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Abstract

In this paper we develop fast and memory efficient numerical methods for learn-
ing functions of many variables that admit sparse representations in terms of general
bounded orthonormal tensor product bases. Such functions appear in many applica-
tions including, e.g., various Uncertainty Quantification (UQ) problems involving the
solution of parametric PDE that are approximately sparse in Chebyshev or Legendre
product bases [10, 55]. We expect that our results provide a starting point for a
new line of research on sublinear-time solution techniques for UQ applications of the
type above which will eventually be able to scale to significantly higher-dimensional
problems than what are currently computationally feasible.

More concretely, let B be a finite Bounded Orthonormal Product Basis (BOPB)
of cardinality |B| = N . Herein we will develop methods that rapidly approximate any
function f that is sparse in the BOPB, that is, f : D ⊂ RD → C of the form

f(x) =
∑
b∈S

cb · b(x)

with S ⊂ B of cardinality |S| = s� N .
Our method adapts the CoSaMP algorithm [50] to use additional function samples

from f along a randomly constructed grid G ⊂ RD with universal approximation
properties in order to rapidly identify the multi-indices of the most dominant basis
functions in S component by component during each CoSaMP iteration. It has a
runtime of just (s logN)O(1), uses only (s logN)O(1) function evaluations on the fixed
and nonadaptive grid G, and requires not more than (s logN)O(1) bits of memory.
We emphasize that nothing about S or any of the coefficients cb ∈ C is assumed in
advance other than that S ⊂ B has |S| ≤ s. Both S and its related coefficients cb will
be learned from the given function evaluations by the developed method.

For s� N , the runtime (s logN)O(1) will be less than what is required to simply
enumerate the elements of the basis B; thus our method is the first approach applicable
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in a general BOPB framework that falls into the class referred to as sublinear-time.
This and the similarly reduced sample and memory requirements set our algorithm
apart from previous works based on standard compressive sensing algorithms such as
basis pursuit which typically store and utilize full intermediate basis representations
of size Ω(N) during the solution process.

Keywords High-Dimensional Function Approximation · Sublinear-time Algorithms ·
Function Learning · Sparse Approximation · Compressive Sensing

Mathematics subject classification 65T40 · 68W25

1 Introduction

One encounters the problem of multivariate function integration, approximation, interpo-
lation, and learning from a relatively small number of function evaluations in application
areas ranging from computational physics to mathematical finance. A common class of
examples in the Uncertainty Quantification (UQ) literature [60, 63], for example, involves
the approximation of Quantities of Interest (QoI) that are assumed to be continuous func-
tions of a potentially large number of parameters. Consequently, uncertainty in the input
parameters leads to uncertainty in the QoI outputs which, in turn, necessarily depends
on how the QoI behaves as a function of the input parameters. In order to understand
the uncertainty in the QoI outputs one is therefore forced to approximate the QoI as
a function. This typically requires multivariate function integration and interpolation,
usually via quadrature methods [17], sparse grid approaches [7], or (quasi-)Monte Carlo
methods [46, 8], depending on the number of parameters (i.e., variables) on which the
QoI depends. In any case, all of these approaches typically must assume that the QoI
is a highly smooth function of its input parameters in order to guarantee efficiency and
accuracy, though smoothness alone cannot generally save one from the curse of dimen-
sionality [34] (i.e., from an exponential sampling and runtime dependence on the number
of function variables, D).

More recently, sparsity of the quantity of interest in a given Bounded Orthonormal
Product Basis (BOPB) has been identified as an appropriate model assumption for UQ
problems involving solutions of parametric elliptic partial differential equations [57, 10, 6,
55, 2, 1]. This observation allows for a formulation of the QoI approximation problem in
the language of compressive sensing (CS), a paradigm introduced in the signal recovery
literature in the early 2000’s (starting with [20, 9], cf. [23] for a comprehensive introduction
to the field). Namely, when the function evaluations are performed for random choices
of the input parameters, the problem is a special case of the problem of recovering a
function that admits a sparse representation in a Bounded Orthogonal System from a
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small number of function evaluations. This problem in general terms, that is, without
assuming a product structure as we encounter it here, has been of interest to the CS
community almost from the beginning (see, e.g., [54, 56, 44]).

Building on these general results, a number of more recent works have studied the
same questions specifically for the important case of multivariate functions which exhibit
sparsity in high-dimensional Chebyshev and Legendre product bases (see. e.g., [55, 10]).
These methods still store and utilize full intermediate basis representations during the
solution process, however. In order for the problems to still be feasible, they often make
additional assumptions on the structure of the sparsity which imply that the degrees of the
polynomial basis functions with large coefficients are relatively small. This has the effect
of reducing the overall sampling complexity and size of the basis which, in turn, allows for
faster approximation of the QoI function with less required memory. A simple example is
the case where a function of a very large number of variables is assumed to actually only
depend on a small subset of them [19, 28] (see also [55, 6] which achieve a similar effect
in the UQ setting when D � s via a combination of Petrov-Galerkin approximation and
weighted `1 minimization techniques). Methods which assume hyperbolic cross [59, 21]
or lower set [10] structures on the energetic basis function indexes provide additional
examples.

The connection between UQ and BOPB-sparse function recovery established in these
recent works paves the way for us to devise the first sublinear-time compressive sensing
methods for general BOPB frameworks in this paper. More precisely, we are able to
decouple the runtime and memory requirements necessary in order to learn a given BOPB-
sparse function from the overall BOP basis size one must initially consider. In short,
we develop extremely fast and memory efficient compressive sensing algorithms for such
problems. Besides an improved theoretical performance, also the empirical performance
of our method improves over previous approaches. In particular, the enhanced memory
efficiency allows us to tackle much larger problem sizes than in previous works. We
expect that the results presented in this paper will trigger follow-up works on sublinear-
time solution techniques for UQ applications of the type above which will eventually
be able to scale to significantly higher-dimensional problems than what are currently
computationally feasible.

Though its focus is on the recovery of functions which exhibit sparsity in an arbi-
trary BOPB, the method developed herein is a direct descendant of previously exist-
ing sublinear-time compressive sensing algorithms developed in the mathematics and
computer science communities for data stream processing and sketching applications
[24, 27, 25, 41, 30]. Unlike these previous methods, however, the compressive sensing
matrices we are forced to use herein are necessarily solely derived from highly structured
combinations of Bounded Orthonormal System (BOS) sampling matrices (see §2.3 for
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details). As a result, our recovery algorithm cannot make direct use of any of the group
testing and random hashing techniques commonly utilized by such sublinear-time com-
pressive sensing methods. Instead, we appeal to compressive sensing results concerning
the restricted isometry constants of random sampling matrices derived from a BOS in
order to develop general energy-based hashing techniques which capitalize on the tensor
product basis structure of any given BOP basis B. These new energy hashing techniques
are then used to rapidly identify a given BOPB-sparse function’s support set S ⊂ B using
the algorithms discussed in Sections 3.1 and 3.2.

Similarly, the sublinear-time compressive sensing method developed herein can also be
viewed as a significantly generalized high dimensional Sparse Fourier Transform (SFT) al-
gorithm [40, 36, 43, 12, 52, 53, 62, 48]. In particular, the support identification techniques
developed for arbitrary BOP bases in Sections 3.1 and 3.2 bear a high-level resemblance
to the dimension incremental support identification techniques recently proposed by both
Potts and Volkmer et al. [52, 42] and Choi et al. [12, 13] for the multivariate Fourier
basis (see §3.2.2 for more details). Unlike the method proposed herein, however, the afore-
mentioned high dimensional SFT’s all use the specific structure of the Fourier basis in
fundamental ways which makes their results difficult to directly extend to general BOP
bases. Furthermore, with the notable exception of [40, 48], none of them provide uni-
versal recovery guarantees for all Fourier compressible functions. As a result, we need to
develop entirely new sublinear-time support identification methods which only depend on
general BOP basis structure herein. For a more detailed discussion of how the SFT results
yielded as special cases of the main result herein compare to previous SFT methods for
the Fourier basis, we refer the reader to §1.3 below.

1.1 The Compressive Sensing Problem for BOPB-Sparse Functions

Toward a more exact problem formulation, let p ∈ N be any natural number and [N ] :=
{0, 1, 2, . . . , N−1} for all N ∈ N. The set of functions, {Tk : D → C}k∈[N ] forms a Bounded
Orthonormal System (BOS) with respect to a probability measure σ over D ⊂ Rp with
BOS constant K := maxk∈[N ] ‖Tk‖∞ ≥ 1 if K <∞, and

〈Tk, Tl〉(D,σ) :=

∫
D
Tk(x)Tl(x)dσ(x) = δk,l =

{
1 if k = l

0 if k 6= l

holds for all k, l ∈ [N ]. Now let Bj := {Tj,k : Dj → C}k∈[M ] form a BOS with respect to a

probability measure νj on Dj ⊂ R, with constant K̃j for each j ∈ [D]. Then, the BOPB
functions B := {Tn : D → C}n∈[M ]D , defined by

Tn(x) :=
∏
j∈[D]

Tj;nj (xj) (1.1)
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again form a BOS with constant

K := max
n∈[M ]D

||Tn||∞ =
∏
j∈[D]

K̃j

with respect to the probability measure ν := ⊗j∈[D]νj over D := ×j∈[D]Dj ⊂ RD.
Throughout this paper, we assume for simplicity that Tj;0 ≡ 1 for all j. This assumption
is true for the large class of orthonormal polynomials including Trigonometric polyno-
mials, Chebyshev polynomials, Legendre polynomials, Gegenbauer polynomials, Jacobi
polynomials, etc.

Herein we consider BOPB-sparse functions f : D → C of the form

f(x) :=
∑

n∈S⊂I⊆[M ]D

cnTn(x) (1.2)

where |S| = s � |I| ≤ |B| = N = MD. Following [19, 55, 6] we will take I to be the
subset of [M ]D containing at most d ≤ D nonzero entries.

Considering the recovery of f using standard compressive sensing methods [20, 23]

when I = [M ]D, one can simply independently draw m′1 points, GE :=
{
t1, . . . , tm′1

}
⊂ D,

according to ν and then sample f at those points to obtain

yE = f
(
GE
)

:=
(
f (t1) , f (t2) , . . . , f

(
tm′1

))T
∈ Cm

′
1 . (1.3)

Our objective becomes the recovery of f using only the samples yE.

Let the m′1 ×MD random sampling matrix Φ ∈ Cm′1×MD
have entries given by

Φ`,n = Tn(t`). (1.4)

We can now form the underdetermined linear system

yE =


f (t1)
f (t2)

...

f
(
tm′1

)
 =


Tn1(t1) Tn2(t1) · · · · · · Tn

MD (t1)

Tn1(t2) Tn2(t2) · · · · · · Tn
MD (t2)

...
...

. . .
...

Tn1(tm′1) Tn2(tm′1) · · · · · · Tn
MD (tm′1)

 c = Φc,

where c ∈ CMD
contains the basis coefficients cn of f , and the index vectors n1, . . . ,nMD ∈

[M ]D are ordered, e.g., lexicographically. Note that this linear system is woefully under-
determined when m′1 � MD. When c has only s� MD nonzero entries as it does here,
however, the compressive sensing literature tells us that c can still be recovered using sig-
nificantly fewer than MD function evaluations as long as the normalized random sampling
matrix Φ has the Restricted Isometry Property (RIP) of order 2s [23].
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Definition 1 (See Definition 6.1 in [23]). The sth restricted isometry constant δs of a
matrix Φ̃ ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)‖c‖22 ≤
∥∥∥Φ̃c

∥∥∥2

2
≤ (1 + δ)‖c‖22

holds for all s-sparse vectors c ∈ CN . The matrix Φ̃ is said to satisfy the RIP of order s
if δs ∈ (0, 1).

Furthermore, one can show that random sampling matrices have the restricted isome-
try property with high probability even when

∣∣GE∣∣ is relatively small.

Theorem 1 (See Theorem 12.32 and Remark 12.33 in [23]). Let A ∈ Cm×N be the random
sampling matrix associated to a BOS with constant K ≥ 1. If, for δ, p ∈ (0, 1),

m ≥ aK2δ−2s ·max{log2(4s) log(8N) log(9m), log(p−1)},

then with probability at least 1−p, the restricted isometry constant δs of Ã = 1√
m
A satisfies

δs ≤ δ. The constant a > 0 is universal.

Note that Theorem 1 effectively decouples the number of samples that one must
acquire/compute in order to recover any BOPB-sparse f from the overall BOP ba-
sis size |B| = MD. It guarantees that a random sampling set of size

∣∣GE∣∣ = m′1 =
O(K2 · s ·D · log4(KMD)) suffices. The main obstacle to reducing the sampling complex-
ity (i.e., m′1) at this point becomes the BOS sampling constant K. To see why, consider,
e.g., the cosine BOPB where for all j ∈ [D] in (1.1) we set Tj;n(x) =

√
2 cos (nx) for n ≥ 1

and Tj;0(x) = 1 in (1.1). This leads to a BOS with K = 2D/2 with respect to uniform
probability measure ν over D = [0, 2π]D. Now we can see that we still face the curse of
dimensionality since K2 = 2D even for this fairly straightforward BOPB. Nonetheless, it
expresses itself in a dramatically reduced fashion: 2D is still a vast improvement over MD

for even moderately sized M > 2.

As previously mentioned, to further reduce the sampling complexity from scaling like
2O(D) previous work has focussed on developing efficient methods for effectively reducing
the basis size to a smaller subset of the total basis B (see, e.g., [10, 55]). To see how this
might work in the context of our simple cosine BOPB example above, we can note that
the BOPB elements in (1.1) can be rewritten as

Tn(x) := 2‖n‖0/2
D−1∏
j=0

cos (njxj)

in that case. It now becomes obvious that limiting the basis functions to those with
indexes in I := {n ∈ [M ]D | ‖n‖0 ≤ d ≤ D} leads to a reduced BOS constant of
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K = 2d/2 ≤ 2D/2 for the resulting reduced basis, as well as to a smaller basis cardinality
of size

(
D
d

)
Md = O

(
(DMd )d

)
.

In particular, the utility of the assumption that the s non-negligible basis indexes
of f , S ⊂ [M ]D, also belong to the reduced index set I above is supported in some
UQ applications where it is known that, e.g., the solutions of some parametric PDE are
not only approximately sparse in some BOP bases such as the Chebyshev or Legendre
product bases, but also that most of their significant coefficients correspond to index
vectors n ⊂ ND with relatively small (weighted) `p-norms [10, 55]. In certain simplified
situations this essentially implies that S ⊂ I as discussed above. As a result, we will
assume throughout this paper that S ⊂ I so that N = |I| =

(
D
d

)
Md ≤MD.1

Even when s ·K2 � N so that the number of required samples m′1 is small compared
to the reduced basis size |I| = N , however, all existing standard compressive sensing
approaches for recovering f still need to compute and store potentially fully populated
intermediate coefficient vectors c′ ∈ CN at some point in the process of recovering f . As
a result, all existing approaches are limited in terms of the reduced basis sizes I they can
consider by both their memory needs and runtime complexities. In this paper we develop
new methods that are capable of circumventing these memory and runtime restrictions
for a general class of practical BOP bases.2 As a result, we make it possible to recover
a new class of extremely high-dimensional BOPB-sparse functions which are simply too
complicated to be approximated by other means. We are now prepared to discuss our
main results.

1.2 Main Results

The proposed sublinear-time algorithm is a greedy pursuit method motivated by CoSaMP[50],
HTP[22], and their sublinear-time predecessors [24, 27]. In particular, it is obtained from
CoSaMP by replacing CoSaMP’s support identification procedure with a new sublinear-
time support identification procedure. See Algorithm 1 in Section 3 for pseudocode and
other details. Our main result demonstrates the existence of a relatively small grid of
points G ⊂ D which allows Algorithm 1 to recover any given BOPB-sparse function f in
sublinear-time from its evaluations on G. We refer the reader to Section 1.4 for a detailed

1Additionally, we will occasionally assume that our total grid size |G| below always satisfies |G| ≤ Nc

for some absolute constant c ≥ 1 in order to simplify some of the logarithmic factors appearing in our
big-O notation. This will certainly always be the case for any standardly used (trigonometric) polynomial
BOPB (such as Fourier and Chebyshev product bases) whenever sKDM < N .

2Here we note that preconditioning and well chosen sampling distributions are crucial for many BOP

bases. For example, the BOS constant for the standard Legendre basis is K =
√

2M + 1
D

which im-
plies that a naive application of Theorem 1 may require more than MD (or Md) samples. However,

preconditioning can effectively reduce this BOS constant to K =
√

3
d

in practice [56].
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description of the grid set G and its use in Algorithm 1. The following theorem is a sim-
plified version of Theorem 2 in Section 3.

