
Group Testing and Sparse Signal Recovery
Anna C. Gilbert

Department of Mathematics
University of Michigan, Ann Arbor

Email: annacg@umich.edu

Mark A. Iwen
Institute for Mathematics and Its Applications

University of Minnesota, Twin Cities
Email: iwen@ima.umn.edu

Martin J. Strauss
EECS and Mathematics

University of Michigan, Ann Arbor
Email: martinjs@umich.edu

Abstract—Traditionally, group testing is a design problem. The
goal is to design an optimally efficient set of tests of items such
that the test results contain enough information to determine a
small subset of items of interest. It has its roots in the statistics
community and was originally designed for the Selective Service
during World War II to remove men with syphilis from the draft
[5]. It appears in many forms, including coin-weighing problems,
experimental designs, and public health. We are interested in
both the design of tests and the design of an efficient algorithm
that works with the tests to determine the group of interest
because many of the same techniques that are useful for designing
tests are also used to solve algorithmic problems in compressive
sensing, as well as to analyze and recover statistical quantities
from streaming data. This article is an expository article, with
the purpose of examining the relationship between group testing
and compressive sensing, along with their applications and
connections to sparse function learning.

I. INTRODUCTION

We can trace the origins of group testing to World War II.
Two economists, Robert Dorfman and David Rosenblatt, with
the Research Division of the Office of Price Administration
created an efficient method for detecting draftees with syphilis.
The ideas behind the testing method are relatively simple. The
Selective Service System was to draw blood from each draftee.
Then, they would pool the samples into groups of five. They
would use a single Wassermann test on the pooled samples to
test for the presence of the syphilitic antigen. If no one in the
pool has the antigen, then the pool does not, and the test is
negative. If one or more people in the pool have the antigen,
then the pooled samples have the antigen. The test is positive
and we can then test all five members of the pool individually
to determine who is infected. These observations provide an
efficient testing scheme: if no one in the pool has the antigen,
then we save four tests as compared with five individual tests.
If one or more in the pool have the antigen, then we waste
a single extra test on the entire group (this is unlikely as we
assume few in the entire population have syphilis).

The purpose of this article is to examine the role of
group testing [6] in streaming algorithms [12], compressive
sensing [4], [2], and function learning/interpolation [11]. Re-
covering an important set of members of a large group from a
small number of stored tests is a fundamental task in each of
these areas, and general results on group testing are potentially
valuable compression, sketching, and learning techniques. As
we shall see below, this fact has been exploited in both
streaming algorithms and compressed sensing applications.

Furthermore, as discussed in the last two sections of this paper,
there are a number of new applications in machine learning.

We begin our discussion in Section II with a review of com-
binatorial group testing. In Section III, we give an approximate
group testing algorithm which is at the core of many streaming
and highly efficient compressed sensing algorithms [7], [10].
This algorithm is a relaxation of the original formulation of
group testing. In the following sections, we connect three ap-
plications to group testing through various algorithmic models.
Next, in Section IV, we discuss models for streaming data,
including the algorithmic models for processing such data
streams. We connect streaming algorithms and group testing
through these algorithmic models. We proceed in Section V to
mention several direct applications of group testing methods
to compressive sensing. Section VI relates group testing and
compressive sensing to learning functions and proposes several
potential applications based on this connection. Finally, in
Section VII, we suggest novel uses of the results of group
testing which show potential in general experimental design.

II. GROUP TESTING PRELIMINARIES

We define the basic problem in the simplest form. We have
a universe of N items in total. We know that d of them are
defective and we call this set D the defective set. This defective
set must be a member or sample of a given family we call the
sample space. The sample space S(d,N) might, for example,
be all subsets of N items of size d. The goal of combinatorial
group testing is to construct a collection of tests (called a
design) to minimize the number of tests needed to find the
defective set for the worst case input. We call a best algorithm
under this goal a minimax algorithm. At this level, we do not
specify the type of tests. They may be adaptive or non-adaptive
and they may be linear or nonlinear. In addition, they may be
generated randomly or explicitly.

