaranteed accuracy with high probability. Fast Fourier methods with approx-
imation guarantees allow one to avoid these superlinear time stepping costs
(i.e., because there is no probability of failure in each iteration which must
be accounted for). Similar considerations have also driven the development of
deterministic fast Fourier approximation algorithms in other application areas
(e.g., see [1]).

Let f : [0, 2π]→ C be a trigonometric polynomial of degree N . Denote the

Fourier series coefficients of f by f̂ . We will consider f̂ to be an array of 2N+1
complex numbers (i.e., all but 2N + 1 Fourier series coefficients will be zero).
Given samples from f we are interested in locating (and then approximating)

k � N of the largest magnitude entries of f̂ as quickly as possible. Hence,
we seek Fourier algorithms with runtime and sampling complexities that scale
sublinearly in N , the degree of our trigonometric polynomial f . Any Fourier
algorithm of this type will output a k-element list of f̂ ’s largest magnitude
values. We will refer to any such list as a sparse Fourier representation.

In addition to empirically evaluating GFFT against AAFFT and FFTW3
in Section 3, we also consider fast Fourier approximation algorithms which
are guaranteed to produce near-optimal sparse Fourier representations for
any given trigonometric polynomial in Section 4 (i.e., we consider Fourier ap-
proximation algorithms having no probability of failure). Randomized Fourier
approximation algorithms which can produce a near-optimal k-term sparse
Fourier representation for any trigonometric polynomial of degree N with high
probability in O(k · polylog(N))-time exist (e.g., see Theorem 1 below). It re-
mains an open problem to determine whether or not a Fourier approximation
algorithm exists which is guaranteed to always produce a near-optimal sparse
Fourier representation for any trigonometric polynomial in O(k · polylog(N))-
time. The best result to date guarantees that a near-optimal k-term sparse
Fourier representation can be found for any trigonometric polynomial of de-
gree N in O(k2 · log4N)-time after collecting O(k2 · log4N) evaluations of the
polynomial (see Theorem 2 below). However, fast compressed sensing meth-
ods which utilize less constrained linear measurements can do slightly better.
Gilbert et al. have shown the existence of algorithms which are guaranteed
to produce a near-optimal k-term sparse approximation of any given vector,
x ∈ RN , in O(k2 · polylog(N))-time using O(k · polylog(N)) linear measure-
ments (see [20]). Although these less constrained compressed sensing results



4 Ben Segal, M. A. Iwen

do not translate into Fourier approximation results of the type we consider
herein, they do indicate that it might be possible to prove a similar result
in the Fourier setting. In Section 4 we show that this is indeed the case by
proving the existence of Las Vegas Fourier approximation algorithms (e.g.,
Algorithm 1) which are guaranteed to always produce near optimal k-term
sparse Fourier approximations for any trigonometric polynomial of degree N
in expected O(k2 · log4(N))-time using at most O(k · log4(N)) evaluations of
the polynomial. This maintains the runtime complexity of Theorem 2 (in ex-
pectation) while simultaneously reducing its worst case sampling complexity.

Finally, we note that the methods considered in this paper for approxi-
mating trigonometric polynomials are also applicable to the approximation of
related polynomials. For example, the algorithms considered herein also apply
to Chebyshev polynomials after a change of variables (see [5] for a detailed
discussion concerning the relationships between these types of polynomials).

The remainder of this paper is organized as follows: In Section 2 we in-
troduce the definitions, terminology, and theorems that are used as building
blocks for subsequent results. In Section 3 we introduce a new implementa-
tion of the sparse Fourier approximation techniques from [22], the Gopher
Fast Fourier Transform (GFFT). To demonstrate its capabilities, we empir-
ically evaluate GFFT against both the Ann Arbor Fast Fourier Transform
(AAFFT) [23], and a highly optimized standard Fast Fourier Transform im-
plementation, FFTW3 [16]. Next, in Section 4, we discuss a simple strategy for
improving the sampling requirements of existing sparse Fourier approximating
results [21,22] for Fourier compressible signals. This strategy ultimately leads
to the development of the Las Vegas Fourier algorithms mentioned above (e.g.,
Algorithm 1). Finally, we conclude with a brief summary of our results and
observations in Section 5.

2 Preliminaries

We are interested in trigonometric polynomials, f : [0, 2π] → C, which are
approximately Fourier sparse. Throughout the remainder of this section we will
denote the degree of f by N . Hence, we are justified in considering the Fourier
series coefficients of f , f̂ , to be a finite length vector in C2N+1. Because f is
approximately Fourier sparse we assume only k < 2N + 1 entries of f̂ contain
values that are significant (or large) in magnitude. Given such a signal, fast
Fourier approximation algorithms (e.g., [17,18,21,22,32]) produce output of
the form (ω1, C1), . . . , (ωk, Ck), where each (ωm, Cm) ∈ (Z ∩ [−N,N ]) × C.
We will refer to any such set of k < 2N + 1 tuples

Rs = {(ωm, Cm) s.t. m ∈ [1, k] ∩N}
as a k-sparse representation. Note that if we are given a sparse representation,
Rs, we may consider it to be a vector (or signal) of length 2N+1, R ∈ C2N+1,
defined by

Rω =

{
Cω if (ω,Cω) ∈ Rs

0 otherwise
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for all ω ∈ [−N,N ] ∩ Z.
Denote the discrete `q-norm of vector a ∈ C2N+1 by

‖a‖q =

 N∑
j=−N

|aj |q
 1

q

.

Furthermore, let ω ∈ ZN be the first vector in lexicographical order whose
entries sort a given trigonometric polynomial’s Fourier series coefficients, f̂ ∈
C2N+1, by magnitude so that

|f̂ω1
| ≥ |f̂ω2

| ≥ · · · ≥ |f̂ωN |.

We define the optimal k-sparse representation for f̂ , Rs
opt(k), to be (ω1, f̂ω1

), . . . ,

(ωk, f̂ωk). All of the aforementioned sparse Fourier approximation algorithms

attempt to recover k of the largest magnitude Fourier coefficients of f̂ using
as little time/samples from f as possible. Hence, the quality of their output
sparse representations is measured with respect to the best possible k-sparse
approximation errors, ‖f̂ −Ropt(k)‖2 and ‖f̂ −Ropt(k)‖1.

A variant of the following sparse Fourier approximation theorem is proven
in [18].

