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Abstract—We consider the recovery of sparse signals, f ∈
R

N , containing at most k � N nonzero entries using linear
measurements contaminated with i.i.d. Gaussian background
noise. Given this measurement model, we present and analyze
a computationally efficient group testing strategy for recovering
the support of f and approximating its nonzero entries. In par-
ticular, we demonstrate that group testing measurement matrix
constructions may be combined with statistical binary detection
and estimation methods to produce efficient adaptive sequential
algorithms for sparse signal support recovery. Furthermore,
when f exhibits sufficient sparsity, we show that these adaptive
group testing methods allow the recovery of sparse signals using
fewer noisy linear measurements than possible with non-adaptive
methods based on Gaussian measurement ensembles. As a result
we improve on previous sufficient conditions for sparsity pattern
recovery in the noisy sublinear-sparsity regime.

I. INTRODUCTION

Consider a vector f ∈ R
N containing at most k � N

nonzero entries. We want to recover f using (potentially
adaptive) noisy linear measurements. Define the support of
f to be the positions of f ’s nonzero entries,

supp(f) =
{

j
∣∣ |fj | > 0

}
⊆ [1, N ].

Note that in order to recover f we must identify supp(f).
Furthermore, once we have identified the support of f it is
straightforward to approximate its nonzero entries. Thus, we
focus primarily on support recovery. Related application areas
include compressive sensing, sparse image recovery, multi-
target localization, and signal denoising.

Let M be a m × N real-valued measurement matrix, and
denote the jth-row ofM byMj . Next, define G to be an m×
N random real-valued Gaussian noise matrix consisting of m ·
N independently and identically distributed (i.i.d.) mean zero
Gaussian random variables. Finally, for simplicity, assume we
have one detector which, at time tj ∈ R

+, returns a noisy
linear measurement (i.e., dot product) of the form

〈Mj , f + Gj〉 = 〈Mj , f〉+ 〈Mj ,Gj〉. (1)

Examples of such single detector systems include the famous
single pixel camera [5]. Given such a system we want to
know how few measurements we can take and still recover
the support of f . Equivalently, we want to know how small
we can make m and still be able to entirely recover supp(f)
using M.

We will consider a measurement matrix M in the Equa-
tion 1 model above to be non-adaptive if the generation of
each row, Mj , is independent of the results of 〈Mj−1, f +
Gj−1〉, . . . , 〈M1, f+G1〉. In effect,M is non-adaptive if it can
be wholly instantiated before any measurements are actually
taken. If, on the other hand, any single measurement row
may depend on the results of previous measurements we will
refer to M as adaptive. In this paper we present adaptive
group testing methods for the sparse support recovery problem
capable of outperforming a wide class of non-adaptive meth-
ods in the noisy sublinear-sparsity regime. The work herein
is a continuation of previous work which considered group
testing methods for sparse signal recovery using noiseless
measurements (see Section 5 of [7] and references therein).

A. Results and Related Work

Recently, several Bayesian approaches have been proposed
for compressive sensing with adaptive measurements (e.g.,
see [8], [1]). Furthermore, they have been shown to work
well in practice, often requiring fewer noisy measurements
to recover sparse signals than their non-adaptive competitors.
In this paper we seek to prove theoretically that adaptive
measurement procedures can indeed reliably recover sparse
signals using fewer noisy linear measurements than non-
adaptive approaches under the above background noise model
(see Equation 1). To accomplish this goal we will study sparse
support recovery.

A large body of work on solving sparse support identi-
fication problems has concentrated on measurement matri-
ces whose entries are all i.i.d. mean zero Gaussian random
variables (e.g., see [12],[6], and references therein). Such
measurement matrices are particularly relevant to study given
their near-optimal properties with respect to non-adaptive
compressive sensing [2], [3] measurement design (e.g., see
[10]). In particular, we will focus on the following result con-
cerning support recovery using noisy non-adaptive Gaussian
measurements.

Theorem 1: Let Cmin = min
{
|fj |

∣∣ j ∈ supp(f)
}

be the
magnitude of the smallest of the k non-zero entries in f ∈ RN .
Next, suppose that M is an m × N non-adaptive random
matrix with each row drawn from the zero-mean isotropic
Gaussian distribution N (0, IN×N ). Furthermore, assume the
noise matrix, G, has i.i.d. N (0, σ2/N) entries so that ac-
cumulated per-row measurement noise from Equation 1 is