Theorem (Main Result). Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis

function Tn is defined as per (1.1), and Tj;0 ≡ 1 for all j ∈ [D]. Let Fs be the sub-
set of all functions f ∈ span

{
Tn
∣∣ n ∈ I} whose coefficient vectors are s-sparse, and

let cf ∈ CI denote the s-sparse coefficient vector for each f ∈ Fs. Fix p ∈ (0, 1/3),
a precision parameter η > 0, 1 ≤ d ≤ D, and K = sup

n∈[M ]D s.t.‖n‖0≤d
‖Tn‖∞. Then,

one can randomly select a set of i.i.d. Gaussian weights W ⊂ R for use in (4.1), and
also randomly construct a compressive sensing grid, G ⊂ D, whose total cardinality |G|
is O

((
sDL′K2 + s3DK4

)
max

{
d4 log4(s) log4(D2M), log2(Dp )

})
, such that the following

property holds ∀f ∈ Fs with probability greater than 1− 3p:

Let y = f(G) consist of samples from f ∈ Fs on G. If Algorithm 1 is granted
access to y, G, and W, then it will produce an s-sparse approximation a ∈ CI s.t.

‖cf − a‖2 ≤ Cη,

where C > 0 is an absolute constant.

Furthermore, the total runtime complexity of Algorithm 1 is always

O
(( (

s2D2LK2 + s5D2K4
)

max
{
d4 log4(s) log4(D2M), log2(Dp )

})
× log

‖cf‖2
η

)
.

Note that Algorithm 1 will run in sublinear-time whenever s5D2LK4d4 � |I| (neglect-
ing logarithmic factors). Here and in the theorem above the parameters L and L′ depend
on your choice of numerical method for computing the inner product between a sparse
function in the span of each one-dimensional BOS Bj =

{
Tj;m

∣∣ m ∈ [M ]
}

. More specifi-
cally, let L′j represent the number of function evaluations one needs in order to compute

all M -inner products
{
〈g, Tj;ñ〉

}
ñ∈[M ]

in O(L)-time for any given function g : Dj → C
belonging to the span of Bj that is also s-sparse in Bj . We then set L′ := maxj∈[D] L′j .
For example, if each BOS Bj consists of orthonormal polynomials whose degrees are all
bounded above by M then quadrature rules such as Gaussian quadrature or Chebyshev
quadrature give L = O(M2) and L′ = O(M) [17]. If each Bj is either the standard
Fourier, sine, cosine, or Chebyschev basis then the Fast Fourier Transform (FFT) can
always be used to give L = O(M logM) and L′ = O(M) [17].

Moreover, there are several sublinear-time sparse Fourier transforms as well as sparse
harmonic transforms for other bases which could also be used to give other valid L′ and
L combinations [29, 5, 47, 26, 37, 38, 4, 33, 35, 39, 58, 40, 15]. These typically have
O(sc logc

′
M) runtime and sampling complexities for small positive absolute constants c

and c′. As a result, one can obtain much stronger results than the main theorem above

8



when s � M and every one-dimensional BOS Bj is either the Fourier, sine, cosine, or
Chebyshev basis. The following corollary of our main theorem is obtained by using de-
terministic one-dimensional SFT results from [40] and [35] in order to compute all of the
nonzero inner products in lines 6 – 13 of Algorithm 2. They lead to L′ and L values in
Section 3’s Theorem 2 of size O(s2 log4M).

Corollary 1. Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis function Tn

is defined as per (1.1), and where every one-dimensional BOS Bj is either the Fourier,
sine, cosine, or Chebyshev basis. Let Fs be the subset of all functions f ∈ span

{
Tn
∣∣ n ∈ I}

whose coefficient vectors are s-sparse, and let cf ∈ CI denote the s-sparse coefficient vec-
tor for each f ∈ Fs. Fix p ∈ (0, 1/3), a precision parameter η > 0, 1 ≤ d ≤ D, and
let K = sup

n∈[M ]D s.t.‖n‖0≤d
‖Tn‖∞. Then, one can randomly select a set of i.i.d. Gaussian

weights W ⊂ R for use in (4.1), and also randomly construct a compressive sensing grid,
G ⊂ D, whose total cardinality |G| is

O
(
s3D log4(M)K4 max

{
d4 log4(s) log4(D2M), log2(Dp )

})
, such that the following prop-

erty holds ∀f ∈ Fs with probability greater than 1− 3p:

Let y = f(G) consist of samples from f ∈ Fs on G. If Algorithm 1 is granted
access to y, G, and W, then it will produce an s-sparse approximation a ∈ CI s.t.

‖cf − a‖2 ≤ Cη,

where C > 0 is an absolute constant.

Furthermore, the total runtime complexity of Algorithm 1 is always

O
((
s5D2 log4(M)K4 max

{
d4 log4(s) log4(D2M), log2(Dp )

})
× log

‖cf‖2
η

)
.

Note that the runtime dependance achieved by the corollary above scales sublinearly
with M , quadratically in D, and at most polynomially in the parameter d ≤ D used
to determine I. We also remind the reader that the BOS constant K for the Fourier
basis is 1. As a result, the K dependence in the runtime complexity vanishes entirely
when the BOPB in question is the multidimensional Fourier basis.3 Finally, there are
also sublinear-time sparse transforms for one-dimensional Legendre polynomial systems
[35], though the theoretical results for sparse recovery therein require additional support
restrictions beyond simple sparsity. Thus, Corollary 1 can also be extended to restricted
types of Legendre-sparse functions in order to achieve sublinear-in-M runtimes. A detailed
development of such results is left for future work, however.

3Though the resulting O
(
s5D2d4polylog(MDs‖c‖2/ηp)

)
-runtime achieved by Corollary 1 for the mul-

tidimensional Fourier basis is strictly worse than the best existing noise robust and deterministic sublinear-
time results for that basis [40] (except perhaps when s3d4 � D2), we emphasize that it is achieved with
a different and significantly less specialized grid G herein.
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SFT Method Runtime Complexity Sampling Complexity I ⊆ [M ]D MB Error Guarantees

Corollary 1 s5d4D2 · log5(s) log8(DM) s3d4D · log4(s) log8(DM) Any Yes Uniform Exact

Thm 8 in [40] s2D4 · log4(MD) s2D4 · log4(MD) [M ]D No Det. Uniform Best-s Term

Thm 12 in [48] s2M2D3 · log(M) s2MD3 · log(M) [M ]D No Det. Uniform Best-s Term

Thm 8 in [40] sD4 · log4(MD) sD4 · log4(MD) [M ]D No Nonuniform Best-s Term

Thm 3.5 in [43] s2O(D2)DD+3 · logD+3M s2O(D2)D · logM ∗ [M ]D No Nonuniform Best-s Term

Thm 4.6 in [42] s3MD2 · log4(s) log2(DM) ∗ s3MD · log3(s) log(DM) ∗ Any No Nonuniform Exact

Thm 4.7 [42] abt [52] s5D(s+M log s) · log3(s) log3(DM) ∗ s5MD · log3(s) log3(DM) Any No Nonuniform Exact

Alg in [52] s3D + s2MD · log(sM) † s2MD † Any No Empirical/Noise Robust

Mod. Alg [52] s3D † sD +MD † Any No Empirical/Noise Robust

Alg in [12] Avg. Case: sD · log(s) Avg. Case: sD [M ]D No Empirical/Low Noise

Alg in [13] Avg. Case: sD · log(s) log(M) Avg. Case: sD · log(M) [M ]D No Empirical/Allows Noise

Figure 1: A comparison of Corollary 1 with several existing SFT results from [40, 52, 12, 43,
13, 48, 42]. To make the runtime and sampling complexity bounds easily comparable we have set
all probabilities of failure p for algorithms involving randomized constructions to be p =

(
1

DM

)c
for a universal constant c ≥ 1 (except for [43] which formulates its guarantees for p = 0.02),
and have also used that log(M) and log(D2M) are both O (log(DM)) throughout. We also note
that K = 1 in the Fourier basis setting considered in the table. To again aid in easier table
comparisons we focussed on the recovery of functions with ‖cf‖2 ≤ cs and η−1 ≤ c for a universal

constant c ≥ 1 (representing machine precision) to simplify the log
(
‖cf‖2
η

)
term in the runtime

complexity of Corollary 1. Furthermore, we used that log(|I|) ≤ d log(DM) which follows from
the assumption herein that N = |I| =

(
D
d

)
Md ≤ (DM)d. Finally, * in the table denotes that we

dropped log | log(·)| factors in the complexity bounds from [42, 43] to help save space in the table,
and † indicates that [52] formulates it’s bounds under the assumption that

√
M . s . MD (as

opposed to assuming that s .MD is just larger than some absolute constant).

1.3 A Comparison of Corollary 1 to Prior SFT Algorithms

As mentioned above, the methods developed herein can be considered as generalizations
of existing SFT techniques to BOP bases. Figure 1 compares Corollary 1 in the case of
the multidimensional Fourier basis to several existing SFT results for periodic functions
of D-variables [40, 52, 12, 43, 13, 48, 42]. The second and third columns of the table give
the worst case runtime and sampling complexities of the methods, respectively, with the
exception of the rows pertaining to [12, 13] which list average case complexities for generic
signals. Note that all of the quoted runtimes are sublinear in that they scale like o(MD)
for sufficiently large M and D. The fourth column indicates whether each SFT paper
considers improving its performance for smaller index sets I ⊂ [M ]D with |I| �MD, or
not. As indicated there, the majority of previous results only considered I = [M ]D with
the notable exceptions of [52, 42]. The fifth columns indicates if the methods allow for the
easy extension of the methods and results to Mixed Bases (MB), or not. As can be seen
from the table, only Corollary 1 provides guarantees for, e.g., mixed Fourier/Chebyshev
product bases at the expense of increasing K.

The final column in Figure 1 summarizes the theoretical error guarantees proven about
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each method in the table. There, “Best-s Term” refers to methods that prove theoretical
best-s term approximation guarantees of the type considered by Cohen et al. in [16] for
all periodic functions with Fourier series coefficients that decay rapidly enough. Similarly,
“Exact” therein refers to methods that provide strictly weaker guarantees regarding the
recovery of functions which are exactly s-sparse in Fourier (i.e., of the form of (1.2)).4 Note
that such exactly s-sparse functions correspond to multivariate trigonometric polynomials
with exactly s nonzero terms in the SFT context. Both of these types of guarantees can
themselves be either “Uniform” (i.e., providing sampling sets of the type discussed below in
§1.4 that work for all functions of the given class with high probability), or “Nonuniform”
(i.e., providing sampling sets that work for any one arbitrary function of the given class
with high probability, but not necessarily for all of them). In addition, two of the results
in [40, 48] provide entirely deterministic and explicit sampling constructions with no
probability of failure in achieving their respective approximation guarantees. These two
error guarantees are denoted with the prefix “Det.” for Deterministic.

Finally, several other methods [52, 12, 13] provide theoretical analysis which doesn’t
ultimately guarantee that they can approximate an arbitrary exactly sparse function (1.2)
to machine precision with high probability. All of these methods provide extensive empir-
ical tests to demonstrate that such failures are indeed rare, however, and so are denoted
in the last column of Figure 1 by the term “Empirical” along with a description of the
additive errors they are observed to tolerate on their function samples (“Noise Robust” in-
dicates good tolerance to arbitrary perturbations including random noise, “Allows Noise”
indicates tolerance to random i.i.d. mean 0 noise, and “Low Noise” indicates a tolerance
to small errors on the level of numerical roundoff). We refer the readers to the origi-
nal papers for additional details on their respective theoretical guarantees and empirical
performance.

1.4 Randomly Constructed Grids with Universal Approximation Prop-
erties

Fix a BOP basis B and sparsity level s. We will call any set G ⊂ D a compressive sensing
grid if and only if ∃ a set of weights W s.t. ∀ f : D → C that are s-sparse in B

Algorithm 1 with weights W can recover f from its evaluations on G

is true. As mentioned above, our main results demonstrate the existence of relatively
small compressive sensing grids by randomly constructing highly structured sets of points
that are then shown to be compressive sensing grids with high probability. We emphasize
that our use of probability in this paper is entirely constrained to (i) the initial choice of

4Best s-term approximation guarantees imply the exact recovery of exactly s-sparse functions.
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the grid G given a BOP basis B and sparsity level s, and to (ii) the entirely independent
and one-time initial choice of a set of random Gaussian weights W for use in (4.1) (i.e.,
as part of the initialization phase for Algorithm 1). Algorithm 1 is entirely deterministic
once both G and W have been chosen.

The compressing sensing grids G utilized herein will be the union of three distinct sets
of points in D. The first set of points is the set GE ⊂ D which has already been introduced
in Section 1.1 as the set of sampling points at which f is evaluated in order to obtain yE

in (1.3). This set of points is used in Algorithm 1 in order to estimate the basis coefficients
for the basis elements identified by Algorithms 2 and 3. The second and third sets included
in G, GI ⊂ D and GP ⊂ D, are utilized by Algorithm 2 and Algorithm 3, respectively.
Here we will summarize the main ideas behind their construction (their precise definition
is given in Section 2.3 below).

The set GI is the union of D grids GIj , j ∈ [D], where each GIj is designed to allow for
the identification of the j-th entry of the energetic index vectors in S from (1.2). Each
GIj set consists of all combinations of an appropriate quadrature set for the j-th entry (to
allow for an approximation of one-dimensional integrals in that variable) crossed with a
random sampling set for all other entries (necessary for another approximate numerical
integration in these directions that singles out the j-th entry of interest). Viewed another
way, each GIj set contains the points necessary to exactly integrate the functions of the
j-th variable xj one obtains from f in (1.2) after fixing the other D − 1 variables to be
random constants, for several different collections of random constants.

Similarly, the set GP is also a union of D− 1 grids GPj , one for each j ∈ [D] \ {0}. Here
the grids are designed to allow for the sequential buildup of the energetic index vectors
contained in S from (1.2) component by component. More precisely, the samples in GPj
will be used to pair the first j components of each element of S with its correct (j+ 1)-th
component. To generate the grid GPj we generate a set Wj of independent samples of a

random vector in Cj and a set Zj of independent samples of a random vector in CD−j .
We then choose GPj := Wj × Zj . The underlying idea is that this construction allows
one to reduce the original D-dimensional problem to a (j + 1)-dimensional problem with
energetic index vectors given by the first j + 1 components of the energetic index vectors
S from the full problem. This is achieved by using the product structure, and the random
construction of Zj which allows us to approximately integrate over the last D − j − 1
variables of f from (1.2). Then we can use the randomness of Wj to identify the active
frequencies among all combinations of the j-dimensional component vectors identified in
the previous sequential step, and the (j + 1)-th components of S identified using GIj+1

above.

As we saw in Section 1.2, it turns out that G := GE ∪ GI ∪ GP will be a compressive
sensing grid with high probability even when each component set is chosen to have a
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relatively small cardinality. The vast majority of the remainder of this paper will be
dedicated to proving this fact. We will begin in Section 2 by introducing additional
notation that is used throughout the rest of the paper, and by interpreting our function
evaluations on G,

y = (yE,yI,yP)T ∈ Cm
′
1+m′2+m′3 (1.5)

as standard compressive sensing measurements. Next, in Section 3, Algorithm 1 is dis-
cussed in detail and the main theorem above is proven with the help of a key technical
lemma (i.e., Lemma 2) that guarantees the accuracy of our proposed support identification
method. Lemma 2 is then proven in Section 4. Finally, a numerical evaluation is carried
out in Section 5 that demonstrates that Algorithm 1 both behaves as expected, and is
robust to noisy function evaluations. The paper then concludes after a short discussion
concerning future work in Section 6.

2 Preliminaries

In this section we introduce the notation that will be used in the rest of this paper as well
as the problem for which we will develop our proposed algorithm. We denote by N the
set of natural numbers, R the set of real numbers, and C the set of complex numbers. Let
[N ] := {0, 1, 2, . . . , N − 1} for N ∈ N.