Theorem 1 (Gilbert, Muthukrishnan, Strauss). Let f : [0, 2π]→ C be a
trigonometric polynomial of degree N . Fix precision parameters η, τ ∈ R+ and
probability parameter λ ∈ (0, 1). There exists a randomized sampling algorithm
which, when given sampling access to f , will output a k-sparse representation
for f̂ , Rs, satisfying

‖f̂ −R‖2 ≤
√

1 + τ ·max
{
η, ‖f̂ −Ropt(k)‖2

}
with probability at least 1−λ. Both the runtime and sampling complexities are

k · polynomial

(
log

1

λ
, log

1

η
, log ‖f̂‖2, logN,

1

τ

)
.

Although the randomized Fourier sampling algorithm referred to in The-
orem 1 will fail to output accurate results with some probability for each
trigonometric polynomial, both the probability of failure and the approxima-
tion precision can be made arbitrarily small in theory. Of course, there are
tradeoffs: increasing either the precision or the probability of successful ap-
proximation will increase both the runtime and sampling requirements of the
algorithm by logarithmic factors. The algorithm referred to by Theorem 1
has been implemented. The implementation, called AAFFT, was empirically
evaluated in [23].

The following approximation result was recently proven (see [22]) for an
improved variant of a sparse Fourier approximation algorithm proposed in [21].
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Table 1 Fourier Algorithms and Implementations

Fourier Result D/R Runtime Samples Implementation

FFT [11] D O(N · logN) N FFTW3 [16]

Theorem 3 in [22] D O(N · k · log2N) O(k2 · log2N) GFFT-Det-Slow

Corollary 3 in [22] R O (N · logN) O
(
k · log2N

)
GFFT-Rand-Slow

Theorem 1 R k · logO(1)N k · logO(1)N AAFFT [23]

Theorem 2 D O(k2 · log4N) O(k2 · log4N) GFFT-Det-Fast

Corollary 4 in [22] R O
(
k · log4N

)
O

(
k · log4N

)
GFFT-Rand-Fast

Theorem 2 (Iwen). Let f : [0, 2π] → C be a trigonometric polynomial of
degree N . Fix precision parameter ε ∈ (0, 1). There exists a deterministic
sampling algorithm which, when given sampling access f , will output a 2k-
sparse representation for f̂ , Rs, satisfying

∥∥∥f̂ −R
∥∥∥
2
≤
∥∥∥f̂ −Ropt(k)

∥∥∥
2

+
ε ·
∥∥∥f̂ −Ropt(k/ε)

∥∥∥
1√

k
. (1)

Both the runtime and sampling complexities are

O

(
k2 · log4N

ε2

)
.

Unlike Theorem 1, Theorem 2 provides a deterministic approximation guar-
antee for all functions. However, the sampling and runtime complexities of
Theorem 2 scale quadratically in the sparsity parameter, k, instead of linearly
as achieved by Theorem 1. In Section 4 we will present a sublinear-time result
which simultaneously achieves the sampling complexity of Theorem 1 together
with uniform approximation guarantees along the lines of Theorem 2: That
is, it acheives uniform approximation guarantees for all signals of a general
class together with a worst-case sampling complexity that scales linearly in
sparsity. For now, however, we will simply point out that randomized versions
of Theorem 2, which achieve the approximation error bound stated in Equa-
tion 1 with arbitrarily high probability for each individual input signal as per
Theorem 1, also exist. See [21,22] for details. We have implemented variants of
both the aforementioned randomized and deterministic algorithms from [21,
22]. For the remainder of this paper they will be collectively referred to as
GFFT.

2.1 Algorithms and Implementations

Table 1 summarizes the algorithms and implementations considered in Sec-
tion 3 of this paper. The first column of Table 1 lists the Fourier approximation
results empirically evaluated herein. The second column denotes whether each
related Fourier result exhibits Deterministic (D) approximation guarantees for
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all functions, or Randomized (R) approximate recovery with high probability
per individual function. The third and fourth columns of Table 1 list the run-
time and sampling complexities of the Fourier results, respectively. The listed
runtime and sampling complexities assume that all precision parameters (e.g.,
τ, η, ε in Theorems 1 and 2) are fixed constants. For the randomized methods
it is also assumed that the probability of successful approximation is at least
1−1/NO(1) (e.g., that λ in Theorem 1 is 1/NO(1)). In the third row of Table 1
the stated O(N logN) runtime for Corollary 3 holds only when the number of
samples it utilizes is O(N) (i.e., only if k is O(N/ log2N)). Finally, the fifth
column of Table 1 lists the implementation of each Fourier algorithm tested
in Section 3 below.

2.1.1 FFTW3

FFTW3 [16] is a highly efficient implementation of the standard FFT algo-
rithm [11]. It has been systematically optimized over the course of the last
decade and remains one of the fastest freely available FFT implementations
available today.

2.1.2 AAFFT

AAFFT [23] is based on the algorithms introduced in [17,18]. It is an iterative
approximation algorithm which repeatedly performs three steps: (i) identifi-
cation of frequencies whose Fourier coefficients are large in magnitude, (ii)
accurate estimation of the Fourier coefficients of the frequencies identified in
the first step, and (iii) subtraction of the contribution of the partial Fourier
representation computed by the first two steps from the as-yet-unused function
samples. Each repetition of the three steps above is guaranteed to gather a
substantial fraction of the energy present in any given (approximately) Fourier
sparse signal with high probability, effectively increasing the Fourier sparsity
of the given input signal from one repetition to the next. The end result is
that a small number of repetitions will gather (almost) all of the signal energy
with high probability, thereby approximating the sparse Fourier transform of
the given signal.

Consider, for example, a trigonometric polynomial having exactly 100 non-
zero terms (i.e., Fourier coefficients). The first round of AAFFT will generally
find and accurately estimate a large fraction of these terms (e.g., three fourths
of them, or 75 terms in this case). The contributions of the discovered terms
are then subtracted off of the remaining samples. This effectively reduces the
number of nonzero terms in the trigonometric polynomial that generated the
remaining samples, leaving about 25 terms in the current example. The next
repetition of the three phases is now executed as before, but with the smaller
effective sparsity of ≈ 25. All terms will be found and estimated after a few
repetitions with high probability.