〈Mj ,Gj〉 ∼ N (0, ‖Mj‖22 · σ2/N). In this case there exists
a constant c ∈ R+ such that any algorithm using

m < c · σ2

C2
min

· log(N/k)

non-adaptive Gaussian measurements as input will asymptot-
ically fail to reliably recover supp(f). That is, as N → ∞
any algorithm will fail to recover supp(f) with probability
bounded above 0.
Proof Sketch: The proof follows by adapting Wainwright’s
necessary conditions for perfect sparse support identification
via non-adaptive Gaussian measurements (see [12]) to our
background noise measurement model. Informally, adapting
the proof depends on utilizing the fact that ‖Mj‖22 quickly
converges to N with probability rapidly approaching 1 as
N →∞. �

In effect, Theorem 1 provides a non-adaptive Gaussian
measurement bound below which any recovery method must
fail to be asymptotically reliable for support identification.
In this paper we utilize adaptive combinatorial group testing
[4] methods to recover highly sparse signals with fewer
noisy measurements (see Equation 1) than such non-adaptive
methods require. In particular, using group testing methods in
combination with statistical binary detection and estimation
techniques [9] we prove the following result for the special
case of Gaussian measurement noise.

Theorem 2: Let Cmin = min
{
|fj |

∣∣ j ∈ supp(f)
}

be the
magnitude of the smallest non-zero entry in f ∈ R

N , and
suppose the noise matrix, G, has i.i.d. N (0, σ2/N) entries.
Furthermore, suppose that σ2/C2

min is Ω
(
k · ln3 N

)
1. Then,

there exists a constant c ∈ R
+ such that if the number of

allowed measurements, m, exceeds

c · σ2

C2
min

· ln2
(
k · ln3 N · ln2(k ln2 N)

)
our adaptive group testing methods can recover supp(f) with
probability → 1 as N →∞.

In order to compare Theorems 1 and 2, consider the
following example. Suppose that k is lnO(1) N and σ2/C2

min

is Ω
(
k · ln3 N

)
. In this regime we can see that any asymp-

totically reliable non-adaptive Gaussian measurement scheme
will require the use of

Ω
(

σ2

C2
min

· lnN

)
measurements. On the other hand, our non-adaptive group
testing methods are asymptotically reliable using

O

(
σ2

C2
min

· ln2 (lnN)
)

measurements. Hence, if f is sufficiently sparse and our
measurements sufficiently noisy, our adaptive methods will
asymptotically outperform any sparse support recovery method
utilizing non-adaptive Gaussian measurement ensembles.

1Let f, g : R+ → R+. Then, f is Ω(g) if and only if g is O(f).

The remainder of this paper is structured as follows. In Sec-
tion II we describe our measurement model and fix notation.
Then, in Section III, we present and analyze a simple binary
search procedure for recovering 1-sparse signals in noise. In
Section IV we describe a method for reducing general sparse
support recovery problems to a collection of 1-sparse support
recovery problems. This allows us to use multiple binary
search procedures to recover the support of any sparse signal.
Finally, we conclude with a short discussion in Section V.

II. PRELIMINARIES

For ease of presentation we will phrase the sparse approx-
imation problem in terms of recovering functions consisting
of k weighted Dirac delta functions on the unit interval [0, 1].
This will allow us to bisect intervals (i.e., sub-arrays) at will
without considering odd array sizes. Thus, we are interested
in recovering functions of the form

f(x) =
k∑

j=1

Cj · δ(x− xj) (2)

where each Cj ∈ R, and xj ∈ [0, 1], for j ∈ Z ∩ [1, k]. In
recovering f we want to approximate both Cj and xj for all
j ∈ Z∩[1, k]. In approximating each xj we will be satisfied to
locate xj to within 1

N−tolerance for a given N ∈ Z+ which
is guaranteed to have

1
N

< min
{
|xj−xl|

∣∣ j ∈ [1, k]∩Z, l ∈ Z∩[1, k]−{j}
}
. (3)

In other words, N gives a guaranteed separating distance
between the Dirac delta functions composing f .

We are allowed to take integral measurements at each time
t ∈ R+ to determine f . Let I be a subset of [0, 1] and define
the indicator function for I,

II : [0, 1] 7→ {0, 1},

to be
II(x) =

{
1 if x ∈ I
0 otherwise .

For any subset I ⊆ [0, 1] we can measure

mI(t) =
∫
II · f dx +

∫
II dWt, (4)

where Wt(x) is a Wiener process that generates Gaussian
measurement noise over [0, 1]. Furthermore, we assume that
Wt(x) is regenerated identically and independently at each
time t ∈ R+. Thus, for each time t ∈ R+ we have that∫

II dWt and
∫
IJ dWt

are i.i.d. Gaussian random variables whenever I ∩J = ∅ and∫
II dx =

∫
IJ dx. (5)

Similarly, for every two times t1 6= t2 we have that∫
II dWt1 and

∫
IJ dWt2



are i.i.d. Gaussian random variables as long as I,J ⊆ [0, 1]
satisfy Equation 5. We finish by defining σ2

I to be the variance
of mI(t) for a given I ⊆ [0, 1]. Given the assumptions above
we can see that σ2

I = σ2
J whenever I,J ⊆ [0, 1] satisfy

Equation 5. Finally, we will denote the noise over the entire
unit interval by σ2 = σ2

[0,1].