2.1 Notation and Preliminaries

In this paper all letters in boldface (other than probability measures such as ν) will
always represent vectors. Vectors whose entries are indexed by index vectors in, e.g.,
[M ]D will be assumed to have their entries ordered lexicographically for the purposes of,

e.g., matrix-vector multiplications. Thus, we say either v ∈ C[M ]D or v ∈ CMD
when

we want to emphasize that each entry vn of v is corresponding to its index vector n, or
when we perform, e.g., matrix-vector multiplications, respectively. We further define the
`0 pseudo-norm of a vector v by ‖v‖0 := |{i : vi 6= 0}| where the index i refers to the ith

entry of the vector (in lexicographical order). If v ∈ C is a scalar then we will also use
the `0-notation to correspond to the indicator function defined by

‖v‖0 :=

{
1 if v 6= 0

0 if v = 0
. (2.1)

We will consider functions f : D → C given in a BOS product basis expansion below
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so that
f(x) :=

∑
n∈I⊆[M ]D

cnTn(x) (2.2)

where c ∈ C[M ]D . We will further assume that f is approximately sparse in this BOS
product basis. That is, we will assume that there exists some index set S ⊂ I for an a priori
known index set I ⊆ [M ]D such that S has the property that both (i) |S| = s� |I| ≤MD,
and that (ii) the set of coefficients C := {cn

∣∣ n ∈ S} ⊂ C dominates f ’s `2-norm in the
sense that ∑

n∈S⊂I
|cn|2 �

∑
n∈[M ]D\S

|cn|2 =: ε2,

for a relatively small number ε ≥ 0. We emphasize here that absolutely nothing about S
is known to us in advance beyond the fact that it is a subset of I, and has cardinality at
most s. We must learn the identity of its elements ourselves by sampling f .

Our analysis herein will focus on the case where I is given by

I :=
{
n ∈ [M ]D

∣∣ ‖n‖0 ≤ d}
for some d ≤ D (cf. Section 1.1). Note that this includes, for d = D, the special case where
I = [M ]D. We will call the index vectors n ∈ S energetic. Our goal is to recover S and
the associated coefficients C as rapidly as possible using only evaluations/samples from f .
This will, in turn, necessitate that we sample f at very few locations in D. In this paper
we will mainly focus on providing theoretical guarantees for the case where ε = 0 (i.e.,
for provably recovering f that are exactly s-sparse in a BOS product basis). Numerical
experiments in Section 5 demonstrate that the method also works when ε > 0, however.
We leave theoretical guarantees in the case of ε > 0 for future consideration.

2.2 Definitions Required for Support Identification

As with most compressive sensing and sparse approximation problems we will see that
identifying the function f ’s support S is the most difficult part of recovering f . As a result
our proposed iterative algorithm spends the vast majority of its time in every iteration
recovering as many energetic n = (n0, n1, · · · , nD−1) ∈ S as it can. Only after doing so

does it then approximate a sparse vector c ∈ C[M ]D containing nonzero coefficients cn for
each discovered n ∈ S. Here, each n will be referred to as an index vector of an entry in
c. Let supp(v) ⊆ [M ]D represent the set of index vectors whose corresponding vn entries
are nonzero. We introduce the following notation in order to help explain our algorithm
in the subsequent sections of the paper.
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For a given v ∈ C[M ]D , j ∈ [D], and ñ ∈ [M ] the vector vj;ñ ∈ C[M ]D−1
indexed by

k ∈ [M ]D−1 is defined by

(
vj;ñ
)
k

=

{
vn, if n = (k0, . . . , kj−1, ñ, kj , . . . , kD−2)

0 otherwise
. (2.3)

Note that vj;ñ will only ever have at most

N ′ :=

(
D − 1

d− ‖ñ‖0

)
Mmin{d−‖ñ‖0,D−1} ≤

(
e(D − 1)M

max{d− 1, 1}

)d
(2.4)

nonzero entries if vn = 0 for all n ∈ [M ]D with ‖n‖0 > d by assumption. Here, as
throughout the remainder of the paper, we define

(
p
q

)
to be 1 whenever q ≥ p or q < 0

(also recall the definition of ‖ñ‖0 from (2.1) above).5 Similarly, for a given v ∈ C[M ]D ,

j ∈ [D], and ñ ∈ [M ]j+1 the vector vj;(ñ,··· ) ∈ C[M ]D−j−1
indexed by k ∈ [M ]D−j−1 is

defined by

(
vj;(ñ,··· )

)
k

=

{
vn, if n = (ñ,k)

0 otherwise
. (2.5)

The following lemma bounds the total number of nonzero entries that vj;(ñ,··· ) can have
given that vn = 0 whenever ‖n‖0 > d. Note that for j = 0, vj;ñ = vj;(ñ,··· ) so that (2.4)
follows as a special case.

Lemma 1. Let v ∈ C[M ]D , j ∈ [D], and ñ ∈ [M ]j+1 with ‖ñ‖0 ≤ d. Suppose that vn = 0
whenever ‖n‖0 > d. Then vj;(ñ,··· ) can have at most

Ñj :=

(
D − j − 1

d− ‖ñ‖0

)
Mmin{d−‖ñ‖0,D−j−1} ≤

(
e(D − j − 1)M

max{d− j − 1, 1}

)d
(2.6)

nonzero entries.

Proof. Since vn = 0 whenever ‖n‖0 > d it must be the case that
(
vj;(ñ,··· )

)
n

= 0 whenever

n = (ñ, ñ′) has ‖ñ′‖0 > d−‖ñ‖0, where ñ′ ∈ CD−j−1. As a result, if D−j−1 > d−‖ñ‖0
then there are at most

(D−j−1
d−‖ñ‖0

)
entry combinations left in n which can be nonzero, each

of which can take on M different values. If, on the other hand, d−‖ñ‖0 ≥ D− j− 1 then
all of the remaining D − j − 1 values of n can each take on M different values.

5The min {d− ‖ñ‖0, D − 1} in the exponent of the M in (2.4) handles the case when d = D and ñ = 0.
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Motivated by the definition of vj;ñ in (2.3) we further define

Ij;ñ :=
{
n ∈ I

∣∣ nj = ñ
}
⊂ [M ]D,

and denote the restriction matrix that projects vectors in C[M ]D onto each Ij;ñ (considered

as a subset of C[M ]D−1
) by Pj;ñ ∈ {0, 1}M

D−1×MD
. That is, we consider each Pj;ñ matrix

to have rows indexed by l ∈ [M ]D−1, columns indexed by k ∈ [M ]D, and entries defined
by

(Pj;ñ)l,k :=

{
1 if k = (l0, . . . , lj−1, ñ, lj , . . . , lD−2)

0 otherwise
. (2.7)

As a result, we have that Pj;ñv = vj;ñ for all v ∈ C[M ]D .

The fast support identification strategy we will employ in this paper will effectively
boil down to rapidly approximating the norms of various cj;ñ and cj;(ñ,··· ) vectors for
carefully chosen collections of ñ ∈ [M ] and ñ ∈ [M ]j+1. This, in turn, will be done using
as few evaluations of f in (2.2) as possible in order to estimate inner products and norms
of other proxy functions constructed from f . As a simple example, note that ‖c‖2 can be
estimated by using samples from f in order to approximate ‖f‖2L2(D,ν) since

‖f‖2L2(D,ν) =
∑

n∈I⊆[M ]D

|cn|2.

A bit less trivially, for j ∈ [D] and ñ ∈ [M ] one can also define the function
〈
f, Tj;ñ

〉
(Dj ,νj)

:

D′j → C with domain D′j := ×k 6=jDk by having
〈
f, Tj;ñ

〉
(Dj ,νj)

(w) evaluate to∫
Dj
f(w0, . . . , wj−1, z, wj+1, . . . , wD−2)Tj;ñ(z) dνj(z)

for all w ∈ D′j . Let ν ′j := ⊗k 6=jνk. It is not too difficult to see that∥∥∥〈f, Tj;ñ〉(Dj ,νj)∥∥∥2

L2(D′j ,ν′j)
=

∑
n∈I s.t. nj=ñ

|cn|2 = ‖cj;ñ‖22 (2.8)

in this case. Similarly, for some j ∈ [D] and ñ ∈ [M ]j+1 one can define the function
〈f, Tj;ñ〉(×i∈[j+1]Di,⊗i∈[j+1]νi) fromD′′j := ×k>jDk into C by letting 〈f, Tj;ñ〉(×i∈[j+1]Di,⊗i∈[j+1]νi)(w)

equal ∫
×i∈[j+1]Di

f(z, w0, . . . , wD−j−2)
∏

k∈[j+1]

Tk;ñk(zk) d
(
⊗i∈[j+1]νi

)
(z)
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for all w ∈ D′′j . Let ν ′′j := ⊗k>jνk. Analogously to the situation above we then have
that ∥∥∥〈f, Tj;ñ〉L2(×i∈[j+1]Di,⊗i∈[j+1]νi)

∥∥∥2

L2(D′′j ,ν′′j )
= ‖cj;(ñ,··· )‖22. (2.9)

As we shall see below, both (2.8) and (2.9) will be implicitly utilized in order to allow the
estimation of such ‖cj;ñ‖22 and ‖cj;(ñ,··· )‖22 norms, respectively, using just a few nonadap-
tive samples from f .

2.3 The Proposed Method as a Sublinear-Time Compressive Sensing
Algorithm

Note that c ∈ C[M ]D from (2.2), as well as its restrictions cj;ñ ∈ C[M ]D−1
and cj;(ñ,··· ) ∈

C[M ]D−j−1
for any ñ ∈ [M ]j+1, will all be at most s-sparse under the assumption that

ε = 0. As mentioned above, this means that recovering f from a few function evaluations
is essentially equivalent to recovering c using random sampling matrices. Given this, the
method we propose in the next section can also be viewed as a sublinear-time compressive
sensing algorithm which uses a highly structured measurement matrix A consisting of
several concatenated random sampling matrices. More explicitly, the measurements y ∈
Cm′1+m′2+m′3 utilized by Algorithm 1 below consist of function evaluations (i.e., recall (1.5))
which can be represented in the concatenated form

y =

yEyI
yP

 =

 Φc
AIc
APc

 =

 Φ
AI

AP

 c = Ac (2.10)

for subvectors yE ∈ Cm′1 , yI ∈ Cm′2 , yP ∈ Cm′3 (recall §1.4, and see below for technical

details), and structured sampling matrices Φ ∈ Cm′1×MD
, AI ∈ Cm′2×MD

, and AP ∈
Cm′3×MD

.

In (2.10) the matrix Φ is a standard random sampling matrix with the RIP formed as
per (1.4). It and its associated samples yE = Φc are used to estimate the entries of c
indexed by the index vectors contained in the identified energetic support set T in line 13
of Algorithm 1. The matrices AI and AP are both used for support identification.

In particular, the matrix AI is a random sampling matrix corresponding to the sampling

set GI , which is constructed as follows. Let Uj :=
{
uj,0, . . . , uj,L′j−1

}
⊂ Dj be the set of

L′j points at which one can evaluate any given Bj-sparse function g : Dj → C in the span

of Bj in order to compute all M -inner products
{
〈g, Tj;ñ〉

}
ñ∈[M ]

in O(L)-time. Also, let

I≥j : [D − 1] → {0, 1} be the indicator function that is zero when κ < j, and one when
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κ ≥ j. For each j ∈ [D] we will then define GIj ⊂ D to be the set of mL′j randomly
generated grid points given by

x′j,`,k = ((xj,`)0, (xj,`)1, . . . , (xj,`)j−1, uj,k, (xj,`)j , . . . , (xj,`)D−2) ∀(`, k) ∈ [m]× [L′j ],

where each (xj,`)κ ∈ Dκ+I≥j(κ) is an independent realization of a random variable ∼
νκ+I≥j(κ) for all κ ∈ [D − 1]. We now take GI to be the union of these sets so that

GI :=
⋃
j∈[D]

GIj =
⋃
j∈[D]

{
x′j,`,k

}
(`,k)∈[m]×[L′j ]

.

Finally, similar to (1.3), we will also define f ’s evaluations on GI to be yI ∈ Cm′2
where

yI = f
(
GI
)

:=
(
f
(
x′0,0,0

)
, f
(
x′0,0,1

)
, . . . , f

(
x′D−1,m−1,L′D−1−1

))T
.

The measurements yI are used to try to identify all of the energetic basis functions in
each input dimension, i.e., the sets

N ′j :=
{
ñ ∈ [M ]

∣∣ ∃n ∈ S with nj = ñ
}
⊆ [M ] (2.11)

for each j ∈ [D] (see Algorithm 2).

The matrix AP is a random sampling matrix corresponding to the sampling set GP ,
whose precise definition will again be based on several different subsets for each j ∈
[D] \ {0}. For each fixed (j, `, k) ∈ [D] \ {0} × [m1] × [m2] let wj,` ∈ Wj := ×i∈[j+1]Di
and zj,k ∈ Zj := ×D−1

i=j+1Di be chosen independently at random according to ⊗i∈[j+1]νi

and ⊗D−1
i=j+1νi, respectively.6 We then define GPj ⊂ D to be the set of m1m2 randomly

generated grid points given by

GPj :=
{

(wj,`, zj,k)
∣∣ (`, k) ∈ [m1]× [m2]

}
∀j ∈ [D] \ {0}.

As above, we now let GP be the union of these sets so that

GP :=
⋃

j∈[D]\{0}

GPj

and consider f ’s evaluations on GP , denoted by yP ∈ Cm′3 . The resulting measure-
ments

yP = f
(
GP
)

:= (f (w1,0, z1,0) , f (w1,0, z1,1) , . . . , f (wD−1,m1−1, zD−1,m2−1))T

6When j = D − 1 the vector zj,k is interpreted as a null vector satisfying (wj,`,zj,k) = wj,` ∀(`, k).
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and its associated samples yP = APc are then used in Algorithm 3 to help build up the
estimated support set T ⊂ [M ]D from the previously identified N ′j-sets. See §3 below for
additional details.

The matrix AI above is built using the matrix Kronecker products Ãj⊗Lj for j ∈ [D],

where Ãj ∈ Cm×[M ]D−1
is the random sampling matrix defined in (4.2), and Lj ∈ CL

′
j×[M ]

is a sampling matrix associated with Uj ⊂ Dj from Section 1.4 defined as

(Lj)q,n := Tj;n(uj,q), q ∈ [L′j ] and n ∈ [M ]. (2.12)

The matrix AP , on the other hand, is constructed using Bj⊗Cj for all j ∈ [D]\{0} where

each Bj ∈ Cm1×[M ]j+1
is the random sampling matrix defined below in (4.17), and each

Cj ∈ Cm2×[M ]D−j−1
the random sampling matrix defined in (4.16). In particular, we have

that

AI :=

 Ã0 ⊗ L0
...

ÃD−1 ⊗ LD−1

 , and AP :=

 B1 ⊗ C1
...

BD−1 ⊗ CD−1

 . (2.13)

From a set of random Gaussian weights W =
{
gk`
}
`∈[m],k∈[L]

, a matrix G ∈ CL×m is

defined as
(G)k,` := gk` , k ∈ [L] and ` ∈ [m], (2.14)

where gk` ’s are the Gaussian weights from (4.1).

Briefly contrasting the proposed approach interpreted as a sublinear-time compressive
sensing method via (2.10) against previously existing sublinear-time algorithms for Com-
pressive Sensing (CS) (see, e.g., [24, 27, 25, 41, 30]), we note that no previous sublinear-
time CS methods exist which utilize measurement matrices solely derived from general
BOS random sampling matrices. This means that the associated recovery algorithms de-
veloped herein can not directly take advantage of the standard group testing, hashing,
and error correcting code-based techniques which have been regularly employed by such
methods, making the development of fast reconstruction techniques and their subsequent
analysis quite challenging. Nonetheless, we will see that we can still utilize at least some
of the core ideas of these methods by sublinearizing the runtime of one of their well known
superlinear-time relatives, CoSaMP [50].

3 The Proposed Method

In this section we introduce and discuss our proposed method. Roughly speaking, our
algorithm can be considered as a greedy pursuit algorithm (see, e.g., [18, 22, 50, 51, 64])
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Algorithm 1 Sublinearized CoSaMP

1: procedure SublinearRecoveryAlgorithm
2: Input: Sampling matrices Φ, AI , AP (implicitly, via the samples in G that determine

their rows), samples yE = Φc, yI = AIc, yP = APc, a sparsity estimate s, and a set
of i.i.d. Gaussian weights W

3: Output: s-sparse approximation a of c
4: a0 = 0 {Initial approximation}
5: vI ← yI, vP ← yP

6: t← 0
7: repeat
8: {The next line calls Algorithm 2 . . . }
9: Nj ∀j ∈ [D]← EntryIdentification(vI , W) {Support identification step # 1}

10: {The next line calls Algorithm 3 . . . }
11: Ω← Pairing(vP , Nj ∀j ∈ [D]) {Support identification step # 2}
12: T ← Ω ∪ supp(at) {Merge supports}
13: bT ← Φ†Ty

E {Local estimation by least-squares}
14: t← t+ 1
15: at ← (bT )s {Prune to obtain next approximation}
16: vI ← yI −AIat, vP ← yP −APat {Update current samples}
17: until halting criterion true
18: end procedure

with a faster support identification technique that takes advantage of the structure of BOS
product bases. In particular, we will focus on the CoSaMP algorithm [50] herein. Note
that support identification is the most computationally expensive step of the CoSaMP
algorithm. Otherwise, CoSaMP is already a sublinear-time method for any type of BOS
basis one likes. Our overall strategy, therefore, will be to hijack the CoSaMP algorithm as
well as its analysis by removing its superlinear-time support identification procedure and
replacing it with a new sublinear-time version that still satisfies the same iteration invari-
ant as the original. See Algorithm 1 for pseudocode of our modified CoSaMP method.
Note that most its steps are identical to the original CoSaMP algorithm except for the two
“Support identification” steps, and the “Update current samples” and “halting criterion”
lines. Thus, our discussion will mainly focus on these three parts.