Step (i) of each AAFFT repetition, which identifies energetic frequencies
in the Fourier spectrum of f , is generally the most involved of the three re-
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peated steps mentioned above. It consists of several ingredients, including:
random sampling designed to randomly permute the Fourier spectrum of the
input signal, filtering to separate the permuted Fourier coefficients into dif-
ferent “frequency bins”, and Monte Carlo integration techniques to estimate
the energy in subsets of each of the aforementioned frequency bins. Roughly
speaking, step (i) works by randomly binning the Fourier coefficients of f into
a small number of bins, and then performing a modified binary search within
each bin in order to find energetic frequencies that are isolated within each bin.
The randomness is introduced into the Fourier spectrum of f by restricting the
values at which one samples f to a randomly chosen arithmetic progression
modulo 2π. This has the effect of randomly permuting the Fourier coefficients
of f . The resulting “randomized” version of f̂ is then binned via a filter (i.e.,
by convolving the randomly selected f -samples with a discretized filter func-
tion). Because f is approximately sparse in the frequency domain, each bin
is likely to receive only one relatively large Fourier coefficient. Each such iso-
lated Fourier coefficient is then identified via a modified binary search method.
Simply put, samples from the permuted and filtered version of f are used to
effectively estimate the energy in two different halves of each frequency bin
via Monte Carlo integration techniques. The more energetic of the two sides
is then selected and further subdivided into two smaller halves. This process
is repeated on ever smaller halves of the Fourier bin under consideration until
a single energetic frequency in that bin has been localized. The collection of
frequencies discovered in each bin by this modified binary search is then sent
on to step (ii) above.

Note that one must use a filter that is highly concentrated in time (i.e.,
that is “essentially zero” everywhere, except at a small number of time coor-
dinates) in order to allow fast convolution calculations to be performed with
the filter. This is important because these convolutions are used to compute
samples from the binned and randomized Fourier spectrum of f . The Fourier
transform of the filter must also have a special structure for the same reason.
In particular, the filter’s Fourier transform must be very small everywhere
except on a 1/Θ(k logcN)-fraction of the N smallest integer frequencies. The
filter is then shifted Θ(k logcN) times in order to create Θ(k logcN) approxi-
mate “pass regions”, each of size N/Θ(k logcN), which tile the entire Fourier
spectrum of f under consideration. These shifted filters collectively form the
“frequency bins” mentioned above. More specifically, AAFFT uses a collection
of shifted and dilated rectangular filters for frequency binning.

Roughly speaking, the second and third steps repeated by AAFFT are
comparatively simple. Recall that step (ii) involves estimating the Fourier

coefficient, f̂ω, of each frequency ω ∈ (−N/2, N/2]∩Z identified during step (i).
In the simplest case, this can be done for each such ω by using L independent
and uniformly distributed random samples from f on [0, 2π], f(x1), . . . , f(xL),
in order to compute the estimator

Aω :=
1

L

L∑
l=1

f (xl) e
−i·ω·xl .
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Note that Aω is an unbiased estimator for f̂ω (i.e., E [Aω] = f̂ω) whose variance

is O(‖f̂‖22/L). Thus, Aω will estimate f̂ω to high (relative) precision with high

probability whenever |f̂ω|2 is relatively large compared to ‖f̂‖22/L.
A naive implementation of step (iii) is even more straightforward. If

{(ωm, Aωm) | m ∈ [1, O(k)] ∩N}

is the sparse representation discovered during steps (i) and (ii) of the current
repetition, then one simply replaces each as-yet-unused sample, f(x), with

f(x)−
O(k)∑
m=1

Aωme
i·ωm·x

during step (iii). These “updated samples” are then used in the subsequent
repetitions of the three steps. See [19] for a more complete AAFFT tutorial,
and [17,18,23] for the full details.

2.1.3 GFFT

The four GFFT variants are based on the algorithms introduced in [21,22,
3]. All four variants work by taking advantage of aliasing phenomena. More
specifically, all four variants (implicitly) utilize a deterministic set of K =
O(k logkN) relatively prime numbers of size O(k logN) � N .1 Call these
numbers p1, . . . , pK . Each such pj determines the length of an undersampled
FFT of pj equally spaced samples from f on [0, 2π]. Note the K resulting
small FFTs are all highly aliased (since p1, . . . , pK are all smaller than N , the
bandwidth of f). Thus, each FFT of length pj effectively hashes the Fourier
spectrum of f into a small array modulo pj . The end result is that all K FFTs
collectively bin the Fourier coefficients of f in a fashion similar to the one de-
scribed above for AAFFT. However, in this case the strong combinatorial and
number theoretic properties of p1, . . . , pK ensure that the frequency binning
always separates the k most energetic Fourier coefficients from one another.

In fact, the combinatorial properties of the K aliased FFTs mentioned
above are strong enough to allow accurate estimates to be computed for every
Fourier coefficient of f . Both the slow variants of GFFT (i.e., GFFT-Det-Slow
and GFFT-Rand-Slow) take advantage of these strong combinatorial proper-

ties in order to approximate f̂ by: (i) estimating all N Fourier coefficients of
f using (some of) the K aliased FFTs, (ii) sorting the Fourier coefficient esti-
mates from step one by their magnitudes, and then (iii) outputting the O(k)
largest Fourier coefficient estimates together with their corresponding frequen-
cies. The deterministic slow variant, GFFT-Det-Slow, uses all K aliased FFTs
during step (i). The randomized slow variant, GFFT-Rand-Slow, only uses a
small randomly selected subset of the K aliased FFTs during step (i). This
randomly selected subset of the aliased FFTs maintains all the aforementioned

1 See [3] for more information concerning the optimal choice of these relatively prime
values.
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strong combinatorial properties with high probability, however, thereby still
ensuring accurate Fourier approximation with high probability.

Both of the fast variants of GFFT (i.e., GFFT-Det-Fast and GFFT-Rand-
Fast) are obtained from the corresponding slow variants by employing a single
round of energetic frequency identification before any estimation of Fourier
coefficients is carried out. This ultimately saves time because Fourier coefficient
estimation is then only performed for the relatively small number of energetic
frequencies identified by this new first identification step, instead of for all
frequencies as done by the slow variants. The identification step performed by
the two fast GFFT variants is a number theoretic version of the identification
step performed by AAFFT. Briefly, each fast variant performs a modified
binary search within the frequency bins defined by the (subset of) theK aliased
FFTs each uses for frequency coefficient estimation. These bins effectively
isolate all energetic Fourier coefficients. Thus, the number theoretic binary
search within each bin will tend to identify all sufficiently energetic frequencies.
See section 1.1 of [21] for a more complete introduction to the basic ideas
behind GFFT, and [21,22,3] for the full details.