We begin with a simple but fundamental setting in combi-
natorial group testing, that of binary non-adaptive tests. Let
M be a t×N , {0, 1}-valued matrix we call the measurement
matrix. Let Ri denote the ith row or ith group of M. We
regard columns Cj of the {0, 1}-valued matrix M as subsets
(of the universe of t tests). The entry Mij = 1 if item j is in
test i andMij = 0 if item j is not in test i. Let s ∈ {0, 1}N be
the characteristic vector for our set of items, so s has exactly
d entries that are 1 and (N − d) zeros. We apply M to s and
collect measurements, or the results of our tests, in vector v,

v =Ms,

where the arithmetic is boolean, that is, multiplication of 0s
and 1s is the usual multiplication (which coincides with the
logical AND) but addition is replaced by the logical OR.
Equivalently, we perform the multiplication Ms over Z and
then replace all non-zero entries in the result by 1. This
corresponds to disjunctive tests where a test on a group i is
positive or negative, and is positive if and only if at least one
item in group i would, by itself, lead to a positive test (see
Section VI for a simple extension to conjunctive tests).

Definition 1: The measurement matrix M is d-disjunct if
the ORs of any d columns do not contain any other column.
The d-disjunct condition is equivalent to the (d+ 1)-strongly
selective condition employed elsewhere [3]. There are ex-
plicit d-disjunct measurement matrix constructions of size
O(d2 logN)×N [13].

The group testing algorithms that accompany these types
of binary matrices are relatively straightforward. Let S(d,N)
consist of all subsets of size d of N items total. Then a set of
d columns chosen from M correspond to a particular sample
s in S(d,N) or a particular d-subset. The union of these d
columns is the set of tests which generate positive outcomes
for this d-subset. A straightforward algorithm keeps a look-
up table of size

(
N
d

)
, which may be prohibitive. On the other

hand, for a d-disjunct matrix, the defective items are easily
identified in time O(Nt). Let S be the set of columns made
up by the sample and let

P (S) =
⋃
j∈S

Cj

be the set of positive tests. If item j is in some negative test
(i.e., item j is in some group Ri for which the i’th test result is
negative), then identify j as a good item; otherwise, identify j
as a defective item. To see that this procedure is correct, note
that, if j is a good item, then, by definition of d-disjunctness,
P (S) does not contain Cj , so j is in some negative test. On
the other hand, if j is a defective item, then it clearly is in no
negative test, since the tests are disjunctive.

Let us give an example of a d-disjunct matrix. The simplest
example when d = 1 of a d-disjunct matrix is the bit test
matrix, B. To form the bit test matrix B, set the ith column of B
equal to the binary representation of i, for i = 0, . . . , log2N−
1. In this case t = log2N and this construction achieves the
lower bound for the minimum number of tests to locate a
single item from among N . For N = 8, the bit test matrix B
has the form

B =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

This matrix is 1-disjunct since any two columns differ in at
least one row.

We note that there is a simpler and faster algorithm than
the one given above for detecting a single defect using B.

Observe,

Bs =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0
0
1
0
0
0
0
0

=

0
1
0

 .

In general, the bit-test matrix times the signal gives location
in binary of the defect.

We observe that all of the tests we describe are linear and
non-adaptive. The tests consist of applying a matrix (hence
a linear procedure over Z2, C, or under Boolean arithmetic,
depending on the application) to a collection of items rep-
resented by a vector of length N . The tests are nonadaptive
in the sense that the membership in each group (row of the
matrix) does not depend on the outcome of any other test—
indeed, there is no natural order in which to perform the tests.
Nonadaptive tests are useful when we prefer to perform all
the tests simultaneously or with at least some overlap in time.
This is the case if the tests take a long time or N is so large
that we cannot easily store all N items between tests.

III. APPROXIMATE IDENTIFICIATION

In the previous section, we defined the goal of traditional
group testing as the identification of a set of d defects
using a minimal number of tests. We want to construct a
design that works on all sets (or on each set) of d defects.
There are many situations in which we may be willing to
relax our goals. Rather than identifying all d defects from
a single set of measurements or from a single use of those
measurements, we may be able to identify all d defective
items in several iterations, using the test and measurements
repeatedly. Alternatively, we may be satisfied with recovering
a large fraction of the defective items. Let us formalize this
approximation problem as ε-approximate identification. That
is, for all samples s consisting of d defects, we want our design
to output a set of items that contains at least εd of the defects.
Thus we allow at most (1− ε)d false negatives.