Like CoSaMP, Algorithm 1 is a greedy approximation technique which makes locally
optimal choices during each iteration. In the t-th iteration, it starts with an s-sparse
approximation at of c and then tries to approximate the at most 2s-sparse residual vector
r := c − at. The two “Support identification” steps begin approximating r by finding a

support set Ω ⊂ I of cardinality at most 2s which contains the set
{
n
∣∣ |rn|2 ≥ ‖r‖22α2s

}
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(i.e., Ω contains the indices of the entries where most of the energy of r is located).
These support identification steps constitute the main modification made to CoSaMP in
this paper and are discussed in more detail in Sections 3.1 and 3.2 below. After support
identification, in the “Merge supports” step, a new support set T of cardinality at most
3s is then formed from the union of Ω with the support of the current approximation
at. At this stage T should contain the overwhelming majority of the important (i.e.,
energetic) index vectors in S. As a result, restricting the columns of the sampling matrix
Φ to those in T (or constructing them on the fly in a low memory setting) in order to
solve for bT := argminu∈C|T |‖ΦTu − yE‖2 should yield accurate estimates for the true
coefficients of c indexed by the elements of T , cT .7 The vector (bT )s restricting bT to its
s largest-magnitude elements then becomes the next approximation of c, at+1.

As previously mentioned, the main difference between Algorithm 1 and CoSaMP is in
the support identification steps. In the proposed method support identification consists of
two parts: “Entry Identification” and “Pairing”. For each of these steps we use a different
measurement matrix, AI or AP , respectively, as well as a different set of samples (either
vI or vP ) from the current residual vector. Thus, we need to update a total of three
estimates every iteration: vI , vP and at. In the next two sections we review each of the
two newly proposed support identification steps in more detail.

3.1 Support Identification Step # 1: Entry Identification

For each j ∈ [D] the entry identification algorithm (see Algorithm 2) tries to find the
j-th entry of each energetic index vector n corresponding to a nonzero entry rn in the
2s-sparse residual vector r = c − at. Note that for each j this gives rise to at most 2s
index entries in [M ].8 We therefore define N t

j to be the resulting set {nj | n ∈ supp(r)}
of size at most 2s for each j ∈ [D], and note that N 0

j = N ′j in (2.11). Note further that
ñ ∈ N t

j if and only if ‖rj;ñ‖2 > 0. As a result we can learn N t
j by approximating ‖rj;ñ‖2

7In practice, it suffices to approximate the least-squares solution bT by an iterative least-squares ap-
proach such as Richardson’s iteration or conjugate gradient [17] since computing the exact least squares
solution can be expensive when s is large. The argument of [50] shows that it is enough to take three
iterations for Richardson’s iteration or conjugate gradient if the initial condition is set to at, and if Φ has
an RIP constant δ2s < 0.025. In fact, both of these methods have similar runtime performance.

8Note that we are generally assuming herein that 2s < M . In the event that 2s ≥M one can proceed
in at least two different ways. The first way is to not change anything, and to simply be at peace with
the possibility of, e.g., occasionally returning Nj = [M ]. This is our default approach. The second way is
regroup the first g ∈ N variables of f together into a new collective “first variable”, the second g variables
together into a new collective “second variable”, etc., for some g satisfying Mg > 2s. After such regrouping
the algorithm can then again effectively be run as is with respect to these new collective variables.
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using
∥∥∥〈h, Tj;ñ〉(Dj ,νj)∥∥∥2

L2(D′j ,ν′j)
via (2.8) as long as we know

h(x) :=
∑

n∈supp(r)

rnTn(x). (3.1)

Whenever
∥∥∥〈h, Tj;ñ〉(Dj ,νj)∥∥∥2

L2(D′j ,ν′j)
is larger than a threshold value τ (e.g., zero) for a

particular choice of j ∈ [D] and ñ ∈ [M ], we could simply add ñ to Nj (our estimate of
N t
j ) in this case.

Algorithm 2 Entry identification

{The method works because mediank∈[L]

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≈ ‖rj;ñ‖2. See

(3.1) and (4.1) for the definition of hj;k. For exactly s-sparse c one can use
τ = 0 below. More generally, one can select the largest s estimates for Nj .}

1: procedure EntryIdentification
2: Input: vI , and a set of i.i.d. Gaussian weightsW for use in the hj;k below (see (4.1))
3: Output: Nj for j ∈ [D]
4: for j = 0→ D − 1 do
5: Nj ← ∅
6: for ñ = 0→M − 1 do
7: if mediank∈[L]

∣∣〈hj;k, Tj;ñ〉(Dj ,νj)

∣∣ > τ , then
8: Nj ← {ñ} ∪ Nj .
9: end if

10: end for
11: end for
12: end procedure

Of course we don’t actually know exactly what h is. However, we do have access to
samples from h in each iteration in the form of vI and vP . And, as a result, we are able

to approximate
∥∥∥〈h, Tj;ñ〉(Dj ,νj)∥∥∥2

L2(D′j ,ν′j)
= ‖rj;ñ‖2 for any j ∈ [D] and ñ ∈ [M ] with the

estimator
mediank

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣
defined using (4.1). In Section 4.1 we show that this estimator can be used to ac-

curately approximate ‖rj;ñ‖2 for all 2s-sparse residual vectors r ∈ C[M ]D using only
O
(
s ·K2dL′ · polylog(D, s,M,K)

)
universal samples from any given r’s associated h-

function in (3.1) (i.e., the samples in vI).9 Furthermore, the estimator can always be
computed in just O

(
s2 ·K2d2L · polylog(D, s,M,K)

)
-time.

9Recall that L′ represents the maximum number of function evaluations one needs in order to com-
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At this point it is important to note that managing to find each N t
j exactly for all

j ∈ [D] still does not provide enough information to allow us to learn supp(r) efficiently
when d > 1. In general the most we learn from this information is that supp(r) ⊂(
×j∈[D]Nj

)⋂
I ⊂ [M ]D. In the next “Pairing” step we address this problem by iteratively

pruning the candidates in ×j∈[1]Nj ,×j∈[2]Nj , . . . ,×j∈[D]Nj down at each stage to the best
2s candidates for being a prefix of some element in supp(r). As we shall see, the pruning in
each “Pairing” stage involves energy estimates that are computed using only the samples
from h in vP . These ideas are discussed in greater detail in the next section.

3.2 Support Identification Step # 2: Pairing

Algorithm 3 Pairing

1: procedure Pairing
2: Input: vP =

{
h(wj,`, zj,k)

∣∣ j ∈ [D] \ {0}, ` ∈ [m1], k ∈ [m2]
}

, Nj for j ∈ [D]
3: Output: P
4: P0 ← N0

5: for j = 1→ D − 1 do
6: {This method works because Ej;(ñ... ) ≈ ‖rj;(ñ,··· )‖22 below.}

7: Ej;(ñ... ) ← 1
m2

∑
k∈[m2]

∣∣∣ 1
m1

∑
`∈[m1] h(wj,`, zj,k)Tñ(wj,`)

∣∣∣2 ∀ñ ∈ Pj−1 ×Nj .
8: Create Pj containing each ñ whose energy estimate Ej;(ñ... ) is in the 2s-largest.
9: end for

10: P ← PD−1

11: end procedure

Once all the Nj ⊂ [M ] have been identified for all j ∈ [D] it remains to match them
together in order learn as many of the true length-D index vectors in supp(r) ⊂ [M ]D as
possible. To achieve this we begin by attempting to identify all the prefixes of length two,
ñ = (ñ0, ñ1) ∈ N0 × N1, which begin at least one element in the support of r. Similar
to the ideas utilized above, we now note that (ñ,n′) ∈ supp(r) for some n′ ∈ [M ]D−2

if and only if ‖rj;(ñ,··· )‖22 > 0. As a result, it suffices for us to use the samples from

h (recall (3.1)) in vP in order to compute Ej;(ñ... ) ≈ ‖rj;(ñ,··· )‖22 in Algorithm 3 above.
The 2s-largest estimates Ej;(ñ... ) are then used to identify all the prefixes of length 2
which begin at least one element of supp(r). Of course, this same idea can then be used
again to find all length-3 prefixes of elements in supp(r) by extending the previously
identified length-2 prefixes in all possible O(s2) combinations with the elements in N2,

pute 〈g, Tj;ñ〉 for all ñ ∈ [M ] in O(L)-time for any given j ∈ [D], and s-sparse g : Dj → C in
span

{
Tj;m

∣∣ m ∈ [M ]
}

.
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(0, ·, ·)
(1, ·, ·)

...

(M − 1, ·, ·)

N0 × [M ]× [M ]

[M ]× [M ]×N2

Alg 2.
−→

[M ]× [M ]× [M ] ⊃

(3, ·, ·)
(4, ·, ·)
(11, ·, ·)

(·, 0, ·)
(·, 1, ·)

...

(·,M − 1, ·)

(·, 5, ·)
(·, 7, ·)Alg 2.

−→

[M ]× [M ]× [M ] [M ]×N1 × [M ]⊃

[M ]× [M ]× [M ]

Alg 2.
−→

⊃

(·, ·, 0)

(·, ·, 1)
...

(·, ·,M − 1)

(·, ·, 6)

(·, ·, 8)

(·, ·, 100)

N0 ×N1 × [M ] ⊃ P1 × [M ]

P1 ×N2

Alg. 3
−→

Alg. 3
−→

supp(r)

(3, 5, 6)

(3, 5, 8)

(3, 5, 100)

(4, 7, 6)

(4, 7, 8)

(4, 7, 100)

(11, 5, 6)

(11, 5, 8)

(11, 5, 100)

|N0| = 3

|N1| = 2

|N2| = 3

|N0 ×N1| = 6 |P1| = 3

|P1 ×N2| = 9 |supp(r)| = 3

(a)

(b)

(c)

(d)

(e)

⊃

(3, 5, ·)
(4, 7, ·)
(11, 5, ·)

(3, 5, 6)

(4, 7, 8)

(11, 5, 100)

(3, 5, ·)
(3, 7, ·)
(4, 5, ·)
(4, 7, ·)
(11, 5, ·)
(11, 7, ·)

Figure 2: Description of Entry Identification ((a), (b), (c)) and Pairing ((d), (e))

and then testing the resulting length-3 prefixes’ energies in order to identify the 2s most
energetic such combinations, etc.. See Algorithm 3 above for pseudocode, §4.2 for analysis
of these Ej;(ñ... ) estimators, and §3.2.1 just below for a concrete example of the pairing
process.

3.2.1 An Example of Entry Identification and Pairing to Find Support

Assume that r ∈ C[M ]3 is three-sparse with a priori unknown energetic index vectors

supp(r) = {(3, 5, 6), (4, 7, 8), (11, 5, 100)} ⊂ [M ]3

and corresponding nonzero coefficients r(3,5,6), r(4,7,8), and r(11,5,100). We can further
imagine that M here is significantly larger than, e.g., 100 so that computing all M3

coefficients of r using standard numerical methods would be undesirable. In this case,
Algorithm 2 aims to output the sets

N0 = {3, 4, 11}, N1 = {5, 7}, and N2 = {100, 6, 8} ⊂ [M ],
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i.e., the first, second, and third entries of each index vector in the support of r, respectively.
These sets are described in (a), (b) and (c) of Figure 2. Note that there are 18 = 3×2×3
possible index vectors which are consistent with the N0, N1, and N2 above. Algorithm 3
is now tasked with finding out which of these 18 possibilities are truly elements of supp(r)
without having to test them all individually.10

To identify supp(r) without having to test all 18 index vectors in N0 ×N1 ×N2, the
pairing process instead starts by estimating the energy of the |N0| · |N1| = 6 length-2
prefixes in N0×N1 which might begin an index vector in supp(r). In the ideal case these
energy estimates will reveal that only 3 of these 6 possible length-2 prefixes actually have
any energy,

P1 = {(3, 5), (4, 7), (11, 5)} ⊂ [M ]2

which is illustrated in (d) of Figure 2. In its next stage visualized in (e) of Figure 2,
the pairing process now continues by combining these three length-2 prefixes in P1 with
N2 in order to produce |P1| × |N2| = 9 final candidate elements potentially belonging to
supp(r) ⊂ [M ]3. Estimating the energy of these 9 candidates then finally reveals the true
identities of the index vectors in the support of r.

Note that instead of computing energy estimates for all 18 possible support candidates
in N0 × N1 × N2, the pairing process allows us to determine the correct support of r
using only 15 = 6 + 9 < 18 total energy estimates in this example. Though somewhat
underwhelming in this particular example, the improvement provided by Algorithm 3
becomes much more significant as the dimension D of the index vectors grows larger.
When |supp(r)| = |Nj | = s for all j ∈ [D], for example, ×j∈[D]Nj will have sD total
elements. Nonetheless, Algorithm 3 will be able to identify supp(r) using only O

(
s2D

)
energy estimates in the ideal setting.11

3.2.2 Comparison to Entry Identification and Pairing Methods in Prior Work

As previously mentioned, the support identification approach outlined above is similar
in nature to the dimension incremental approaches utilized by both [52, 42] and [12, 13]
in the Fourier setting.12 For example, Algorithm 1 of [52] also works by performing
D rounds of (i) entry identification to find sets called I(t) in [52] which are essentially

10In this simple example we can of course simply estimate the energy for all 18 possible index vectors.
The three true index vectors in the support of r with nonzero energy would then be discovered and all
would be well. However, this naive approach becomes spectacularly inefficient for larger D � 3.

11In less optimal settings one should keep in mind that Algorithm 3 only finds the most energetic entries

in general, so that P ⊃
{
n
∣∣ |rn|2 ≥ ‖r‖22α2s

}
for a given α > 1. This is why we need to apply it iteratively.

12In fact, this is unsurprising given that similar dimension incremental strategies have been proposed
as far back as the 1970’s in work related to recovering sparse algebraic polynomials [65].
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identical the Nt−1 sets found in our Algorithms 1 and 2 above, followed by (ii) a pairing
step to build up sets called I(1,...,t) in [52] which are essentially identical to the sets Pt−1

in our Algorithm 3. As a result, the papers [52, 42] identify the support in Fourier of the
Fourier sparse functions they seek to approximate via entry identification and pairing just
as we do herein, at least superficially. However, there are several important differences
between our algorithm’s support identification strategy and the one used by [52, 42], the
most crucial of which stems from the choice of the estimators used in [52, 42] versus those
used herein in order to determine the Nt−1/I(t) and Pt−1/I(1,...,t) sets.

As can be seen in line 7 of Algorithm 2, we utilize a median estimator to determine
our Nt−1 sets herein, whereas Algorithm 1 of [52] effectively uses the magnitude of the
Fourier coefficients of functions along the lines of hj;k from Algorithms 2 (except with
h← f) as an estimator to identify their I(t) sets. Similarly, the energy estimator we use
in line 7 of Algorithm 3 to determine each Pt−1 is instead replaced in Algorithm 1 of [52]
by the magnitude of the Fourier coefficients of functions along the lines of h(wj,`, zj,k)
from Algorithm 3 above, except, again, with h equal to the original function f . It turns
out that these differences in the choices of the estimators used to determine the entry and
pairing sets is pivotal for many other features of each method. In [52, 42] the use of Fourier
coefficients of modified functions for estimators allows the authors to employ (multiple)
rank-1 lattice techniques (see e.g. [45, 32]) in order to efficiently and accurately compute
their estimators in the Fourier basis setting. Herein, our choice of different and more
general estimators is essential to us being able to achieve uniform recovery guarantees for
a significantly more general class of BOPB’s.