3 Empirical Evaluation

In this section we carry out an empirical comparison of the implementations
listed in Table 1. All experiments were run on a system with an AMD Phenom
II X4 965 3.4 GHz processor and 8GB of DDR2-800 RAM, running Ubuntu
10.04 with the Linux Kernel 2.6.32-22 for x86 64, GCC 4.4.3 compiler, and the
FFTW 3.2.2 library. FFTW3 was always run using an FFTW PATIENT plan
with wisdom enabled. A slightly improved version of AAFFT 0.9 from [23] was
utilized as the AAFFT implementation. All GFFT variants were implemented
in C++ as per Algorithms 2 and 3 in [22].2 All run times are reported in tick
counts using the “cycle.h” file included with the source code to the FFTW
3.2.2 library. Tick counts correspond closely to the number of CPU cycles
used during the execution of a program and, therefore, accurately reflect each
implementation’s comparative computational complexity. They are used by
FFTW3 in order to measure the run times of various FFT algorithms so as
to select the fastest one for execution on problems of a given size (see [16] for
details).

3.1 Runtime and Sampling Complexity

Every data point in Figures 1 through 4 has an associated (i) sparsity k ∈ {5,
20, 35, 50, 60, 65, 80, 95, 110}, (ii) bandwidth N ∈ {215, 216, 217, 218, 219,

2 Both the AAFFT and GFFT codes evaluated herein are freely available at
https://sourceforge.net/p/gopherfft/home/.
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220, 221, 222}, and (iii) set of 100 trial signals.3 Every trial trigonometric
polynomial, f : [0, 2π] → C, was constructed independently as follows: First,
k frequency values, {ω1, . . . , ωk}, were independently selected uniformly at
random without replacement from (−N/2, N/2] ∩ Z. Next, k complex values,
{C1, . . . , Ck}, were independently selected uniformly at random from the unit
circle in the complex plane (i.e., each Cj has magnitude 1 and a random phase
angle in [0, 2π)). Finally, f was defined to be

f(x) =

k∑
j=1

Cj · ei·ωj ·x. (2)

Every data point plotted below in Figures 1 and 2 corresponds to the
average runtime required by each Table 1 implementation to recover one of
the data point’s 100 associated trial trigonometric polynomials. Likewise, ev-
ery data point plotted below in Figures 3 and 4 corresponds to the average
number of function evaluations required by each Table 1 implementation to
recover one of the data point’s trial trigonometric polynomials. Furthermore,
in the first four figures the upper and lower bars associated with each data
point represent the maximum and minimum runtime/number of samples of
each Table 1 implementation over all 100 associated trial signals, respectively.
Thus, one can see from the figures below that all six implementations have run-
time/sampling requirements for all 100 trial signals at each data point which
generally concentrate tightly around their average value. This demonstrates
that the randomized methods tested herein have predictable runtime/sampling
requirements (i.e., that these values are not just “good on average”, but rather
“almost always good”).

Note that when k is known in advance we can expect all four GFFT vari-
ants, when they succeed, to exactly recover each trial signal in Equation (2)
(i.e., see Equation (1) in Theorem 2). On the other hand, AAFFT can only
recover each signal up to a user defined precision (i.e., η in Theorem 1). Fur-
thermore, some of the implementations in Table 1 guarantee recovery while
others have some probability of failing to accurately recover each trial signal. In
order to compare all six implementations despite these algorithmic differences,
we chose parameters for each Monte-Carlo implementation (i.e., GFFT-rand-
slow, GFFT-rand-fast, and AAFFT) which allowed it to recover every plotted
data point’s 100 trial signals with average `2-error below 0.05. However, the
methods’ actual average `2-errors were almost always substantially smaller.

In the experiments utilized to construct both Figures 1 and 3, AAFFT’s
average `2-error was below 10−7 for all data points (the maximum `2-error
of any trial run was < 2 × 10−7). Similarly, all GFFT variants had average
`2-errors below 10−8 for all data points in Figures 1 and 3, except for GFFT-
Rand-Slow whose average `2-error was greater than 10−8 for the bandwidth

3 We will let N refer to the bandwidth of f , as opposed to the degree of f , throughout
Section 3 below. This slight abuse of notation will allow us to simplify the subsequent dis-
cussion while simultaneously preserving the correctness of the computational and sampling
complexities listed in Table 1.
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Fig. 1 Runtime of Implementations at Fixed Sparsity, k = 60

values of N = 220, 221, and 222. However, GFFT-Rand-Slow’s average `2-error
was still always below 0.04 for these bandwidth values.

In the experiments utilized to construct both Figures 2 and 4, AAFFT’s
average `2-error was below 3×10−6 for all data points (the maximum `2-error
of any single trial run was < 10−4). Similarly, all GFFT variants had average
`2-errors below 10−8 for all data points in Figures 2 and 4, except for GFFT-
Rand-Slow whose average `2-error was greater than 10−8 for the sparsity values
of k = 20, 35, 60, and 110. GFFT-Rand-Slow’s average `2-error was still always
below 0.04 for these sparsity values, however. See Section 3.2 for additional
discussion regarding the numerical accuracy of the various methods.

3.1.1 Runtime Complexity

Figure 1 compares the average runtime of the implementations in Table 1 when
the sparsity, k, is fixed at 60.4 The bandwidth of the trigonometric polynomial,
or the signal size N , varies from 215 to 222 by powers of two. Using powers of
two for N allows for the best possible performance by AAFFT (and FFTW3)
against all four GFFT variants. FFTW3 is the fastest method for all signal
sizes N ≤ 219. However, for larger signal sizes GFFT-Rand-Fast (and later
AAFFT) become faster than FFTW3. More importantly, the sublinear scaling
of the fast methods with bandwidth, or signal size N , is clearly demonstrated.
GFFT-Rand-Fast is further demonstrated to be the fastest of these for all
bandwidth values.

Figure 2 compares the average runtime of all six implementations when
the bandwidth, N , is fixed at 222.5 The sparsity varies from k = 5 up to

4 The runtime curves for other sparsity values look qualitatively similar.
5 The bandwidth value of N = 222 was chosen to demonstrate the relative runtimes

of AAFFT, GFFT, and FFTW3 for a bandwidth size on the order of one that might be
encountered in the process of computing a three dimensional discrete Fourier transform with
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Fig. 2 Runtime of Implementations at Fixed Signal Size, N = 222

k = 110 by increments of 15. Looking at Figure 2 we can see that GFFT-Rand-
Fast is again the fastest sublinear-time method (e.g., it generally outperforms
AAFFT at all data points). At this bandwidth size GFFT-Rand-Fast is also
faster than FFTW3 at recovering signals containing fewer than 110 nonzero
Fourier coefficients. On the other hand, both slow GFFT variants take several
times as long to finish recovery as FFTW3 does at each data point despite the
fact that they require significantly fewer function samples (see Section 3.1.2
below). Runtime comparisons at other fixed sparsity and bandwidth values
are qualitatively similar.