III. SINGLE SPIKE RECOVERY

In this section we will assume that our function f consists
of a single Dirac delta function (i.e., k = 1 in Equation 2).
We will employ a simple adaptive binary search procedure to
locate the support of f . However, before we can present the
procedure in detail and prove that it succeeds we must first
define the left and right subsets of any particular set I ⊆ [0, 1].
Given I ⊆ [0, 1] with positive measure, define xmid ∈ [0, 1]
to be the unique point with∫ xmid

0

II dx =
∫ 1

xmid

II dx =
1
2

∫
II dx.

We then define the left subset of I, denoted Il, to be

Il = [0, xmid) ∩ I. (6)

Similarly, we define the right subset of I, denoted Ir, to be

Ir = [xmid, 1] ∩ I. (7)

Given this definition, we are ready to discuss Algorithm 1 for
locating a single Dirac delta function.

Assume that C1 is positive for the time being. If so, we
can begin looking for the support of f (i.e., x1) in [0, 1]
using a binary search strategy. As long as the additive mea-
surement noise is i.i.d. on both [0, 1

2 ) and [ 12 , 1], the interval
which contains x1 will have a larger mean than the interval
not containing x1. Thus, our measurements for the interval
containing x1 will tend to be larger more often. Using this
observation to our advantage, we can correctly choose the
subinterval containing x1 with high probability by choosing
the subinterval that returns the largest measurements most
often. Repeated application of this decision principle yields our
binary search. If C1 is negative the binary search is analogous.
We simply repeatedly choose the subinterval which returns the
smaller value more often. See Algorithm 1 for pseudocode.

Lemma 1: Fix p ∈ (0, 1). Then Algorithm 1 can correctly
locate a C1 magnitude spike within either I+ or I− with
probability at least p using less than(

54π · σ2
I

C2
1

+ log2(2N)
)
· ln
(

log2 2N

1− p

)
measurements.
Proof Sketch: Suppose C1 > 0. Define I+

c to be the “correct”
left/right subset of I+ in line 7 of Algorithm 1 contain-
ing the spike. Let I+

w be the other “wrong” subset. Bound
P

[
mI+

c
(t) > mI+

w
(t·)
]
− 1

2 away from zero in the noisy
setting where C1 < 2σI+

w
and then apply the Chernoff bound.

The small noise case is obvious. �
Finally, we deal with the fact that we don’t have a priori

knowledge of the sign of C1 by performing two binary

Algorithm 1 ISOLATED DELTA

1: Input: Initial subset I ⊆ [0, 1], position tolerance N ,
magnitude tolerance α, success probability p

2: Output: Estimate of magnitude, C1, and position, x1

3: I+ ←− I
4: I− ←− I

LOCATE x1

5: while
∫
II+ dx > 1

N do
6: Assuming C1 is positive, find x1...
7: if mI+

l
(t) > mI+

r
(t) the majority of T (N, p) trails

then
8: I+ ←− I+

l

9: else
10: I+ ←− I+

r

11: end if
12: end while
13: Repeat lines 5 – 12 assuming C1 is negative to get I−.

ESTIMATE C1

14: C̃+ ←− Estimated mean from mI+(t·) (α-precise)
15: C̃− ←− Estimated mean from mI−(t·) (α-precise)
16: Decide if C1 is positive or negative...
17: if

∣∣C̃+
∣∣ > ∣∣C̃−

∣∣ then
18: C̃1 ←− C̃+

19: Ie ←− I+

20: else
21: C̃1 ←− C̃−

22: Ie ←− I−
23: end if
24: Return x̃1 = midpoint of Ie, C̃1

searches in parallel. One search assumes that C1 is positive
while the other assumes it is negative. One of the two searches
must succeed with high probability since C1 is nonzero. If
C1 is positive, our search assuming positivity will locate the
spike with high probability. If C1 is negative, our search
assuming negativity will locate the spike with high probability.
The problem is thus reduced to deciding which search result
(i.e., the interval resulting from the search assuming C1 is
positive versus negative) is correct. We denote the interval
resulting from the binary search assuming C1 is positive by
I+. Similarly, we let I− denote the interval resulting from the
binary search that assumes C1 is negative. We are guaranteed
to have I+ ∩ I− = ∅. To finish we must decide whether
x1 ∈ I+ or x1 ∈ I−.