Similarly, in [12, 13] the support of Fourier sparse functions is also recovered using a
modified dimension incremental strategy. In particular, therein D-dimensional frequencies
with nonzero Fourier coefficients are again extended element-wise in order to recover sets
analogous to Pt−1 above using a multidimensional phase encoding approach (see, e.g.,
section 3.1.1 of [29] for an example of phase encoding in the one-dimensional setting).
Though fast, the resulting support identification approach in [12, 13] is potentially lossy
in the sense that some elements of the Pt−1 sets that the methods above might recover
can be lost by the algorithms in [12, 13]. As a result, the algorithms therein may not
identify all of the Fourier support of some Fourier sparse functions. To compensate for
those worst case scenarios [12, 13] suggest a “tilting method” where the frequencies are
projected onto alternate coordinates rotated with a certain angle which can help to recover
such difficult functions, and also employs and iterative reconstruction approach in order
to try to compensate for Fourier coefficients which might cancel one another out in some
of the utilized projections.

A second crucial difference between the algorithms in [52, 42, 12, 13] and the approach
proposed herein is the fact that we apply our support identification methods to the residual
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functions h above (3.1) so that the overall approximation error reduces at a fixed rate each
iteration following the iterative strategy of the CoSaMP algorithm instead of, e.g., directly
applying them to the original function f itself, or iterating in some other fashion. This
allows us to use the compressive sensing error analysis techniques developed in [50] to
our benefit, whereas those techniques are not applicable to the algorithms as developed
in [52, 42, 12, 13]. We are now prepared to begin proving the promised recovery results
for our method.

3.3 A Theoretical Guarantee for Support Identification

The following lemma and theorem show that our support identification procedure (i.e.,
Algorithm 2, followed by Algorithm 3) always identifies the indexes of the majority of the
energetic entries in r. Consequently, the energy of the residual is guaranteed to decrease
from iteration to iteration of Algorithm 1. We want to remind readers that r is always
2s-sparse since c and each at−1 are s-sparse in the present analysis (i.e., ε = 0).

Lemma 2. Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis function Tn

is defined as per (1.1) , and Tj;0 ≡ 1 for all j ∈ [D]. Let H2s be the set of all functions,
h : D → C, in span

{
Tn
∣∣ n ∈ I} whose coefficient vectors are 2s-sparse, and let rh ∈ CI

denote the 2s-sparse coefficient vector for each h ∈ H2s. Fix p ∈ (0, 1/2), 1 ≤ d ≤ D,
N =

(
D
d

)
Md, and K = sup

n s.t.‖n‖0≤d
‖Tn‖∞. Then, one can randomly select a set of i.i.d.

Gaussian weightsW ⊂ R for use in (4.1), and also randomly construct entry identification
and pairing grids, GI ⊂ D and GP ⊂ D (recall §2.3), whose total cardinality

∣∣GI ∣∣ +
∣∣GP ∣∣

is
O
(
sDL′K2 max{log2(s) log2(DN), log(Dp )}+s3DK4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
,

such that the following property holds ∀h ∈ H2s with probability greater than 1− 2p:

Let vIh ∈ Cm′2 and vPh ∈ Cm′3 be samples from h ∈ H2s on GI and GP , respectively.
If Algorithms 2 and 3 are granted access to vIh, vPh , GI , GP , and W then they will
find a set Ω ⊂ [M ]D of cardinality 2s in line 11 of Algorithm 1 such that

‖(rh)Ωc‖2 ≤ 0.202‖rh‖2.

Furthermore, the total runtime complexity of Algorithms 2 and 3 is always

O
(
s2DLK2 max{log2(s) log2(DN), log(Dp )}+s5D2K4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
.

In Lemma 2 above L′ denotes the maximum number of points in Dj required in order
to determine the value of 〈g, Tj;ñ〉(Dj ,νj) for all ñ ∈ [M ] in O(L)-time for any given s-sparse
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g : Dj → C in span
{
Tj;m

∣∣ m ∈ [M ]
}

, maximized over all j ∈ [D]. See §1.2 for a more in
depth discussion of these quantities. The reader is also referred back to §1.4 and §2.3 for a
discussion of the entry identification and pairing grids, GI and GP , mentioned in Lemma 2.
The proof of Lemma 2, which is quite long and technical, is given in Section 4.3. Once
Lemma 2 has been established, however, it is fairly straightforward to prove that Algo-
rithm 1 will always rapidly recover any function of D-variables which exhibits sparsity
in a tensor product basis by building on the results in [50]. We have the following theorem.

Theorem 2. Suppose that
{
Tn
∣∣ n ∈ I ⊆ [M ]D

}
is a BOS where each basis function Tn

is defined as per (1.1), and Tj;0 ≡ 1 for all j ∈ [D]. Let Fs be the subset of all functions
f ∈ span

{
Tn
∣∣ n ∈ I} whose coefficient vectors are s-sparse, and let cf ∈ CI denote the

s-sparse coefficient vector for each f ∈ Fs. Fix p ∈ (0, 1/3), 1 ≤ d ≤ D, N =
(
D
d

)
Md,

K = sup
n s.t.‖n‖0≤d

‖Tn‖∞, and a precision parameter η > 0. Then, one can randomly select

a set of i.i.d. Gaussian weights W ⊂ R for use in (4.1), and also randomly construct a
compressive sensing grid, G ⊂ D, whose total cardinality |G| is

O
(
sDL′K2 max{log2(s) log2(DN), log(Dp )}+ s3DK4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
,

such that the following property holds ∀f ∈ Fs with probability greater than 1− 3p:

Let y consist of samples from f ∈ Fs on G. If Algorithm 1 is granted access to y,
G, and W, then it will produce an s-sparse approximation a such that

‖cf − a‖2 ≤ Cη.

Here C > 0 is an absolute constant.

Furthermore, the total runtime complexity of Algorithm 1 is always

O
((
s2D2LK2 max{log2(s) log2(DN), log(Dp )}+s5D2K4 max

{
log4(s) log2(N) log2(DN), log2(Dp )

})
× log

‖cf‖2
η

)
when |G| is bounded as above.

As above, we refer the reader back to §1.2 for a discussion of the quantities L′ and
L appearing in Theorem 2, as well as to §1.4 for more information on the compressive
sensing grid G ⊂ D mentioned therein.

Proof. In order to analyze the support identification step, we replace Lemma 4.2 in [50]
by Lemma 2, and then we obtain

‖cf − at+1‖2 ≤ 0.5‖cf − at‖2

for each iteration t ≥ 0, which is the same as in Theorem 2.1 in [50] provided that f is
exactly s-sparse and samples are not noisy. Except for the support identification step(s),
Algorithm 1 agrees with CoSaMP, so that Lemmas 4.3 – 4.5 in [50] still directly apply
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to Algorithm 1. After O
(

log
‖cf‖2
η

)
iterations, we see that the s-sparse approximation a

therefore satisfies
‖cf − a‖2 ≤ Cη.

Since the runtime complexity of the support identification steps and the sample update
process in each iteration, the total running time arises from multiplying it with the number
of iterations. The number of sample points, m′1, m, m1 and m2 used to define the

matrices Φ, Ãj , Bj and Cj discussed in §2.3 are all chosen to ensure that these resulting
measurement matrices have the RIP. Thus, the samples of f in y can be reused over
as many iterations as needed. Updating the samples of each residual function for the
entry identification or pairing causes an extra O(sDm′2) and O(sDm′3) computations
respectively which gives rise to a D2 factor instead of D in the first term of runtime
complexity. The probability of successful recovery for all f ∈ Fs is obtained by taking
the union bound over the failure probability p of Φ having δ2s < 0.025 via Theorem 1
together with the failure probability 2p of Lemma 2.

We are now prepared to begin the process of proving Lemma 2.

4 Analysis of the Support Identification

In this section, we analyze the performance of the sublinear-time support identification
technique proposed in Algorithms 2 and 3. First, we show in Section 4.1 the success of
the entry identification step. Indeed, Theorems 3 and 4 show under the RIP assumption
that certain one-dimensional proxy functions allow us to identify the entry with large
corresponding coefficients. Lemma 6 then estimates the necessary sample complexity.
In Section 4.2, we analyze the pairing step showing that it works uniformly for any 2s-
sparse functions in Theorem 5. Finally, in Section 4.3, we complete the proof of the
Lemma 2 providing the complete result for the proposed support identification method
by combining/using the results of Sections 4.1 and 4.2.

4.1 Entry Identification

In this section we aim to find N t
j containing the j-th entries of the index vectors of the

nonzero transform coefficients of h for all j ∈ [D], which is done by Algorithm 2. Define
[D]′ := [D] \ {j}.

Assume without loss of generality that the number L ∈ N of proxy functions is odd.
Choose Xj := {xj,`}`∈[m] where each xj,` is chosen independently at random from D′j
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according to dν ′j . Also, choose {gk1 , · · · , gkm}k∈[L] where each gk` is an i.i.d. standard
Gaussian variable ∼ N (0, 1), which forms W introduced in Section 1.4. We define a
function hj;k : Dj → C of one variable in Dj as follows,

hj;k(x) :=
1√
m

∑
`∈[m]

gk` h([x,xj,`]) =
1√
m

∑
`∈[m]

gk`
∑

n∈supp(r)

rnTj;nj (x)
∏
i∈[D]′

Ti;ni(xj,`)i,

(4.1)
and [x,xj,`] is the vector obtained by inserting the variable x between the entries of xj,`
indexed by [j] and {j, j + 1 · · · , D − 2}, i.e.,

[x,xj,`] := ((xj,`)0, (xj,`)1, · · · , (xj,`)j−1, x , (xj,`)j , · · · , (xj,`)D−2) .

For the sake of simplicity, we let Tň(x̌) :=
∏
i∈[D]′ Ti;ňi(x̌i) with ň ∈ [M ]D−1 and x̌ ∈

D′j .

We choose m large enough above to form the normalized random sampling matrix
Ãj ∈ Cm×[M ]D−1

for each j ∈ [D], defined as(
Ãj

)
`,ň

:=
1√
m
Tň(xj,`), ` ∈ [m], ň ∈ [M ]D−1, (4.2)

so that each one has a restricted isometry constant δ2s of at most δ with high probability
in its restricted form. Here, the restricted form is introduced by eliminating the columns
of the full Ãj indexed by vectors n /∈ Ij;ñ. To explain further, we denote ÃjPj;ñr = Ãjrj;ñ
where Pj;ñ is a restriction matrix defined in (2.7). This comes from the inner product in
line 10 of Algorithm 2 which is calculated by using the evaluations of hj,k at Uj defined in

Section 1.4. Then, the inner product can be written as
(
GÃjPj;ñr

)
k

where G is defined

as in (2.14). In other words, the evaluations of h at [uj,k,xj,`] from GIj in Section 1.4

are utilized to compute the inner product. Then, the matrix-vector multiplication Ãjrj;ñ
can be considered in its restricted form by eliminating the columns of Ãj and elements of
rj;ñ which are zero due to their corresponding index vectors not belonging to Ij;ñ. The

resulting restricted matrix Ãj has the size m × N ′ where N ′ is bounded above in (2.4)

so that Ãj has the restricted isometry constant δ2s mentioned. The advantage of forming
RIP matrices in this fashion is that it allows us to analyze the different iterations of
Algorithm 1 repeatedly with the same RIP matrices. For a discussion about the number
of measurements needed to ensure that Ãj satisfies the RIP, see the following lemma
(which is a simple consequence of Theorem 1).
Lemma 3. Let Ãj ∈ Cm×N ′ be the random sampling matrix as in (4.2) in its restricted
form. If, for δ, p ∈ (0, 1),

m ≥ aK2δ−2smax

{
d log2(4s) log(9m) log

(
8e(D − 1)DM

d

)
, log

(
D

p

)}
,
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then with probability at least 1−p, the restricted isometry constant δs of Ãj satisfies δs ≤ δ
for all j ∈ [D]. The constant a > 0 is universal.

As we will show, more than half of the proxy functions, {hj;k}k∈[L] are guaranteed with
high probability to have ‖hj;k‖L2(Dj ,νj) bounded above by ‖r‖2 up to some constant, and

also
∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ bounded above and below by ‖rj;ñ‖2 up to some constants for all

ñ ∈ [M ] and j ∈ [D].

To show this we consider the indicator variable Eh,j,ñ,k which is 1 if and only if all
three of

1. ‖hj;k‖2L2(Dj ,νj) ≤ α
′‖r‖22 for the absolute constant α′ defined in Lemma 4,

2. 9
4‖rj;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ √23
12 ‖rj;ñ‖2, and

3. the vector of Gaussian weights gk ∈ Rm satisfying 1
2m ≤ ‖g

k‖22 ≤ 3
2m,

are simultaneously true, and 0 otherwise.

The proof will proceed as follows. Lemmas 4 and 5 together with the bound on ‖gk‖2
through Bernstein’s inequality imply that the probability of each Eh,j,ñ,k being 1 is greater
than 0.5. Combining this with Chernoff bound, the deviation of

∑
k∈[L]Eh,j,ñ,k below its

expectation shows exponential decay in its distribution. As a result, with sufficiently
many proxy functions, i.e., sufficiently large L, the probability that

∑
k∈[L]Eh,j,ñ,k <

L/2 for all (h, j, ñ) ∈ H × [D] × [M ] becomes very small for any finite set of functions
H ⊂ H2s whose BOS coefficient vectors are 2s-sparse (see Theorem 3). The number L
logarithmically depends on DM |H|. In order to get the desired properties for all 2s-
sparse functions satisfying our support assumption, the finite function set H is taken as
Hε with corresponding coefficient vector set Rε which is an ε-cover over all `2-normalized
2s-sparse vectors in CN in Theorem 4. Thus, with high probability, the desired properties
hold uniformly, i.e., for all functions of interest, and for all j ∈ [D] and ñ ∈ [M ].

The following lemma bounds the energy of the proxy functions.
Lemma 4. Suppose that r ∈ CN is 2s-sparse, and the restricted isometry constant δ2s

of Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Then, for each k ∈ [L], there
exists an absolute constant α′ ∈ R+ such that

P
[
‖hj;k‖2L2(Dj ,νj) ≥ α

′||r||22
]
≤ .025 (4.3)

for all j ∈ [D].

Proof. Consider the random sampling point set Xj = {xj,` | ` ∈ [m]} to be fixed for the
moment. We begin by noting that
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‖hj;k‖2L2(Dj ,νj) =

∫
Dj
|hj;k(x)|2dνj(x)

=

∫
Dj

∣∣∣∣∣∣ 1√
m

∑
`∈[m]

gk` h([x,xj,`])

∣∣∣∣∣∣
2

dνj(x)

=
1

m

∑
`,`′∈[m]

gk` g
k
`′

∫
Dj
h([x,xj,`])h([x,xj,`′ ]) dνj(x)

=
1

m

∑
`,`′∈[m]

gk` g
k
`′

∑
n,n′∈supp(r)

rnrn′
∏
i∈[D]′

Ti;ni(xj,`)i
∏

i′∈[D]′

Ti′;n′
i′

(xj,`′)i′

(4.4)

×
∫
Dj
Tj;nj (x)Tj;n′j (x) dνj(x)

=
1

m

∑
`,`′∈[m]

gk` g
k
`′

 ∑
ñ∈[M ]

∑
n,n′ s.t.
nj=n

′
j=ñ

rnrn′
∏
i∈[D]′

Ti;ni(xj,`)i
∏

i′∈[D]′

Ti′;n′
i′

(xj,`′)i′


=
∑
ñ∈[M ]

∑
`,`′∈[m]

gk` g
k
`′

(
Ãjrj;ñ

)
`

(
Ãjrj;ñ

)
`′
, (4.5)

where Ãj ∈ Cm×N ′ is the restricted random sampling matrix from (4.2) and rj;ñ ∈ CN ′

is the restricted vector from (2.3). Thus, we can see that

‖hj;k‖2L2(Dj ,νj) =
∑
ñ∈[M ]

∣∣〈Ãjrj;ñ, gk〉∣∣2 =
∥∥∥(gk)∗ÃjR

∥∥∥2

2
=
∥∥∥(ÃjR)∗ gk∥∥∥2

2

where R ∈ CN ′×M is the matrix whose ñth column is rj;ñ. This yields results that

Egk

[
‖hj;k‖2L2(Dj ,νj)

]
= ‖ÃjR‖2F.