3.1.2 Sampling Complexity

Note that minimizing the runtime complexity of a Fourier approximation
method necessitates a coinciding reduction in the method’s sampling complex-
ity. As a result, both AAFFT and all the GFFT variants discussed above have
sublinear sampling complexities in addition to their sublinear runtime com-
plexities.6 In this section we empirically compare the sampling complexities of
these algorithms. It is important to point out that the sampling requirements of
the Fourier approximation methods considered herein are generally larger than
existing compressed sensing methods (e.g., see the numerical experiments in
[3]). However, sampling complexity might, as a secondary consideration, help
one to decide to use one of the Fourier approximation algorithms mentioned
above over another in some applications.

Figure 3 compares the average number of unique function evaluations, or
function samples, taken by each implementation in Table 1 during the process

∼ 102 discritization points per dimension. The runtime curves for other bandwidth values
look qualitatively similar.

6 Explicit upper bounds on the sampling requirements of all GFFT variants are derived
in [22].
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Fig. 3 Number of Function Evaluations Required at Fixed Sparsity, k = 60

of signal recovery when sparsity, k, is fixed at 60. The signal sizes vary as
in Section 3.1.1 above. Looking at Figure 3 we can see that GFFT-Rand-
Slow has the lowest sampling complexity for all signal sizes. However, AAFFT
utilizes many fewer unique function evaluations than both fast variants of
GFFT. It is important to point out, however, that AAFFT utilizes an adaptive
sampling strategy which depends on the particular function being recovered.
That is, the ith point in [0, 2π] at which AAFFT evaluates a given trial signal,
f : [0, 2π]→ C, depends on f ’s values at the preceding i−1 points. All GFFT
variants, on the other hand, utilized nonadaptive samples which are completely
independent of the trial function being approximated.

Figure 4 measures average sample usage with the signal bandwidths fixed
to N = 222. The sparsity varies as in Section 3.1.1. The results again ver-
ify that GFFT-Rand-Slow generally has the lowest overall average sampling
complexity. Likewise, AAFFT utilizes significantly fewer samples than both
GFFT-Det-Fast and GFFT-Rand-Fast. Most importantly, we can see that all
of GFFT-Det-Slow, AAFFT, and GFFT-Rand-Slow utilize significantly fewer
samples than required by a traditional FFT in order to accurately recover the
sparse signals considered in this section.

3.2 Numerical Accuracy and Approximation Error

In this section we investigate how the approximation accuracy of each of
the Table 1 implementations deteriorates when the true/effective sparsity of
the given signal is underestimated (i.e., when the sparsity parameter, k, is
guessed/approximated incorrectly as the result of imperfect knowledge). Fig-
ure 5 represents such approximation error results for signals with bandwidth
N = 222 as their true sparsity (i.e., number of nonzero Fourier coefficients)
deviates from the sparsity parameter utilized by all of the Table 1 implemen-
tations. Every data point in Figure 5 has a different associated true sparsity
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Fig. 4 Number of Function Evaluations Required at Fixed Signal Size, N = 222

value, ktrue ∈ {20, 25, 30, 35, 40, 45, 50, 55, 60}, which was used to generate
1000 associated trial signals of that true Fourier sparsity. The Table 1 imple-
mentations, on the other hand, were run with their sparsity parameters set to
20 for all trial signals across all data points in Figure 5. Hence, the sparsity
parameter utilized by each Fourier algorithm becomes increasingly inaccurate
as the true signal sparsity increases (i.e., from left to right on the horizontal
axis).

Every trial signal associated with a given data point, f : [0, 2π]→ C, in Fig-
ure 5 was constructed independently as follows: First, ktrue frequency values,
{ω1, . . . , ωktrue}, were independently selected uniformly at random without re-
placement from (−N/2, N/2]∩Z. Next, ktrue complex values, {C1, . . . , Cktrue},
were independently selected uniformly at random from the unit circle in the
complex plane (i.e., each Cj has magnitude 1 and a random phase angle in
[0, 2π)). Finally, f was defined to be

f(x) =

ktrue∑
j=1

Cj · ei·ωj ·x. (3)

Every data point plotted in Figure 5 corresponds to the average `2 approx-
imation error made by each Table 1 implementation in recovering one of the
data point’s 1000 associated trial signals. The upper error bar associated with
each data point represents the maximum `2 error made by each Table 1 im-
plementation over all 1000 recovered trial signals. In generating Figure 5 the
parameters of all of the Table 1 implementations were left the same as previ-
ously utilized to construct both Figures 2 and 4 for ktrue = k = kest = 20, with
the exception of GFFT-Rand-Slow. The parameter used for GFFT-Rand-Slow
was modified just enough to decrease its average `2 error of ≈ 0.04 from the
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Fig. 5 The `2 error of the sparse Fourier representation returned by each Fourier algorithm
(i.e., ‖f̂ − R‖2). The signal size, N , was fixed at 222. Each Fourier algorithm utilized a
sparsity parameter of kest = 20. The true sparsity of each signal, ktrue, varies between 20
and 60.

previous experiments at ktrue = kest = 20 to the same order of magnitude as
the other methods.7

Looking at Figure 5 we see that GFFT-Det-Fast and GFFT-Det-Slow lose
approximation accuracy more slowly than GFFT-Rand-Fast and GFFT-Rand-
Slow, respectively, as the true signal sparsities deviate from 20. This is due
primarily to the fact that they achieve their deterministic error guarantees
(e.g., see Theorem 2) in these experiments by using enough functions sam-
ples/runtime to ensure that they will still likely produce accurate approxima-
tions of signals with true sparsity significantly larger than 20. Inspecting the
randomized methods next, we see that GFFT-Rand-Slow generated the only
nonmonotonically increasing error curve in Figure 5. This was due to it almost
always producing highly accurate approximations as the true signal sparsity
increased, except for a handful of signals with true sparsities of 30 and 35 for
which it produced `2 errors of size ≈ 0.1.