Let us construct a random matrix R with t ≈ d logN rows
and N columns. We place exactly one 1 per column, in a
row chosen uniformly at random. This random construction
corresponds to assigning each of d defective items at random
to one of t groups. The non-defective items are also assigned
to groups, but this is irrelevant. In an alternative and essentially
equivalent construction, each entry of R is 1 with probability
approximately 1/t and 0 otherwise, independently. We will
give a proof for this construction, rather than the first, as it is
easier to analyze.

We say that defective item j is isolated in group i (or by
measurement i), if item j and no other defective items are
assigned to group i. We say that a matrix R isolates q items
if there are q distinct indices j that are isolated in a group
given by a row of R.

Lemma 1: Fix parameters d and N . Let R be a matrix
with N columns and t rows, such that each entry is one
with probability 1/d and zero otherwise, independently. For
sufficiently large t ≤ O(d log(N)), except with probability 1

4 ,
the matrix R isolates at least εd of the defects in any signal s
consisting of δ ones (defective items), for d/2 ≤ δ ≤ d, and
N − δ zeros (nondefective items).

Proof: Fix a sample with δ defects. In each row, the prob-
ability of getting exactly one defect is p = δ(1/d)(1−1/d)δ−1,
so that p ≥ Ω(1). By the Chernoff bound, for some constant
c, at least ct of the rows get exactly one defect except
with probability e−Ω(t) ≤ 1

4

(
N
d

)−1
, for sufficiently large

t ≤ O(d log(N)). By symmetry, the set of isolated defects
consists of t independent uniform draws with replacement
from the set of δ defects. The probability that the collection
contains fewer than εd different items is at most∑

j<εd

(
d

j

)
(j/δ)t ≤ εd

(
d

εd

)
(2ε)t

≤ εd
dεd

(εd)!
(2ε)t

≈ εd
dεd

(εd/e)εd
(2ε)t

= εd
(e
ε

)εd
(2ε)t.

If we make ε = e−1, we get∑
j<εd

(
d

j

)
(j/d)t ≤ εd

(e
ε

)εd
εt

≤ eln(d)−1+2d/e−t(1−ln(2))

≤ 1
4d

(
N

d

)−1

,

provided t ≤ O
(

log
(
N
d

))
= O(d logN) is sufficiently large.

Finally, take a union bound over all at-most-d
(
N
d

)
possible

signals.
Now we extend to “at most d” defects.
Corollary 1: Fix parameters d and N . For sufficiently large

t ≤ O(d log(N)), there is a t-by-N matrix M that isolates
at least εδ of the defects in any sample s having δ ≤ d ones
(defects) and N − δ zeros.

Proof: By Lemma 1, there exists a matrix with
O(d log(N)) rows that works for any δ in the range d/2 ≤
δ ≤ d. Similarly, for any j, there is a matrix R| with
O(2−jd log(N)) rows that works for any δ in the range
2−(j+1)d ≤ δ ≤ 2−jd. Combine all these matrices. The
number of rows is the sum of a geometric series,

O(d log(N))(1 + 2−1 + 2−2 + · · ·) = O(d log(N)).

Suppose that defective item j is isolated in group i. Then
no other defective items are in group i but this by itself does
not identify j. The signal which consists of all those items in
group i does, however, consist of d′ = 1 defective items only

and we can apply the bit-testing matrix B to those of the N
items that end up group i; this will identify j. More precisely,
for each row r in the random design R and each row r′ of
B, take rr′ as a row of our final design, M. Thus M has
approximately d log2(n) rows and we say that M is the row
tensor product of B1 andR,M = B

⊗
rR. If the random part

of M succeeds, i.e., group r has exactly one defect j, then it
is clear that M will identify j. If group r contains more than
one item, however, the natural bit-test algorithm may fail and
output an arbitrary position; these are false positives. Some
items will never appear alone in any group; these are false
negatives. Thus the number of false positives is bounded by
the number of groups, O(d log(N)). The number of groups is
close to the lower bound, since log

(
N
d

)
≥ Ω(d log(N/d)). We

summarize our above discussion in the following theorem.
Theorem 1: Suppose there is a Boolean testing procedure

that can be applied to any subset of items. Then there is
a measurement matrix M with O(d log2N) rows and N
columns and non-adaptive algorithm which identifies a list
of O(d logN) items containing at least εd defective items
from N total, i.e., an ε-approximate identification design. The
matrixM that is a row tensor product of the bit-test matrix B
and a random matrix R of O(d logN) rows, having exactly
one non-zero, a 1, in each column is such a matrix, with
high probability. Excluding time to make measurements, the
algorithm runs in time (d logN)O(1).