Now observe that
(
ÃjR

)∗
gk ∼ N (0, UΣ2U∗), where UΣV ∗ is the SVD of

(
ÃjR

)∗
and

Σ ∈ Rmin{M,m}×min{M,m} is the diagonal matrix containing at most min{M,m} nonzero
singular values, σ1 ≥ σ2 ≥ · · · ≥ σmin{M,m} ≥ 0, of ÃjR. Let g̃k := ΣV ∗gk ∼ N (0,Σ2)

and note that ‖U g̃k‖22 = ‖g̃k‖22. As a consequence, one can see that

P
[
‖hj;k‖2L2(Dj ,νj) ≥ t

]
= P

[
‖g̃k‖22 ≥ t

]
= P

min{M,m}∑
`=1

σ2
`X` ≥ t
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holds for all t ∈ R, where each X` is an i.i.d χ2 random variable. Applying the Bernstein
type inequality given in Proposition 5.16 in [61] we deduce that

P
[∣∣∣‖hj;k‖2L2(Dj ,νj) − ‖ÃjR‖

2
F

∣∣∣ ≥ t] ≤ 2 exp

(
−a′min

{
t2

‖σ‖44
,

t

‖σ‖2∞

})
≤ 2 exp

(
−a′min

{
t2

‖ÃjR‖4F
,

t

‖ÃjR‖2F

})
(4.6)

where a′ ∈ R+ is an absolute constant, and σ is the vector containing the diagonal elements

of Σ. An application of (4.6) with t = max
{

log 80/a′,
√

log 80/a′
}
‖ÃjR‖2F finally tells

us that

‖hj;k‖2L2(Dj ,νj) ≥

(
1 + max

{
log 80

a′
,

√
log 80

a′

})
‖ÃjR‖2F

will hold with probability at most 1/40.

Turning our attention to ‖ÃjR‖2F =
∑

ñ∈[M ] ‖Ãjrj;ñ‖22, we assert that

‖ÃjR‖2F =
∑
ñ∈[M ]

‖Ãjrj;ñ‖22 ≥
1

2

∑
ñ∈[M ]

‖rj;ñ‖22 =
1

2
‖r‖22

holds since the restricted isometry constant δ2s of Ãj is assumed to be bounded above by
7
16 . Therefore, we finally get the desired probability estimate with α′ := 1

2

(
1+max

{ log 80
a′ ,√

log 80
a′

})
.

The following lemma bounds the estimated inner products.
Lemma 5. Suppose that r ∈ CN is 2s-sparse, and the restricted isometry constant δ2s of
Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Let k ∈ [L], j ∈ [D], and ñ ∈ [M ].
Then, there exists an absolute constant β′ ∈ R+ such that

P

[∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≤ √23

12
‖rj;ñ‖2 or

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ 9

4
‖rj;ñ‖2

]
≤ 0.273. (4.7)

Proof. Consider the random sampling point set Xj to be fixed for the time being. Recalling
the definitions of hj;k and of rj;ñ, one can see that

〈hj;k, Tj;ñ〉(Dj ,νj) =
1√
m

∑
`∈[m]

gk`
∑
n s.t.
nj=ñ

rn
∏
i∈[D]′

Ti;ni(xj,`)i =
∑
`∈[m]

gk`

(
Ãjrj;ñ

)
`
. (4.8)
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Looking at (4.8) one can see that 〈hj;k, Tj;ñ〉(Dj ,νj) ∼ N (0, ‖Ãjrj;ñ‖22) and hence,

P

[∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≤ ‖Ãjrj;ñ‖23
or
∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ 3‖Ãjrj;ñ‖2

]
≤ 0.273 (4.9)

holds. Combining (4.9) and the assumption on δ2s, which yields 9
16‖rj;ñ‖

2
2 ≤ ‖Ãjrj;ñ‖22 ≤

23
16‖rj;ñ‖

2
2, establishes the desired result.

Theorem 3. Let H be a finite set of functions h whose BOS coefficient vectors are 2s-
sparse, and let rh ∈ CN denote the coefficient vector for each h ∈ H. Suppose that the
restricted isometry constant δ2s of Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16).
Furthermore, let p ∈ (0, 1), L ∈ N be odd, and L ≥ γ̃ log(DM |H|/p) hold for a sufficiently
large absolute constant γ̃ ∈ R

+. Then,
∑

k∈[L]Eh,j,ñ,k > L/2 simultaneously for all
(h, j, ñ) ∈ H × [D]× [M ] with probability at least 1− p. That is, with probability at least
1− p, the following will hold simultaneously for each (h, j, ñ) ∈ H × [D]× [M ]: All three
of

1. ‖hj;k‖2L2(Dj ,νj) ≤ α
′‖rh‖22 for the absolute constant α′ defined in Lemma 4,

2. 9
4‖(rh)j;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ √23
12 ‖(rh)j;ñ‖2, and

3. the vector of Gaussian weights gk ∈ Rm satisfying 1
2m ≤ ‖g

k‖22 ≤ 3
2m,

will be simultaneously true for more than half of the k ∈ [L].

Proof. Let h ∈ H, k ∈ [L], and ñ ∈ [M ]. The probabilities that the first and second
properties fail are given in (4.3) and (4.7), respectively. For the third property, applying
the Bernstein type inequality given in Proposition 5.16 in [61], one obtains

P
[∣∣∣‖gk‖22 −m∣∣∣ ≥ m

2

]
≤ 2e−a

′′m ≤ 0.03, (4.10)

where a′′ ∈ R+ is an absolute constant.

Combining (4.3), (4.7), (4.10) via a union bound now tell us that P
[
Eh,j,ñ,k = 0

]
≤

328/1000. Utilizing the Chernoff bound (see, e.g., [49, 3]) one now sees that

P

∑
k∈[L]

Eh,j,ñ,k < L/2

 = P

∑
k∈[L]

(1− Eh,j,ñ,k) > L/2

 < e−L/γ̄ ≤ p

DM |H|

for an absolute constant γ̄ ∈ R+, where the last inequality follows by choosing γ̃ = γ̄ in
the assumption. Applying the union bound over all choices of (h, j, ñ) ∈ H × [D] × [M ]
now establishes the desired result.
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Theorem 4. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse,
and let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Suppose that the restricted
isometry constant δ2s of Ãj satisfies δ2s ≤ δ for all j ∈ [D] where δ ∈ (0, 7/16). Further-

more, let p ∈ (0, 1), L ∈ N be odd, and assume that L ≥ γ′s · d · log

(
DM

d
√
sd p1/s

)
for suffi-

ciently large absolute constant γ′ ∈ R+. Then, with probability greater than 1−p, one has∑
k∈[L]Eh,j,ñ,k > L/2 simultaneously for all (h, j, ñ) ∈ H× [D]× [M ]. Consequently, with

probability greater than 1− p, it will hold that for all choices of (h, j, ñ) ∈ H2s× [D]× [M ]
both

1. ‖hj;k‖2L2(Dj ,νj) ≤ (α′+1)‖rh‖22 for the absolute constant α′ defined in Lemma 4, and

2. 9
2‖(rh)j;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ 1
3‖(rh)j;ñ‖2

are true simultaneously for more than half of the k ∈ [L].

Proof. Define Rε ⊂ CN as a finite ε-cover of all 2s-sparse coefficient vectors r ∈ CN
with ‖r‖2 = 1, together with 0, where N =

(
D
d

)
Md and ε ∈ (0, 1). Such covers exist of

cardinality |Rε| ≤
(
eN
2s

)2s (
1 + 2

ε

)2s
(see, e.g., Appendix C of [23]). Define Hε as the set

of functions corresponding to the 2s-sparse coefficient vectors in Rε. Assume that for H
= Hε and all choices of (h, j, ñ) ∈ Hε× [D]× [M ], Properties 1 – 3 of Theorem 3 will hold
for more than half of the k ∈ [L]. By the theorem, this event will happen with probability
at least 1 − p. We will now prove that under this assumption both Properties 1 and 2
above will hold as desired.

Let ñ ∈ [M ], j ∈ [D], consider h ∈ H2s with coefficient vector r = rh, and let τ := ‖r‖22.
Then, there exists an h′ ∈ Hε with coefficient vector r′ ∈ Rε such that both ‖r′‖2 = 1
and ‖r − τr′‖2 ≤ ετ hold. Finally, let k ∈ [L] be one of the values for which Properties
1 – 3 of Theorem 3 are simultaneously true for (h′, j, ñ). We will begin by establishing
Property 1 above for h, j and k. Using (4.1) we have that

‖hj;k‖L2(Dj ,νj) =

∥∥∥∥∥∥ 1√
m

∑
`∈[m]

gk`
∑

n∈supp(r)

rnTj;nj (x)
∏
i∈[D]′

Ti;ni(xj,`)i

∥∥∥∥∥∥
L2(Dj ,νj)

≤ τ
∥∥h′j;k∥∥L2(Dj ,νj)

(4.11)

+

∥∥∥∥∥∥ 1√
m

∑
`∈[m]

gk`
∑

n∈supp(r)

(
rn − τr′n

)
Tj;nj (x)

∏
i∈[D]′

Ti;ni(xj,`)i

∥∥∥∥∥∥
L2(Dj ,νj)

≤ τ
√
α′‖r′‖2 +

∥∥∥(h− τh′)j;k∥∥∥L2(Dj ,νj)
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= τ
√
α′ +

∥∥∥(h− τh′)j;k∥∥∥L2(Dj ,νj)
, (4.12)

where the last inequality follows from the first property of Theorem 3 holding for h′.

Repeating the expansion from the proof of Lemma 4 for
∥∥∥(h− τh′)j;k

∥∥∥2

L2(Dj ,νj)
, one

obtains ∥∥∥(h− τh′)j;k∥∥∥2

L2(Dj ,νj)
=
∑
ñ∈[M ]

∣∣∣∣ 〈Ãj (r − τr′)j;ñ, gk〉 ∣∣∣∣2
≤
∑
ñ∈[M ]

∥∥∥Ãj (r − τr′)j;ñ∥∥∥2

2

∥∥∥gk∥∥∥2

2

≤ 9

4
m
∑
ñ∈[M ]

∥∥∥(r − τr′)j;ñ∥∥∥2

2

where the last inequality follows from the third property of Theorem 3, and Ãj having
δ2s ≤ 7

16 . Continuing, we can see that∥∥∥(h− τh′)j;k∥∥∥2

L2(Dj ,νj)
≤ 9

4
m
∥∥(r − τr′)∥∥2

2
≤ 9

4
mτ2ε2.

Combining this expression with (4.12) we now learn that

‖hj;k‖L2(Dj ,νj) ≤ τ
(√

α′ +
3

2
ε
√
m

)
= ‖r‖2

(√
α′ +

3

2
ε
√
m

)
.

Making sure to use, e.g., an ε ≤
(

6
√
α′m

)−1
ensures property one.

Turning our attention to establishing Property 2 above for h, ñ, and k, we now choose
an h′ ∈ Hε whose coefficient vector r′ ∈ Rε has ‖r′‖2 = 1, and also satisfies

∥∥rj;ñ − τ ′r′∥∥2
≤ ετ ′ (4.13)

for τ ′ := ‖rj;ñ‖2. Note that all nonzero entries of r′j;ñ agree with those of r′, the latter
vector only has certain additional nonzero entries in locations where r′j;ñ and also rj;ñ
vanish. Consequently, replacing r′ by r′j;ñ makes the left hand side of (4.13) smaller, and
one obtains that ∥∥∥rj;ñ − τ ′r′j;ñ.∥∥∥

2
≤ ετ ′ (4.14)

From (4.1) one can see that∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ ∣∣∣〈τ ′h′k, Tj;ñ〉(Dj ,νj)∣∣∣− ∣∣∣〈(hj;k − τ ′h′k) , Tj;ñ〉(Dj ,νj)

∣∣∣
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≥
√

23

12
τ ′‖r′j;ñ‖2 −

∣∣∣∣∣∣
∑
`∈[m]

gk`

(
Ãj
(
r − τ ′r′

)
j;ñ

)
`

∣∣∣∣∣∣ .
where the last inequality follows from the second property of Theorem 3 holding for h′.
Continuing using (4.14) we have that∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ √23

12

(
‖rj;ñ‖2 − ‖(τ ′r′ − r)j;ñ‖2

)
−
∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣

≥
√

23

12
‖rj;ñ‖2 −

√
23

12
ετ ′ −

∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
≥
√

23

12
‖rj;ñ‖2 −

√
23

12
ετ ′ −

∥∥∥Ãj (r − τ ′r′)j;ñ∥∥∥2

∥∥∥gk∥∥∥
2

≥
√

23

12
‖rj;ñ‖2 −

√
23

12
ετ ′ − 3

2

√
m
∥∥∥(r − τ ′r′)j;ñ∥∥∥2

=
1

3
‖rj;ñ‖2

(√
23

4
−
√

23ε

4
− 9

2
ε
√
m

)
.

On the other hand,∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≤ ∣∣∣〈τ ′h′j;k, Tj;ñ〉(Dj ,νj)∣∣∣+
∣∣∣〈(hj;k − τ ′h′j;k) , Tj;ñ〉(Dj ,νj)

∣∣∣
≤ 9

4
τ ′‖r′j;ñ‖2 +

∣∣∣∣∣∣
∑
`∈[m]

gk`

(
Ãj
(
r − τ ′r′

)
j;ñ

)
`

∣∣∣∣∣∣ .
As above, we obtain using (4.14) that∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≤ 9

4

(
‖rj;ñ‖2 + ‖(τ ′r′ − r)j;ñ‖2

)
+

∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
≤ 9

4
‖rj;ñ‖2 +

9

4
ετ ′ +

∣∣∣∣ 〈Ãj (r − τ ′r′)j;ñ, gk〉 ∣∣∣∣
≤ 9

4
‖rj;ñ‖2 +

9

4
ετ ′ +

∥∥∥Ãj (r − τ ′r′)j;ñ∥∥∥2

∥∥∥gk∥∥∥
2

≤ 9

4
‖rj;ñ‖2 +

9

4
ετ ′ +

3

2

√
m
∥∥∥(r − τ ′r′)j;ñ∥∥∥2

=
9

4
‖rj;ñ‖2

(
1 + ε+

2

3
ε
√
m

)
.

Once again, making sure to use, e.g., an ε ≤
(

6
√
α′m

)−1
will now ensure property two

for h as well.
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Lemma 6. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse, and
let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Furthermore, let δ ∈ (0, 7/16),
p ∈ (0, 1), L ∈ N be odd, and assume that m ≥ β̃′K2δ−2smax

{
d log2(4s) log(9m)

log
(8e(D−1)DM

d

)
, log

(
2D
p

)}
and L ≥ γ′s · d · log

(
DM

d
√
sd (p/2)1/s

)
for sufficiently large abso-

lute constants β̃′, γ′ ∈ R+. Then, with probability greater than 1 − p, all of the following
will hold for all (h, j, ñ) ∈ H2s × [D]× [M ]: Both

1. ‖hj;k‖2L2(Dj ,νj) ≤ (α′+1)‖rh‖22 for the absolute constant α′ defined in Lemma 4, and

2. 9
2‖(rh)j;ñ‖2 ≥

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ ≥ 1
3‖(rh)j;ñ‖2

will be simultaneously true for more than half of the k ∈ [L].

Proof. Let A be the event that for all (h, j, ñ) ∈ H2s × [D] × [M ], the properties 1 and
2 in Theorem 4 simultaneously hold for more than half of the k ∈ [L], and let B be the
event that the restricted isometry constant δ2s of Ãj satisfies δ2s ≤ δ for all j ∈ [D]. By
the Theorem 4 and Lemma 3 with properly chosen parameters including L and m, both
P
[
A
∣∣ B] and P[B] are greater than 1− p/2. We obtain, by Bayes’ theorem,

1− p ≤
(

1− p

2

)(
1− p

2

)
≤ P

[
A
∣∣ B]P [B] = P[A ∩B] ≤ P [A],

which establishes the desired result.

The results from Lemma 6 can be exploited in our algorithm as follows. In the entry

identification, by taking the median over k ∈ [L] of
∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣, we get a nonzero

value if
∥∥(rh)j;ñ

∥∥
2

is nonzero and a zero value if
∥∥(rh)j;ñ

∥∥
2

is zero, especially due to
the second property in Lemma 6 being satisfied for more the half of k ∈ [L]. Thus, we
store all those ñ with nonzero median value in Nj . On the other hand, the summation

over ñ ∈ [M ] of mediank

∣∣∣〈hj;k, Tj;ñ〉(Dj ,νj)∣∣∣ can be also used for the halting criterion in

our algorithm. Although O(‖c‖2/η) iterations guarantee the desired precision, it is not
necessary to repeat the iteration if the residual r already has small energy. For any
j ∈ [D], if ∑

ñ∈[M ]

∣∣∣mediank|〈hj;k, Tj;ñ〉(Dj ,νj)|
∣∣∣2 ≤ 1

9
η2,

then ‖r‖2 ≤ η by using the lower bound in the Property 2 of Lemma 6.
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4.2 Pairing

In the entry identification, we can find at most 2s entries belonging to N t
j := {nj | n ∈

supp(r)} ⊂ [M ] for each j ∈ [D]. Now, the question is how to combine the entries of
each Nj ⊇ Nj ∩N t

j in order to correctly identify the corresponding energetic elements of
supp(r) efficiently. In order to do this, in the pairing process briefly introduced in Section
3.2, we successively build up the prefix set Pj of the energetic pairs for all j ∈ [D] \ {0}
such that Pj ⊃

{
ñ ∈ Pj−1 ×Nj

∣∣ ‖rj;(ñ,··· )‖22 ≥ ‖r‖22α2s

}
with the initialization of P0 = N0.