As Figure 5 suggests, AFFT and GFFT-Rand-Fast are generally the least
tolerant methods to incorrect sparsity estimates. AAFFT appears to be par-
ticularly sensitive – a defect of the method which could potentially be reme-
died by introducing additional procedures for adaptively tuning its many user
specified parameters after each round of energetic frequency identification and
Fourier coefficient estimation (see [23] for more details regarding AAFFT and
its parameters). GFFT-Rand-Fast also quickly degrades in accuracy as the
true signal sparsity deviates from its estimated sparsity value of 20, but has
the relative benefit of having only two user specified parameters (including the

7 GFFT-Rand-Slow only has one user specified runtime parameter besides the sparsity
parameter, k. See [22] for details.
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sparsity parameter, k = kest).
8 This defect might also be remedied in the future

by utilizing results along the lines of Theorem 4 below to determine if/when
its two parameters should be modified in order to achieve a sufficiently small
approximation error. However, we leave such modifications as future work.

4 Improved Theoretical Results

In this section an improved approximation result for Fourier compressible sig-
nals is discussed which retains the runtime complexity of Thoerem 2 (in ex-
pectation) while simultaneously reducing its sampling complexity. In addition
to requiring only a near-optimal, O(k · polylog(N)), number of samples (in
the fashion of Theorem 1), the resulting method also exhibits a uniform error
bound for all Fourier compressible signals (along the lines of Theorem 2). We
begin by reviewing the theory necessary for the development of the improved
algorithmic result presented later in Section 4.3.

4.1 Preliminaries: Fourier Compressible Sequences

Let a = (a1, a2, . . . , aj , . . . ) be a complex sequence with finite `1-norm (i.e.,
with ‖a‖1 =

∑∞
j=1 |aj | < ∞). Given a, there exists a sequence of natural

numbers j1, j2, . . . , jl, . . . which orders a so that |aj1 | ≥ |aj2 | ≥ . . . ≥ |ajl |
≥ . . . . We will refer to a as (b, ρ)-compressible if |ajl | ≤ b · l−ρ for all l ∈ N.9

We will say that a function, f : [0, 2π] → C, is Fourier (b, ρ)-compressible if
its sequence of Fourier series coefficients is (b, ρ)-compressible.

It is not difficult to see that every sequence, a, with finite `1-norm is
(‖a‖1, 1)-compressible. Not surprisingly, for finite sequences we can say more.
Suppose a contains only N nonzero entries. We can now ask what the largest
ρ is which guarantees that a is (2 · ‖a‖1, ρ)-compressible (here the 2 can be
replaced with any constant larger than one). To begin, suppose we choose ρ
too large, so that there exists some n ∈ [1, N ] ∩ Z with |ajn | > 2 · ‖a‖1 · n−ρ.
Then we have that

‖a‖1 ≥
n∑
l=1

|ajl | > 2 · ‖a‖1 · n1−ρ.

8 It is important to note that GFFT-Rand-Fast requires additional parameters beyond the
two referred to above to be chosen if one desires optimal performance. However, if the type
of suboptimal performance demonstrated here is sufficient, these parameters can already be
quickly estimated by automated procedures (e.g. by an optimized variant of Algorithm 3 in
[21]). See [3] for a more detailed discussion regarding the optimal choice of these additional
parameters.

9 Note that a sequence a is (b, ρ)-compressible if and only if it is in the weak-`1/ρ ball
of radius b. However, we will use the “ρ-compressible” notation which is more common in
the computer science and algorithm orientated literature (e.g., see [12,32]). Those readers
who are familiar with the relationship between weak and strong `p balls, etc., may skip to
Section 4.2 below.
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However, this can only be true if ρ > 1 + 1
log2 n

. The end result is that every

finite sequence (i.e., vector) containing only N nonzero entries, a ∈ CN , must

be
(

2 · ‖a‖1, 1 + 1
log2N

)
-compressible. Hence, the set{

a
∣∣ a is (2b, ρ)-compressible for some ρ > 1

}
contains all finite sequences in the `1-ball of radius b. Of course, for the pur-
poses of sparse approximation we are primarily interested in (b, ρ)-compressible
signals which have high fidelity sparse representations under the `1-norm (e.g.,
signals which are compressible with ρ ≥ 2).

Many functions f : [0, 2π]→ C exhibit Fourier compressibility. For exam-
ple, any 2π-periodic function with an integrable second derivative is Fourier
(c, ρ)-compressible with ρ ≥ 2 for some constant c ∈ R+ (see [5]). See [29] and
the references therein for more about the sparse approximation of (Fourier)
compressible signals.

Given a Fourier (b, ρ)-compressible function, f : [0, 2π]→ C, we would like
to approximate its sequence of Fourier series coefficients using k of its largest
magnitude coefficients. Approximating f̂ by Ropt(k) leads to approximation
errors of size

‖f̂ −Ropt(k)‖1 =

N∑
l=k+1

∣∣f̂jl ∣∣ ≤ ∫ ∞
k

b y−ρ dy =
b

ρ− 1
· k1−ρ

and

‖f̂ −Ropt(k)‖2 ≤

√∫ ∞
k

b2 y−2ρ dy =
b√

2ρ− 1
· k 1

2−ρ.

If ρ is greater than 1 we can see these errors are bounded. Indeed, they quickly
become manageable as ρ, k increase. Thus, we may provide uniform sparse
approximation bounds for classes of Fourier compressible signals whenever we
have knowledge regarding ρ and b (i.e., the functions’ smoothness).

4.2 Preliminaries: The Restricted Isometry Property

Many compressed sensing (CS) methods (e.g., [6–8,37,25,32–34,4]) deal with
recovering the k most significant entries of a vector, a ∈ CN , using only a
compressed set of linear measurements given by Ma, where M is a special
type of rectangular K×N matrix with the Restricted Isometry Property (RIP).
A matrix M has the RIP(N ,k,ε) if

(1− ε)‖a‖22 ≤ ‖Ma‖22 ≤ (1 + ε)‖a‖22 (4)

for all a ∈ CN containing at most k non-zero coordinates. Let K be Ω(k ·
log(N/k)). A K × N RIP(N ,k,Ω(1)) matrix may be constructed with high
probability by independently choosing each Mi,j entry via a 0-mean, 1

K -
variance Gaussian distribution [8]. Furthermore, these Gaussian matrices are
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near-optimal (i.e., they have a near-minimal number of rows while still allowing
the best k-term approximation [10] of a givenMa). Any K×N RIP(N ,k,Ω(1))
matrix must have K = Ω(k · log(N/k)). However, given that we are primar-
ily interested in Fourier recovery, we will focus on the following RIP matrix
construction theorem proven in [36].