Furthermore, approximate identification is almost as good
as strict identification when the tests are adaptive or the tests
are non-adaptive and linear. After tentatively identifying the
defects, we can test each one to confirm, remove them from
consideration, and test the remaining N − εd of the items, of
which (1−ε)d are defective. By the above discussion, there is
an ε-approximate identification design for all relevant values
of d and N , so we can repeat the process, and recover all the
items. We give the following corollary for the noiseless case,
but the techniques will actually tolerate considerable noise;
i.e., the techniques handle a sample vector s in which supposed
“zeros” are actually small-magnitude non-zero numbers.

Lemma 2: Suppose there is an ε-approximate identification
scheme with t ≤ O(d log2N) tests for d defects out of
N items, for all relevant values of ε, d, and N . Then there
is an adaptive design and algorithm that finds all d defects
using O(t/ε) tests and O(log(d)/ε) rounds of adaptivitiy.
Excluding time to make measurements, the algorithm runs
in time (d logN)O(1) times the time required to call the ε-
approximate identification algorithm once.

Proof: Use the hypothesized ε-approximate identification
scheme on the original (N, d)-sample, test the tentatively
identified items, then use the hypothesized ε-approximate
identification scheme on the residual (≤ N − εd,≤ (1− ε)d)-
sample, etc. Note that the total number of tests is the sum of
a geometric series,

t(1 + (1− ε) + (1− ε)2 + · · ·) ≈ t/ε.

The number of terms in the series, which is the number of
rounds of adaptivity, is O(| log(1−ε) d|) ≤ O(log(d)/ε).

Thus we have, from the above:
Corollary 2: Suppose there is a Boolean testing procedure

that can be applied to any subset of items. Then there is
an algorithm that finds all at-most-d defects in a sample
of length N using at most O(d log2N) tests. The overall
algorithm needs O(log(d)) rounds of adaptivity and succeeds
for all samples. Excluding time to make measurements, either
algorithm runs in time (d logN)O(1).

IV. STREAMING ALGORITHMS

In the next sections, we describe several applications in
which group testing plays a fundamental role. We begin with
data streams and streaming algorithms. A data stream is a
computational model that captures the many situations in
which data arrive and are processed in a stream or online. For
example, network service providers collect logs of network
usage (telephone calls or IP flows) in great detail from
switches and routers and aggregate them in data processing
centers. They use this data for billing customers, detecting
anomalies or fraud, and managing the network. In most cases,
we cannot accumulate and store all of the detailed data. We can
archive past data but it is expensive to access. We would rather
have an approximate, but reasonably accurate, representation
of the data stream that can be stored in a small amount of
space. It is not realistic to make several passes over the data
in the streaming setting. It is crucial that we compute the
summary representation on the stream directly, in one pass.

Our input, which we refer to as the stream, arrives sequen-
tially, item by item, and describes an underlying signal. In
the simplest case, the signal s is a one-dimensional function
s : [1 . . . N] → Z+. We use standard arithmetic (i.e., we no
longer use boolean arithmetic). We assume that the domain is
discrete and ordered and that the function s maps the domain
to non-negative integers. For example, a signal is the number
of employees in different ages (the domain is the set of ages
and the range is the number of employees of particular age), or
the number of outgoing call minutes from a telephone number
(domain is the set of all telephone numbers and the range
is the total number of outgoing minutes). For signals over a
continuous domain, we assume that the domain is discretized
in a sensible fashion.