The prefix set Pj contains only 2s pairs throwing out the other pairs with smaller energy

for each j ∈ [D] \ {0} so that PD−1 ⊃
{
ñ ∈ supp(r)

∣∣ |rñ|2 ≥ ‖r‖22α2s

}
. From (2.9), the

energy
∥∥rj;(ñ,··· )∥∥2

2
corresponding to each ñ ∈ [M ]j+1 has the following equality,

∥∥rj;(ñ,··· )∥∥2

2
=
∥∥∥〈h, Tj;ñ〉L2(×i∈[j+1]Di,⊗i∈[j+1]νi)

∥∥∥2

L2(D′′j ,ν′′j )
. (4.15)

The energy is estimated in Algorithm 3 by using the following estimator Ej;(ñ,··· ) defined
as

Ej;(ñ,··· ) :=
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

h(wj,`, zj,k)Tj;ñ(wj,`)

∣∣∣∣∣∣
2

which approximates the right hand side of (4.15) by using only a finite evaluations of
h. Those sampling point sets Wj × Zj for all j ∈ [D] \ {0} are constructed from Wj :=
{wj,`}`∈[m1] and Zj := {zj,k}k∈[m2] where wj,` and zj,k are chosen independently at
random from ×i∈[j+1]Di and D′′j for j ∈ [D − 1] \ {0}, respectively. If j = D − 1,

WD−1 := {wD−1,`}`∈[m1] is chosen from ×i∈[D]Di and ZD−1 = ∅. Note thatWj×Zj = GPj
from Section 1.4. Furthermore, the sets Wj × Zj for all j ∈ [D] \ {0} build a random
sampling matrix AP in (2.13) which explicitly expresses the samples(evaluations) of the
2s-sparse h used in the (4.16) as APr. The matrix AP is broken into smaller matrices Bj
and Cj for j ∈ [D] \ {0} defined and explained in the next paragraph for the complete
analysis of the pairing process in the upcoming lemmas and theorems in this section.

For all j ∈ [D−1]\{0}, the measurement matrix Cj ∈ Cm2×[M ]D−j−1
is defined as

(Cj)k,n2
:=

1
√
m2

T ′′n2
(zj,k), k ∈ [m2], n2 ∈ [M ]D−j−1, (4.16)

where T ′′n2
(y) is a partial product of the last D − j − 1 terms of Tn(x) defined in (1.1),

i.e.,

T ′′n2
(y) =

∏
i∈[D−j−1]

Ti+j+1;ni+j+1(yi), y ∈ D′′j .
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The matrix Cj can be restricted to the matrix of size m2×Ñj when Cj is applied to vj,(ñ,··· )
where Ñj estimated in (2.6) is the cardinality of the superset of any possible supp(vj;ñ)
with fixed j, ñ, D and d so that it satisfies RIP with sufficiently large m2. When the
j = D − 1, the matrix Cj is defined to be 1 since ZD−1 = ∅. For all j ∈ [D] \ {0}, on the

other hand, the matrices Bj ∈ Cm1×[M ]j+1
is defined as

(Bj)`,n1
:=

1
√
m1

T ′n1
(wj,`), ` ∈ [m1], n1 ∈ [M ]j+1, (4.17)

where T ′n1
(z) is a partial product of the first j + 1 terms of Tn(x) in (1.1), i.e.,

T ′n1
(z) =

∏
i∈[j+1]

Ti;ni(zi), z ∈ ×i∈[j+1]Di.

The matrix Bj can be restricted to the matrix of size m1 × N̄j where N̄j =
(
j+1
d

)
Md if

j + 1 ≥ d, or Md otherwise. The number N̄j is the cardinality of the set of any possible
prefix ñ ∈ [M ]j+1 with fixed j, ñ and d. The sampling numbers m1 and m2 are chosen for
all Bj and Cj with any j ∈ [D] \ {0} to satisfy RIP with the restricted isometry constants

δ̃2s+1 ≤ δ̃ and δ′2s ≤ δ′, respectively. We again mention that CD−1 = 1.

Lemma 7. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse
and let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Let j ∈ [D] \ {0}, and
δ̃ and δ′ be chosen from (0, 1). Assume that Bj and Cj satisfy RIP with δ̃2s+1 ≤ δ̃ and
δ′2s ≤ δ′, respectively. Then, denoting r := rh for simplicity,

(1− δ′2s)
(

max{0,
∥∥rj;(ñ,··· )∥∥2

− δ̃2s+1‖r‖2}
)2
≤ Ej;(ñ,··· )

≤ (1 + δ′2s)
(∥∥rj;(ñ,··· )∥∥2

+ δ̃2s+1‖r‖2
)2
.

(4.18)

for any ñ ∈ [M ]j+1.

Proof. As j ∈ [D] \ {0} is fixed, for simplicity, we use notation w` and zk for sampling
points instead of wj,` and zj,k constructing the sampling matrices Bj and Cj as in (4.17)
and (4.16), respectively. Fix ñ ∈ [M ]j+1. Letting n = (n1,n2), n1 ∈ [M ]j+1 and
n2 ∈ [M ]D−j−1, we can rewrite the energy estimate Ej;(ñ,··· ) as follows,

Ej;(ñ,··· ) =
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

h(w`, zk)Tj;ñ(w`)

∣∣∣∣∣∣
2
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=
1

m2

∑
k∈[m2]

∣∣∣∣∣∣ 1

m1

∑
`∈[m1]

∑
n=(n1,n2)∈supp(r)

rnTn(w`, zk)Tj;ñ(w`)

∣∣∣∣∣∣
2

=
1

m2

∑
k∈[m2]

1

m2
1

∣∣∣∣∣∣
∑

n∈supp(r)

∑
`∈[m1]

rnT
′
n1

(w`)Tj;ñ(w`)T
′′
n2

(zk)

∣∣∣∣∣∣
2

=:
1

m2

∑
k∈[m2]

1

m2
1

∣∣∣∣∣∣∣∣
∑

n2 s.t. ∃n1
with (n1,n2)∈supp(r)

(r̃ñ)n2
T ′′n2

(zk)

∣∣∣∣∣∣∣∣
2

, (4.19)

where
(r̃ñ)n2

:=
∑
n1 s.t.

n=(n1,n2)∈supp(r)

rn
∑
`∈[m1]

T ′n1
(w`)Tj;ñ(w`). (4.20)

We can construct a vector r̃ :=
(
(r̃ñ)n2

)
∈ CÑj with entries (r̃ñ)n2

at n2 so that r̃ has
a support whose cardinality is at most 2s since h is 2s-sparse. Thus, the energy estimate

Ej;(ñ,··· ) in (4.19) can be expressed as
∥∥∥Cj ( r̃

m1

)∥∥∥2

2
. Since the restricted measurement

matrix Cj ∈ Cm2×Ñj satisfies the RIP,

(1− δ′2s)
∥∥∥∥ r̃m1

∥∥∥∥2

2

≤
∥∥∥∥Cj ( r̃

m1

)∥∥∥∥2

2

≤ (1 + δ′2s)

∥∥∥∥ r̃m1

∥∥∥∥2

2

. (4.21)

In order to get an upper bound and lower bound of
∥∥∥ r̃
m1

∥∥∥
2
, we define eñ ∈ CN̄j as a

standard basis vector with all 0 entries except for a 1 at ñ, and Rj ∈ CÑj×N̄j as

(Rj)n2,n1 :=

{
r(n1,n2) if (n1,n2) ∈ supp(r)

0 otherwise .

Note that Rj contains at most 2s nonzero elements since h is 2s-sparse, and ñ is any
element in [M ]j+1. Set Q := {ñ} ∪ {n1 ∈ [M ]j+1 | ∃n2 ∈ [M ]D−j−1 such that (n1,n2) ∈
supp(r)} with a fixed ñ ∈ [M ]j+1. Thus, the cardinality of Q is at most 2s+1. Orderings
of indices n1 and n2 depend on the column orderings of Bj and Cj , respectively. We note

that the ñ-th column of Rj is rj;(ñ,··· ). Both bounds of
∥∥∥ r̃
m1

∥∥∥
2

are found as follows∥∥∥∥ r̃m1
− rj;(ñ,··· )

∥∥∥∥
2

=
∥∥Rj(Bj)∗Q(Bj)Qeñ −Rjeñ

∥∥
2

≤ ‖Rj‖2→2‖(Bj)∗Q(Bj)Q − I‖2→2‖eñ‖2
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≤ δ̃2s+1‖Rj‖F
= δ̃2s+1‖r‖2

and therefore,∣∣∣∣∥∥∥∥ r̃m1

∥∥∥∥
2

−
∥∥rj;(ñ,··· )∥∥2

∣∣∣∣ ≤ δ̃2s+1‖r‖2,∥∥rj;(ñ,··· )∥∥2
− δ̃2s+1‖r‖2 ≤

∥∥∥∥ r̃m1

∥∥∥∥
2

≤
∥∥rj;(ñ,··· )∥∥2

+ δ̃2s+1‖r‖2. (4.22)

Combining (4.21) and (4.22), we reach the conclusion in (4.18).

Lemma 8. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse and
let rh ∈ CN denote the coefficient vector for each h ∈ H2s. Let j be any integer such that
j ∈ [D] \ {0}, and δ̃ and δ′ be chosen from (0, 1). Given α > 1, assume that the restricted
Bj and Cj satisfy RIP with δ̃2s+1 ≤ δ̃ ≤ 1

č
√
s

for some č >
√

2 and δ′2s ≤ δ′ ∈ (0, 1),

respectively, with
√

1+δ′

1−δ′ <
č
α − 1. Then, denoting r := rh for simplicity, one has the set

Pj ⊃
{
ñ ∈ [M ]j+1

∣∣ ‖rj;(ñ,··· )‖22 ≥ ‖r‖22α2s

}
of cardinality 2s resulting from Algorithm 3 if

Pj−1 ⊃
{
n̂ ∈ [M ]j

∣∣ ‖rj−1;(n̂,··· )‖22 ≥
‖r‖22
α2s

}
.

Proof. By assumption that Pj−1 ⊂ ×i∈[j]Ni contains all prefixes in
{
n̂ ∈ [M ]j

∣∣ ‖rj−1;(n̂,··· )‖22
≥ ‖r‖

2
2

α2s

}
, Pj−1 ×Nj contains all possible prefixes ñ ∈ [M ]j+1 with ‖rj;(ñ,··· )‖22 ≥

‖r‖22
α2s

by
the definition of Pj and Nj for all j ∈ [D]. If

∥∥rj;(ñ,··· )∥∥2
= 0, i.e., there is no n2 such

that (ñ,n2) ∈ supp(r), then from Lemma 7,

0 ≤ Ej;(ñ,··· ) ≤ (1 + δ′)
(
δ̃‖r‖2

)2
≤ (1 + δ′)

(
‖r‖2
č
√
s

)2

.

On the other hand, if
∥∥rj;(ñ,··· )∥∥2

2
≥ ‖r‖22

α2s
, i.e., there is n2 such that (ñ,n2) ∈ supp(r),

then

(1− δ′)
(∥∥rj;(ñ,··· )∥∥2

− ‖r‖2
č
√
s

)2

≤ (1− δ′)
(∥∥rj;(ñ,··· )∥∥2

− δ̃‖r‖2
)2

≤ Ej;(ñ,··· ) ≤ (1 + δ′)
(∥∥rj;(ñ,··· )∥∥2

+ δ̃‖r‖2
)2
.

In order to distinguish nonzero
∥∥rj;(ñ,··· )∥∥2

≥ ‖r‖2
α
√
s

from zero
∥∥rj;(ñ,··· )∥∥2

, we should have

(1 + δ′)

(
‖r‖2
č
√
s

)2

< (1− δ′)
(
‖r‖2
α
√
s
− ‖r‖2
č
√
s

)2
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which is implied by √
1 + δ′

1− δ′
<
č

α
− 1,

as in the assumption. Since estimates of zero energy and nonzero energy greater than
‖r‖22
α2s

are separated, choosing 2s prefixes with largest estimates Eñ guarantees that it contains

all prefixes with energy greater than
‖r‖22
α2s

.

Theorem 5. Let H2s be the set of all functions h whose coefficient vectors are 2s-sparse
and let rh ∈ CN denote the coefficient vector for each h ∈ H2s. We assume that we have
Nj for all j ∈ [D]. Let α > 1, δ̃ ≤ 1

č
√
s

for some č >
√

2 and δ′ ∈ (0, 1), satisfying√
1−δ′
1+δ′ <

č
α − 1, and p ∈ (0, 1). If

m1 ≥ ᾱK2
(
δ̃
)−2

smax

log2(4s) · d · log

eMD
1+ 1

d log3(4s)

d

 log(9m1), log(2D/p)

 and

m2 ≥ β̄K2
(
δ′
)−2

smax

log2(4s) · d · log

eMD
1+ 1

d log3(4s)

d

 log(9m2), log(2D/p)

 ,

for absolute constants ᾱ and β̄, then denoting r := rh for simplicity, Algorithm 3 finds

P ⊃
{
n ∈ [M ]D | |rn|2 ≥

‖r‖22
α2s

}
of |P| = 2s with probability at least 1− p.

Proof. Given m1 and m2, by Theorem 3, the probability of either Bj or Cj not sat-

isfying δ̃2s+1 < δ̃ or δ′2s < δ′ respectively is at most p
2D for each j ∈ [D] \ {0}, and

thus the union bound over all j yields the failure probability at most p(D−1)
D < p. That

is, Theorem 3 ensures that Bj and Cj have RIP uniformly for all j ∈ [D] \ {0} with
probability at least 1 − p. Repeatedly applying Lemma 8 yields the final P(= PD−1) ⊃{
n ∈ [M ]D

∣∣ |rn|2 ≥ ‖r‖22α2s

}
of cardinality 2s by combining the fact that P0(= N0) ⊃{

ñ ∈ [M ]
∣∣ ‖r(ñ,··· )‖22 ≥

‖r‖22
α2s

}
.

4.3 Support Identification

In this section, it remains to combine the results of entry identification and pairing
processes in order to give the complete support identification algorithm and to prove
Lemma 2 which is the main ingredient of Theorem 2 in Section 3.3. The support iden-
tification starts with the entry identification providing Nj , j ∈ [D] as outputs, and in
turn, the pairing takes Nj , j ∈ [D] as inputs and outputs P of cardinality 2s containing{
n ∈ [M ]D | |rn|2 ≥

‖r‖22
α2s

}
. Accordingly, we can get the following result.
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Lemma 9. The set P contains at most 2s index vectors satisfying

‖rPc‖2 ≤
√

2s
‖r‖22
α2s

=

√
2‖r‖2
α

,

where rPc is the vector of r restricted to the complement of P.

Proof. Note that r is 2s-sparse and by Theorem 5 the squared magnitude of each rn at

Pc is less than
‖r‖22
α2s

so that we obtain the desired result.

Finally, we are ready to prove Lemma 2 in order to complete the analysis of support
identification.

Proof of Lemma 2. By choosing α = 7 and P = Ω in Lemma 9, we obtain the desired
upper bound of ‖(rh)Ωc‖2 with probability at least 1 − 2p given the grids GI and GP .
The union bound of the failure probabilities p of Lemma 6 and Theorem 5 gives the
desired probability. It remains to demonstrate the sampling complexity combining

∣∣GI ∣∣
and

∣∣GP ∣∣, and the runtime complexity combining Algorithms 2 and 3. The first term∣∣GI ∣∣ is mL′D where m comes from Lemma 6, L′ is defined as in Section 3.3 , and D,
the number of changes in j ∈ [D], therein. We emphasize that m samples are utilized
repeatedly in order to implicitly construct L proxy functions combined with different
Gaussian weights so that L does not affect the sampling complexity but affects the runtime
complexity. The second term

∣∣GP ∣∣ is m1m2(D − 2) + m1 where m1 and m2 are from
Theorem 5, and D − 2 is the number of changes in j ∈ [D − 1] \ {0}. We remind
readers that CD−1 = 1 implied by ZD−1 = ∅ so that m1 samples are utilized instead of
m1m2 when j = D − 1. Now, we consider the runtime complexity. The first term in
runtime complexity is O(mLLD) from Algorithm 2 where mL computations are taken
to implicitly construct the L proxy functions, O(L) is defined as in Section 3.3 , and D
comes from the for loop from Algorithm 2. The second term in runtime complexity is
4s2 (m1m2(D − 2) +m1)+4s2m1

∑D−1
j=1 (j+1) from Algorithm 3 since 4s2 energy estimates

are calculated using the m1m2 samples for each j ∈ [D − 1] \ {0} and m1 samples for
j = D − 1, and the evaluations of Tj;ñ(wj,`) are calculated for all ñ ∈ Pj , ∀j ∈ [D] \ {0}.
Here, it is assumed that it takes O(1) runtime to evaluate each ith component Ti;ñi((wj,`)i)
of Tj;ñ(wj,`).