Theorem 3 (Rudelson, Vershynin). Suppose we select K rows uniformly
at random from the rescaled N×N Inverse Discrete Fourier Transform (IDFT)
matrix 2π√

K·N Ψ
−1, where

(
Ψ−1

)
i,j

=
e

2πi·i·j
N

2π
,

and form a K×N matrix,M. If K is Ω
(
k · logN · log2 k · log(k logN)

)
then

M will have the RIP(N ,k,Ω(1)) with high probability.

Let M be a RIP(N ,O(k),ε) matrix with ε ∈
(
0, 12
)

sufficiently small. In
this case many different methods (e.g., convex optimization techniques [6,8])
can recover a near optimal O(k)-term representation for an unknown a ∈ CN
given only the compressed vector Ma ∈ CK as input. Therefore, if a is taken
to be the Fourier transform of a band-limited and Fourier compressible signal,
f , Theorem 3 implies that only a small set of O

(
k · log4N

)
random samples

from f are necessary in order to accurately approximate a = f̂ .
Besides facilitating sparse recovery, RIP matrices can also provide accurate

energy estimates for compressible signals. If f is Fourier (b, ρ)-compressible
with bandwidth N , we can represent it as

f̂ = Ropt(k) + r, (5)

where Ropt(k) is an optimal k-sparse representation for f̂ , and ‖r‖2 ≤ b√
2ρ−1 ·

k
1
2−ρ. Thus, f̂ ≈ Ropt(k) for k sufficiently large. In this case Equation 4 sug-

gests that a RIP matrix M might have ‖Mf̂‖2 ≈ ‖f̂‖2 which would allow us

to estimate the energy in f̂ using only the compact sketch Mf̂ ∈ CK given
by randomly sampling f inside [0, 2π] as per Theorem 3. More importantly,
we shall see that this observation allows us to quickly estimate how well any
given sparse representation approximates a compressible f̂ ∈ CN . We have
the following theorem.

Theorem 4 Let τ ∈ (1,∞), M be a K × N matrix with RIP(N ,2k,ε), and

f̂ ∈ CN be (b, ρ)-compressible. If R is a k-term sparse representation for f̂

with ‖f̂ −R‖2 ≤ τ then

‖M(f̂ −R)‖2 ≤
√

1 + ε · τ + 2b · k 1
2−ρ
√

1 + ε

(
1√

2ρ− 1
+

1

2
√

2(ρ− 1)

)
. (6)

Whenever ‖M(f̂ −R)‖2 ≤ τ̃ then

‖f̂ −R‖2 ≤
τ̃√

1− ε
+ b ·k 1

2−ρ
[

1√
2ρ− 1

(
1 +

√
1 + ε√
1− ε

)
+

√
1 + ε√
1− ε

1√
2(ρ− 1)

]
.
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Proof:

We give an argument similar to ones used in [32] to establish Theorems A.1

and A.2. Let e = b√
2ρ−1k

1
2−ρ and define r = f̂ −Ropt(k) as per Equation 5.

Assuming that ‖f̂ −R‖2 ≤ τ we have

‖Ropt(k) −R‖2 ≤ ‖f̂ −R‖2 + ‖r‖2 ≤ τ + e.

Therefore,

‖M(f̂ −R)‖2 ≤ ‖M(Ropt(k) −R)‖2 + ‖Mr‖2
≤
√

1 + ε · (τ + e) + ‖Mr‖2 (see Equation 4)

≤
√

1 + ε ·
(
τ + 2e+

‖r‖1√
2k

)
(see Proposition 3.5 in [32])

≤
√

1 + ε ·

(
τ + 2e+

b · k 1
2−ρ

√
2(ρ− 1)

)
.

Substituting for e and collecting terms we arrive at Equation 6.
Assuming ‖M(f̂ −R)‖2 ≤ τ̃ , we have

‖M(f̂ −R)‖2 ≥ ‖M(Ropt(k) −R)‖2 − ‖Mr‖2 (7)

≥
√

1− ε · ‖Ropt(k) −R‖2 − ‖Mr‖2 (see Equation 4)

which implies that

‖Ropt(k) −R‖2 ≤
τ̃ + ‖Mr‖2√

1− ε
.

Therefore, we have

‖f̂ −R‖2 ≤ ‖Ropt(k) −R‖2 + ‖r‖2 ≤
τ̃ + ‖Mr‖2√

1− ε
+ ‖r‖2

≤
τ̃ +
√

1 + ε ·
(
‖r‖2 + ‖r‖1√

2k

)
√

1− ε
+ ‖r‖2 (see Proposition 3.5 in [32]).

Bounding ‖r‖2 and ‖r‖1 and then collecting terms we obtain our result. 2

Theorem 4 tells us that we can use a RIP matrix M to verify the quality
of any sparse representation for f̂ that we are lucky enough to find. Further-
more, if vector products withM can be computed quickly, we will have a fast
method for checking sparse representations we generate. We will ultimately use
this idea to convert fast Monte Carlo Fourier results which occasionally fail to
accurately approximate Fourier compressible functions into Las Vegas Fourier
results which are always guaranteed to accurately approximate Fourier com-
pressible functions, but are sometimes slow. With this idea in mind we begin
to consider new Fourier results.
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Algorithm 1 Las Vegas Fourier
1: Input: Theorem 3 RIP(N ,2k,Ω(1)) matrix M, Fourier (b, ρ)-compressible f ,
η, ε ∈ (0, 1/2)

2: Output: 2k-sparse representation R
3: R← Call Corollary 4 in Table 1 with failure probability < 1/N , and tolerance ε

4: y←Mf̂ (i.e., randomly sample f in [0, 2π])

5: if ‖y −MR‖2 > b · k
1
2
−ρ

(
3
√
2√

2ρ−1
+ 1+

√
2

ρ−1

)
then

6: R← CoSaMP [32] with input M, η, y
7: end if
8: Output R

4.3 Improved Approximation Guarantees

In this section we present a fast randomized Fourier method which is guaran-
teed (in the presence of Theorem 3 RIP matrices) to return high quality Fourier
representations using nonadaptive sublinear-sampling. Most importantly, the
presented method also runs in sublinear-time with high probability on each
input signal. In order to achieve this result we use a simple “guess and check”
approach. We first run a fast randomized method (e.g., see the Theorem 1 and
Corollary 4 rows of Table 1) to quickly recover a sparse Fourier representa-
tion which is likely to be of high quality. We then check to see if the returned
representation is accurate or not using a RIP matrix (see Theorem 4). If the
representation is good, we return it as our answer. Otherwise, in the unlikely
event that the randomized approach has failed, we call a superlinear-time
method (e.g., any of those discussed in [6–8,37,25,32–35,4]) to calculate a
good answer.10 See Algorithm 1 for pseudocode.