For example, a stream of telephone call records could be:

〈8008001111, 10〉, 〈8008002222, 15〉, 〈8008003333, 13〉,
〈8008001111, 23〉, 〈8008001111, 3〉 . . .

where each record contains the phone number and the length
of the outgoing telephone call. We construct the underlying
signal, namely s = 〈8008001111, 36〉, 〈8008002222, 15〉,
〈8008003333, 13〉 by aggregating the total number of min-
utes outgoing from numbers 8008001111, 8008002222,
8008003333, etc. More generally, we may consider transac-
tions that also “subtract” from the underlying data distribution.
This arises, for example, in a comparison between today’s and
yesterday’s network traffic.

To illustrate the connection between streaming algorithms
and group testing, let us start with an example. Suppose that

our stream of phone call records includes records of the form

〈time.stamp, phone.number, flag〉
where flag = 1 or −1. This type of record indicates the
beginning of a phone call (with flag = 1) from a phone
number at a certain time. The record with the same phone
number but with flag = −1 at a later point in time indicates
the end of that phone call. Our stream might look like

〈1200, 8008001111, 1〉, 〈1203, 8008002222, 1〉,
〈1204, 8008002222,−1〉, 〈1206, 8008003333, 1〉,
〈1207, 8008001111,−1〉, 〈1208, 8008004444, 1〉, . . .

The underlying signal that we construct from these records
is the list of currently active phone numbers (those phone
numbers in the midst of a telephone call). After the sixth
record in the stream, our signal is

s =〈8008001111, 0〉, 〈8008002222, 0〉,
〈8008003333, 1〉, 〈8008004444, 1〉;

that is, of all the phone numbers seen thus far, two of them
are currently making a phone call (signified with a 1), while
the other two are not (signified with a 0). More formally, our
signal s is a one-dimensional function with discrete domain
equal to the set of all phone numbers and with range {0, 1}.
Let N be the number of all possible phone numbers. Let us
further suppose that at the time we analyze the stream, there
are d active phone calls. Then our signal s has d non-zero
entries out of N total and the problem of identifying which
phone numbers are currently active is equivalent to identifying
d defective items out of N total.

V. COMPRESSIVE SENSING

In the compressive sensing (CS) application, data do not
arrive sequentially; rather, we assume that we can quickly
obtain (either computationally or physically) a vector of mea-
surements of a signal. More precisely, let s ∈ CN and an
invertible N × N matrix Ψ be given. Furthermore, assume
that s is sparse with respect to Ψ (i.e., only d � N entries
of Ψ · s are significant, or large in magnitude). The primary
mathematical problem in compressive sensing is to generate
a t × N measurement matrix, M, with the smallest number
of rows possible (i.e., t minimized) so that the d significant
entries of Ψ · s can be well approximated by an efficient
recovery algorithm using only the t-element vector result of

(M ·Ψ) · s

as input.
Although the arithmetic for most CS problems is performed

over C (as opposed to Boolean arithmetic in traditional group
testing), the primary difficulty in CS, as in group testing,
is identifying the significant signal entries. Once they have
been identified, we have a variety of methods to estimate their
values. In fact, compressive sensing using binary measurement
matrices is essentially equivalent to group testing in a popu-
lation where every population member is allowed a complex
‘defectiveness value,’ and group tests yield a sum of the tested
subset members’ defectiveness values. Given this similarity, it

should not be surprising that d-separable matrices M can be
used to solve the CS problems [3], including extensions to
the Fourier sampling case [7], [9]. Near-optimal randomized
CS methods using techniques similar to those outlined in
Section III also exist [8]. Of greatest interest with these
approaches is that, similar to the Corollary 2 method, they
run in (d logN)O(1) time. They exchange the use of slightly
more samples than linear programming based CS methods [4],
[2] for sublinear reconstruction runtimes. However, linear
programming reconstruction may also be utilized with binary
measurement matrices if the number of tests is the dominant
concern [1].

VI. FUNCTION LEARNING

We observe, in this section, that the group testing and com-
pressive sensing problems are analogous to learning learning
function of the form

f(x) = a · x
where a ∈ {0, 1}N (or CN) is d-sparse or compressible,
unknown, and we employ boolean or complex arithmetic.
In either case, the t × N measurement matrix generates t
point evaluations of the function f . We seek a reconstruction
algorithm to recover (an approximation to) f from these
point evaluations. Hence, recent compressive sensing methods
provide near-optimal results concerning exact recovery of such
sparse linear functions. Likewise, the group testing variant of
Corollary 2 provides a near-optimal adaptive learning method
for sparse boolean disjunctions.