5 Empirical Evaluation

In this section Algorithm 1 is evaluated numerically and compared to CoSaMP [50],
its superlinear-time progenitor. Both Algorithm 1 and CoSaMP were implemented in
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MATLAB for this purpose. All code used to produce the plots below is publicly available
at [11].

5.1 Experimental Setup

We consider two kinds of tensor product basis functions below: Fourier and Chebyshev.
In both cases each parameter, M , D, and s, is changed while the others remain fixed
so that we can see how each parameter affects the runtime, sampling number, memory
usage, and error of both Algorithm 1 and CoSaMP. For all experiments below d = D so
that I = [M ]D. Every data point in every plot below was created using 100 different
randomly generated trial signals, f , of the form

f(x) =
∑
n∈S

cnTn(x), (5.1)

where each function’s support set, S, contained s index vectors n ∈ [M ]D each of which
was independently chosen uniformly at random from [M ]D, and where each function’s
coefficients cn were each independently chosen uniformly at random from the unit circle
in the complex plane (i.e., each cn = e

iθ where θ is chosen uniformly at random from
[0, 2π]). In the Fourier setting the basis functions Tn(x) in (5.1) were chosen as per (5.2),
and in the Chebyshev setting as per (5.3).

Below a trial will always refer to the execution of Algorithm 1 and/or CoSaMP on a
particular randomly generated trial function f in (5.1). A failed trail will refer to any trial
where either CoSaMP or Algorithm 1 failed to recover the correct support set S for f .
Herein the parameters of both Algorithm 1 and CoSaMP were tuned to keep the number
of failed trials down to less than 10 out of the total 100 used to create every data point
in every plot. Finally, in all of our plots Algorithm 1 is graphed with red, and CoSaMP
with blue.

5.2 Experiments with the Fourier Basis for D = [0, 1]D

In this section we consider the Fourier tensor product basis

Tn(x) :=

D−1∏
j=0

e
2πinjxj (5.2)

whose orthogonality measure is the Lebesgue measure on D = [0, 1]D. In Figures 3, 4, 5
and 6, results are shown for approximating Fourier-sparse trial functions (5.1) using noise-
less samples y. In Figures 3 and 6a, the parameter M changes over the set {10, 20, 40, 80}
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Figure 3: Fourier basis, M ∈ {10, 20, 40, 80}, D = 4, s = 5
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Figure 4: Fourier basis, M = 10, D = {2, 4, 6, 8}, s = 5

while D = 4 and s = 5 are held constant. In Figure 3a, the average runtime (in seconds) is
shown as M changes. The average here is calculated over all 100 trials at each data point
excluding any failed trials. As we can see, the runtime of Algorithm 1 grows very slowly
as M grows, whereas the runtime grows fairly quickly for CoSaMP since its measurement
matrix’s size increases significantly as M grows. Figure 3b shows the number of samples
used by both CoSaMP and Algorithm 1. We can see that Algorithm 1 requires more
samples due mainly to its support identification’s pairing step. On the other hand, we
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Figure 5: Fourier basis, M = 20, D = 4, s = {1, 2, 3, · · · , 10}

Figure 6: Fourier basis, memory usage when varying M , D and s

can see in Figure 6a that the memory usage of CoSaMP grows very rapidly compared to
the slow growth of Algorithm 1’s memory usage. This exemplifies the tradeoff between
Algorithm 1 and CoSaMP – Algorithm 1 uses more samples than CoSaMP in order to
reduce its runtime complexity and memory usage for large D and M . Finally, both meth-
ods produce outputs whose average errors (over the trials where they don’t fail) are on
the order of 10−15 to 10−14, which is also observed in all other experiments in Sections
5.2, 5.3 and 5.4.

In Figures 4 and 6b, the number of dimensions, D, changes while both M = 10
and s = 5 are held fixed. Here, we can clearly see the advantage of Algorithm 1 for
functions of many variables. The runtime and memory usage of CoSaMP blow up quickly
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Figure 7: Chebyshev basis, M ∈ {10, 20, 40, 80}, D = 4, s = 5

as D increases due to the gigantic matrix-vector multiplies it requires to identify support.
Algorithm 1, on the other hand, shows much slower growth in runtime and memory usage.
When D = 10, for example, CoSaMP requires terabytes of memory whereas Algorithm 1
requires only a few gigabytes. In Figures 5 and 6c, s varies in {1, 2, 3, · · · , 10} while
M = 20 and D = 4 are fixed. Since Algorithm 1 has Õ(s5) scaling13 in runtime due to
its pairing step, it suffers as sparsity increases more quickly than CoSaMP does. Note
that the crossover point is around s = 8, so that Algorithm 1 appears to be slower than
CoSaMP for all s > 8 when M = 20 and D = 4. Though “only polynomial in s”, it is
clear from these experiments that the runtime scaling of Algorithm 3 in s needs to be
improved before the methods proposed herein can become truly useful in practice.

5.3 Experiments with the Chebyshev Basis for D = [−1, 1]D

In this section we consider the Chebyshev tensor product basis

Tn(x) := 2
1
2
‖n‖0

D−1∏
j=0

cos (nj arccos(xj)) (5.3)

whose orthogonality measure is dν = ⊗j∈[D]
dxj

π
√

1−x2j
on D = [−1, 1]D. Runtime and

sampling complexity graphs are provided in Figures 7, 8 and 9 as M , D, and s vary,

13The Õ complexity notation here neglects all logarithmic factors while simultaneously holding D, K,
d, η, ‖cf‖2 and L constant.
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Figure 8: Chebyshev basis, M = 20, D = {2, 4, 6}, s = 5
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Figure 9: Chebyshev basis, M = 10, D = 6, s = {1, 2, 3, · · · , 10}

respectively. In Figure 10, memory usage is also graphed for each M , D and s variation.
Since this Chebyshev product basis has a BOS constant of K = 2D/2, both CoSaMP and
Algorithm 1 suffer from a mild exponential growth in sampling, runtime, and memory
complexity as D increases (recall that d = D for these experiments). This leads to
markedly different overall performance for the Chebyshev basis than what is observed for
the Fourier basis where K = 1. A reduction in performance from the Fourier case for
both methods is clearly visible, e.g., in Figure 8. Nonetheless, Algorithm 1 demonstrates
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Figure 10: Chebyshev basis, memory usage when varying M , D, and s

the expected reduced runtime and sampling complexity dependence on M and D over
CoSaMP in Figures 7 and 8, as well as a striking reduction in its required memory usage
over CoSaMP in Figure 10 even when its runtime complexity is worse in Figure 9a.
Unfortunately, the Õ(s5) runtime dependance of Algorithm 3 on sparsity is again clear in
Figure 9a leading to a crossover point of Algorithm 1 with CoSaMP at only s = 3 when
M = 10 and D = 6. This again clearly marks the pairing process of Algorithm 3 as being
in need of improvement.

5.4 Experiments for Larger Ranges of Sparsity s and Dimension D

Figures 11 and 12 explore the performance of Algorithm 1 on Fourier sparse functions for
larger ranges of D and s, respectively. In Figure 11, a function of D = 75 variables can
be recovered in just a few seconds when it is sufficiently sparse in the Fourier basis. It
is worth pointing out here that when D = 75 the BOS in question contains 2075 ∼ 1097

basis functions, significantly more than the approximately 1082 atoms estimated to be in
the observable universe. We would like to emphasize that Algorithm 1 is solving problems
in this setting that are simply too large to be solved efficiently, if at all, using standard
superlinear-time compressive sensing approaches due to their memory requirements when
dealing with such extremely large bases. Figure 12 also shows that functions with larger
Fourier sparsities, s, than previously considered (up to s = 160) can be be recovered in
about an hour or less from a BOS of size 405 = 102, 400, 000.

In Figures 13 and 14 we consider the functions which are sparse in the Chebyshev
product basis. Again, due to the larger BOS constant of the Chebyshev basis, the D and
s ranges that our method can deal efficiently are smaller than in the Fourier case. When
D is 12 or s is 20 in Figures 13 and 14, respectively, for example, it takes a few hours for
Algorithm 1 to finish running. We again remind the readers that standard superlinear-
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Figure 11: Fourier basis, M = 20, D ∈ {5, 10, 15, 20, · · · , 75}, s = 5
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Figure 12: Fourier basis, M = 40, D = 5, s ∈ {5, 10, 20, 40, 80}

time compressive sensing methods cannot solve with such high dimensional problems at
all, however, on anything less than a world class supercomputer due to their memory
requirements. In the Figure 13 experiments the Chebyshev BOS contains 2012 ∼ 1015

basis functions when D = 12. In the Figure 14 experiments the BOS contains just over
100 million basis functions.
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Figure 13: Chebyshev basis, M = 20, D ∈ {2, 4, 6, · · · , 12}, s = 5
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Figure 14: Chebyshev basis, M = 40, D = 5, s ∈ {2, 4, 6, · · · , 20}

5.5 Recovery of Functions from Noisy Measurements

In Figures 15 and 16 we further consider exactly sparse trial functions (5.1) whose function
evaluations are contaminated with Gaussian noise. That is, we provide Algorithm 1 with
noisy samples

y′ = y + g′ = y + σ
‖y‖2

‖g‖2
g
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Figure 15: Algorithm 1, Fourier basis, M = 10, D ∈ {4, 6, 8, 10}, s = 5, SNRdB ∈
{0, 10, 20, · · · , 80}

where y contains noiseless samples from each f as per (1.5), g ∼ N (0, I), and σ ∈ R+ is
used to control the Signal to Noise Ratio (SNR) defined herein by

SNRdB := 10 log10

(
‖y‖22
‖g′‖22

)
= − 10 log10

(
σ2
)
.

Figures 15 and 16 show the performance of Algorithm 1 for the Fourier and Chebyshev
product bases, respectively, as SNR varies. Figure 15a shows the average runtime for
each D ∈ {2, 4, 6, 8} as SNRdB changes. When SNRdB is close to 0 (which means that
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Figure 16: Algorithm 1, Chebyshev basis, M = 10, D ∈ {6, 8}, s = 5, SNRdB ∈
{0, 10, 20, · · · , 80}

the `2-norm of noise vector is the same as the `2-norm of sample vector), the runtime
gets larger due to Algorithm 1 using a larger number of overall iterations. The runtime
also increases mildly as D increases in line with our previous observations. The sampling
number in Figure 15b is set to be three times larger than the sampling number used in
the noiseless cases. Figure 16 shows the results of Algorithm 1 applied to functions which
are sparse in the Chebyshev product basis. Similar to the Fourier case, the runtime grows
as the noise level gets worse in Figure 16a. Also, larger D results in the larger runtime
as previously discussed. In Figure 16b, the sampling number is also set by tripling the
sampling number used in noiseless cases.
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As above, in both Figures 15 and 16 the average `2-error is computed by only consid-
ering the successful trials where every element of f ’s support, S, is found. Here, however,
the percentage of successful trials falls below 90% for lower SNR values. The success rates
(i.e., the percentage of successful trials at each data point) are therefore plotted in Figures
15d and 16d. Both figures show that a smaller SNRdB results in a smaller success rate,
as one might expect. As SNRdB increases, however, the `2-error decreases linearly for the
successful trials.

5.6 Some Additional Implementational Details

In the line 13 of Algorithm 1 solving the least square problem can be accelerated by the
iterative algorithms such as the Richardson method or the conjugate gradient method
when the size of the matrix ΦT is large [50]. For our range of relatively low sparsities,
however, there was not much difference in the runtime between using such iterative least
square solving algorithms and simply multiplying yE by the Moore-Penrose inverse, Φ†T :=
(Φ∗TΦT )−1Φ∗T . Thus, we simply form and use the Moore-Penrose inverse for both CoSaMP
and Algorithm 1 in our implementations below.

Similarly, in our CoSaMP implementation the conjugate transpose of the measurement
matrix, Φ, of size m×MD is simply directly multiplied by the updated sample vector v in
each iteration in order to obtain the signal proxy used for CoSaMP’s support identification
procedure (recall that d = D in all experiments below so that I = [M ]D). It is important
to note that this matrix-vector multiplication can generally be done more efficiently if,
e.g., one instead uses nonuniform FFT techniques [31] to evaluate Φ∗y for the types of
high-dimensional Fourier and Chebyshev basis functions considered below. However, such
techniques are again not actually faster than a naive direct matrix multiply for the ranges
of relatively low sparsities we consider in the experiments herein.14 Furthermore, such
nonuniform FFT techniques will still exhibit exponential runtime and memory dependence
on D in the high-dimensional setting even for larger sparsity levels. Thus, nonuniform
FFTs were not utilized in our MATLAB implementation of CoSaMP.

Again, we remind the reader that all the MATLAB codes used to produce the plots
above is publicly available [11]. We invite the interested reader to download it and repro-
duce the plots herein at their leisure.

14CoSaMP always uses only m = O(s ·D logM) samples in the experiments herein which means that

its measurement matrix’s conjugate transpose, Φ∗ ∈ CM
D×m, can be naively multiplied by vectors in only

O(s ·D logM ·MD)-time. When s is small this is comparable to the O(D logM ·MD) runtime complexity
of a (nonuniform) FFT.
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6 Future Work

In this paper we develop a sublinear-time compressive sensing algorithm for rapidly learn-
ing functions of many variables that admit sparse representations in arbitrary Bounded
Orthonormal Product (BOP) bases. Our results are universal in the sense that we give
randomized constructions for highly structured grids which are proven to allow for the
swift recovery of all functions which are sufficiently sparse in a given BOP basis, with
high probability. This is the first method of its kind for general BOP bases. As a result,
there is much work to do before these preliminary results reach their full potential.

First, and perhaps most obviously, the theoretical guarantees developed herein only
apply to exactly BOPB-sparse functions despite the fact that our numerical experiments
suggest that the algorithm also works for nearly BOPB-sparse functions. As a result,
it should be possible to extend the main theorem herein to obtain best s-term approx-
imation guarantees in the sense of Cohen et al. [16] for more arbitrary functions while
simultaneously improving its complexity bounds (see, e.g., [14] for preliminary results in
this direction). Specific complexity improvements that should be considered include an
attempt at reducing the current cubic-in-s sampling complexity of our main theoretical
result. This necessitates that a better pairing method be developed in Section 3 that
requires fewer function evaluations.

Additionally, different dimension matching techniques for improving the pairing and
entry identification steps of our proposed support identification method could be consid-
ered. Both steps are currently dimension incremental in the sense that all entries of the
energetic index vectors are found one dimension at a time, and then extended into longer
prefixes one dimension at a time. However, there is nothing stopping either of these steps
from being generalized so that several short (potentially overlapping) prefixes of energetic
index vectors are found in parallel and then merged/combined in a different order. This
process could even be made adaptive to help eliminate interference between different index
vector prefixes during a modified pairing phase’s energy estimations. For example, any
time a set of energetic prefixes differs from all the others under consideration in its jth

entry one could compute an inner product in the jth dimension of h in a fashion similar
to our current entry identification step in order to better isolate those prefixes’ energy
estimates from the others. Such methods could potentially lead to more accurate pairing
results in noisy conditions.

Finally, there is also a good deal of improvement possible in the numerical implemen-
tation of the methods developed herein. In particular, Algorithm 1 was implemented in
a generic fashion in our Section 5 experiments. For better results the implementation
should be tuned to the particular BOPB being considered. It is also important to note
that Algorithm 1 is inherently embarrassingly parallel in nature. In particular, all of the
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energetic index vector entry sets Nj can be computed in parallel. Similarly, during the
pairing step of support identification several prefixes can be grown simultaneously from,
e.g., both the front and end of the index vector until the energetic prefixes and suffixes
meet. Upon meeting in the middle, one additional energy estimate could then be done to
correctly pair the proper prefixes and suffixes together.
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[17] G. Dahlquist and Å. Björck. Numerical Methods in Scientific Computing: Volume
1. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
ISBN 0898716446, 9780898716443.

[18] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on pure and
applied mathematics, 57(11):1413–1457, 2004.

[19] R. DeVore, G. Petrova, and P. Wojtaszczyk. Approximation of functions of few
variables in high dimensions. Constructive Approximation, 33(1):125–143, 2011.

[20] D. L. Donoho. Compressed sensing. IEEE Transactions on information theory, 52
(4):1289–1306, 2006.
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