It is important to note that the RIP matrices used by Algorithm 1 do not
need to be instantiated. For the purposes of Algorithm 1 it is sufficient to only
know the randomly selected IDFT matrix row numbers used to construct a
Theorem 3 RIP matrix. Furthermore, as written, Algorithm 1 only requires
nonadaptive sampling access to f . Keeping these points in mind we obtain the
following Theorem.

Theorem 5 Fix a precision parameter η ∈ R+ and let M be a Fourier
RIP(N ,2k,Ω(1)) matrix as per Theorem 3. Then, given sampling access to
any Fourier (b, ρ)-compressible function f : [0, 2π] → C with bandwidth N ,

Algorithm 1 will produce a 2k-sparse representation R with `2-error, ‖f̂−R‖2,
that is

O

(
b ·
(

1 +
1

ρ− 1

)
· k 1

2−ρ + η

)
.

The number of required samples from f is guaranteed to be O
(
k · log4N

)
. The

runtime of Algorithm 1 is always guaranteed to be

O
(
N · logN · log(‖f̂‖2/η) + (k + logN) · k · log4N

)
.

10 We will utilize CoSaMP [32] as the superlinear-time method below due to its fast runtime
complexity in the Fourier setting.
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The expected runtime is O
(

(k + logN) · k · log4N + logN · log(‖f̂‖2/η)
)
.

Proof:

We begin by verifying the error guarantee: In the unlikely event that the
superlinear-time method is called, the error guarantee is inherited from The-
orem A in [32]. If the superlinear-time method is not called, then

‖Mf̂ −MR‖2 ≤ b · k
1
2−ρ

(
3
√

2√
2ρ− 1

+
1 +
√

2

ρ− 1

)
. (8)

However, in this case Theorem 4 once again guarantees the stated error bound.
The guaranteed sample bound comes from the fact that both Corollary 4 in
[22] and Theorem 3 are utilized only once.

We now consider the runtime requirements. Note that MR can be calcu-
lated exactly in O

(
k2 · log4N

)
time (see line 5). This fact combined with the

runtime bounds from Theorem A in [32] (see line 6) and Corollary 4 in [22]
(see line 3) yields the stated worst case runtime complexity. We conclude by
analyzing the expected runtime.

The Monte Carlo method associated with Corollary 4 in Table 1 that is
utilized in line 3 of Algorithm 1 will produce a sparse Fourier representation,
R, that fails to satisfy Equation 1 with probability less than 1/N . Furthermore,
whenever the sparse representation produced by line 3 does satisfy Equation 1,
we have

‖f̂ −R‖2 ≤ b · k
1
2−ρ

(
1√

2ρ− 1
+

1

ρ− 1

)
which will in turn guarantee that Equation 8 holds by Theorem 4. Hence, the
superlinear-time method in line 6 of Algorithm 1 will be run with probability
less than 1/N . The expected runtime now follows easily from Theorem A in
[32], Corollary 4 in [22], and the fact that MR can be calculated exactly in
O
(
k2 · log4N

)
time. 2

Note that Theorem 5 can be viewed as an existence result. In essence, it
indicates that Las Vegas results with sublinear runtime and uniform approx-
imation guarantees along the lines of Theorem 2 can be achieved using only
O(k ·log4N) nonadaptive samples per signal, instead of O(k2 ·log4N) samples.
Having the matrix,M, from line 1 of Algorithm 1 be a Fourier RIP(N ,2k,Ω(1))
matrix is all that is required. Furthermore, Theorem 3 promises that one can
obtain such a RIP matrix with high probability (i.e., Theorem 3 constructively
demonstrates that such matrices exist and are, in fact, very common).

However, although Theorem 5 does achieve error and runtime bounds sim-
ilar to those of Theorem 2 while requiring fewer samples, it is important to
point out that both the runtime and approximation guarantees of Theorem 5
are slightly weaker than those of Theorem 2. First, the sublinear runtime
guarantee for Theorem 5 holds only with high probability (and, therefore, in
expectation). Theorem 2, on the other hand, guarantees that an essentially
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identical runtime bound will hold both uniformly and deterministically for all
signals. Secondly, and more importantly, the uniform approximation guaran-
tee provided by Theorem 5 is a min-max error guarantee over the class of
Fourier (b, ρ)-compressible functions. This type of error guarantee is strictly
weaker than the type of instance optimal approximation results provided by
both Theorems 1 and 2 which guarantee that the output sparse representa-
tions will be nearly optimal with respect to every individual input function
f . Among other things, knowledge regarding the b and ρ parameters of each
given input function f (i.e., knowledge regarding f ’s smoothness) is required
for the approximation result of Theorem 5 to be useful in practice. Theorem 2,
on the other hand, guarantees a near optimal sparse approximation for every
input function, f , in any case.

5 Conclusion

In this paper we implemented and empirically evaluated the sparse Fourier
transform algorithms proposed in [22]. Our implementation, the Gopher Fast
Fourier Transform (GFFT), was bench marked against both AAFFT [23], an
earlier sparse Fourier transform algorithm, and FFTW3 [16], a highly opti-
mized standard FFT implementation. As indicated in Section 3, the GFFT-
Rand-Slow variant of GFFT generally has the lowest sampling complexity of all
the tested implementations. Similarly, the GFFT-Rand-Fast variant of GFFT
generally has the lowest runtime complexity of all the tested implementations.

In addition to carrying out an empirical evaluation of GFFT, we also
presented a fast sparse Fourier transform method having both uniform er-
ror guarantees over the class of compressible signals, and near optimal sam-
pling complexity. This represents an improvement in sampling requirements
over previous fast methods with uniform error guarantees (e.g., see Theo-
rem 2). However, despite the fact this method obtains O(k · log4N) sampling
complexity, it is worth noting that it remains roughly O(k2 · log5N)-time
(i.e., its runtime complexity still scales quadratically in the sparsity parame-
ter k). Hence, it does not represent a strict improvement over previous faster
Monte Carlo results with nonuniform error guarantees (e.g., see Theorem 1).
This defect can be overcome if the sparse matrix-vector product required in
line 5 of Algorithm 1, MR, can be computed faster than possible by naive
O
(
k2 · log4N

)
-time sparse matrix multiplication. However, this appears to be

difficult in general as neither the frequencies in R nor the IDFT rows com-
posing M (see Theorem 3) need have any of the structure necessary for the
application of standard unequally spaced FFT methods [15].
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