As a simple consequence of DeMorgan’s Law, group testing
algorithms can also be modified to allow the near-optimal
recovery of sparse conjunctions (i.e., boolean functions f :
{0, 1}N → {0, 1} consisting of a conjunction of d of the
N input variables). Given a boolean measurement matrix M
we simply (i) flip every Mj,k bit, and then (ii) compute
¬f(Mj) for each new measurement row j. The original
recovery algorithm will then reconstruct f . Thus, group testing
methods can be used to detect population members of interest
which, although invisible when separated, are detectable when
they all are present in a test. Potential applications include
“blind chemistry” (i.e., the application of group testing to
determine which d of N reactants create a particular detectable
compound of interest).

Finally, we note that compressed sensing methods’ ability to
approximate sparse linear functions immediately implies their
ability to approximate any (smooth) function with a sparse or
compressible gradient. Suppose f : RN → R has a sparse (or
compressible) gradient at x0. Then, for any t×N compressed
sensing matrix M’s jth row we have

f (x0 + hMj)− f (x0)
h

= Of
∣∣
x0
· Mj +O(h).

Hence, evaluating f at t + 1 points gives us an estimate of
M
(
Of
∣∣
x0

)
, andM’s associated reconstruction algorithm can

then be used to recover (an approximation to) f ’s gradient.
This, in turn, identifies f ’s most important variables (with the
largest magnitude partial derivatives) near x0.

VII. CONCLUSIONS

While the original group testing methods were used in
experimental design, the extensions to function learning have
potential as well. For example, suppose we are interested in
achieving the highest possible fuel efficiency per dollar of
cost for a new car design. We can model our car design’s
miles per gallon-dollar as a function of the design parameters.
These parameters might include many tire, body shape, engine,
material, etc. specifications and costs. Furthermore, evaluating
the fuel efficiency per cost of any specific design may be
extremely time consuming. In other words, our design function
may be hard to evaluate. Evaluating the fuel efficiency to cost
ratio for any design may require computationally intensive
air flow simulations etc. Even worse, prototypes may have to
be manufactured. Hence, questions such as “Which 5 design
parameters most impact my new design’s fuel efficiency per
cost?” might be extremely difficult and costly to answer.
Compressed sensing methods may be helpful in such situ-
ations by providing a small number of test points (i.e., car
designs) which help reveal the most important variables (i.e.,
design parameters). Other potential applications include the
identification of keystone species in complicated ecosystem
models, and the fast runtime optimization of complicated code
parameters for large batches of problems.

REFERENCES

[1] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. Strauss.
Combining geometry and combinatorics: A unified approach to sparse
signal recovery. preprint, 2008.

[2] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information.
IEEE Trans. Inform. Theory, 52:489–509, 2006.

[3] G. Cormode and S. Muthukrishnan. Combinatorial Algorithms for
Compressed Sensing. Conference on Information Sciences and Systems,
March 2006.

[4] D. Donoho. Compressed Sensing. IEEE Trans. on Information Theory,
52:1289–1306, 2006.

[5] R. Dorfman. The detection of defective members of large populations.
Ann. Math. Stat., 1943.

[6] D. Z. Du and F. K. Hwang. Combinatorial Group Testing and Its
Applications. World Scientific, 1993.

[7] A. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds
for near-optimal sparse Fourier representations. SPIE, 2005.

[8] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic
linear dimension reduction in the l1 norm for sparse vectors. submitted,
2006.

[9] M. A. Iwen. A deterministic sub-linear time sparse fourier algorithm
via non-adaptive compressed sensing methods. In SODA, 2008.

[10] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and
M. Strauss. Random sampling for analog-to-information conversion of
wideband signals. Proc. IEEE Dallas Circuits and Sys Conf., 2006.

[11] Y. Mansour. Randomized approxmation and interpolation of sparse
polynomials. SIAM Journal on Computing, 24:2, 1995.

[12] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foun-
dations and Trends in Theoretical Computer Science, 1, 2005.

[13] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group
testing schemes. ICALP, 2008.