We now address the estimation portion of Algorithm 1
(lines 14 through 23). In fact, this step is also necessary
to complete the location of our spike if the sign of C1 is
unknown. The approach we use is to simply estimate the
mean of measurements from I+ and I−. One interval, I+,
should contain our spike if C1 is positive. Similarly, I− should
contain our spike if C1 is negative. In either case, the interval
not containing x1 will have a smaller absolute mean value
with high probability (i.e., if we assume mean 0 noise).

Lemma 2: Fix α ∈ (0, 1
2 ), and p ∈ ( 1

2 , 1). Finally, suppose



that x1 ∈ I+∪I− and Var [mI(t)] = σ2
I . Then, Algorithm 1

(lines 14 through 23) can both determine which set x1 belongs
to (i.e., either I+ or I−) and estimate C1 to precision
α · C1 with probability at least p. The number of required
measurements is less than 2 + 2 · σ2

I
N ·α2C2

1
· log

(
1

1−p

)
.

Proof Sketch: Follows by bounding the probability that a
maximum likelihood estimator for the mean of mI−/+(t·)
measurements deviates by > αC1 from the true mean. �

We conclude with a recovery theorem for Algorithm 1.
Theorem 3: Suppose there is a single spike C1 · δ(x− x1)

in I ⊆ [0, 1]. Let σ2
I = Var [mI(t)]. Fix α ∈ (0, 1

2 ), and p ∈
( 1
2 , 1). Then, a variant of Algorithm 1 can output x̃1, C̃1 for

which both
∣∣x̃1−x1

∣∣ ≤ 1
2N and

∣∣C̃1−C1

∣∣ ≤ α·C1 are true with
probability at least p. The number of required measurements
is O

(
log N +

(
σ2
I

C2
1

+ σ2
I

N ·α2C2
1

)
· log

(
log N
1−p

))
.

The proof of Theorem 3 follows from Lemmas 1 and 2.
To finish, we quickly note that the constant factors provided
in Lemmas 1 and 2 are crude. However, they suffice given
our interest in asymptotic behavior. Finally, we note that many
different variants of Algorithm 1 would also satisfy Theorem 3
while simultaneously yielding better results in practice. In
particular, each binary search decision could be made using
optimal statistical binary detection methods (e.g., [9], [11]).

IV. MULTIPLE SPIKE RECOVERY

In this section we will demonstrate how to utilize Algo-
rithm 1 to recover signals consisting of k spikes (i.e., how to
determine f in Equation 2). Our approach will be to partition
[0, 1] into several smaller subsets of near-equal length, so that
each spike is isolated by itself in at least one of the subsets.
We then apply Algorithm 1 to each subset. Algorithm 1 will
recover each spike isolated in a subset by Theorem 3. On
subsets which don’t isolate a spike we will, at worst, recover
a “fake spike” with a magnitude small enough to ignore. Thus,
as long as Algorithm 1 succeeds with high enough probability
on each subset, we will recover good estimates of all k spikes
and nothing extra. We now construct isolating subsets of [0, 1].

Given that any two distinct spike locations, xj1 and xj2 , are
assumed to have |xj1 − xj2 | > 1

N we may represent [0, 1] by
its N subintervals,

s0 =
[
0,

1
N

)
, . . . , sN−1 =

[
1− 1

N
, 1
]

, (8)

only k of which contain spikes (i.e., we may consider [0, 1]
to be a k-sparse array of length N ). Keeping this in mind we
will demonstrate how to create q disjoint unions of these sj-
subsets, each of length O

(
1
q

)
, which will isolate each spike

from all the others with fixed probability. We can then use
several of these disjoint unions to separate each of our spikes
with arbitrarily high probability. We begin by describing our
disjoint unions.

Let q be one of the first b2k logk Nc prime numbers larger
than k. For each h ∈ [0, q) ∩ Z form the set

Iq,h =
⋃

j≡h mod q

sj (9)

and then set

Iq =
{
Iq,h

∣∣ h ∈ [0, q) ∩ Z
}

(10)

Iq is our set of disjoint sj-unions. The following Lemma
demonstrates that a randomly constructed Iq is likely to
contain many subsets of [0, 1] with a single spike.

Lemma 3: Fix an f containing at most k spikes (see Equa-
tion 2). Choose one of the first 2kblogk Nc prime numbers
larger than k uniformly at random. Then each xj , with
probability at least 1

2 , is isolated in its associated Iq,h ∈ Iq.
In other words, for each xj there exists an Iq,h ∈ Iq so that
{x1, . . . , xj , . . . , xk} ∩ Iq,h = {xj} with probability > 1

2 .
Proof: Each xj may collide with one of the other at most (k−
1) spikes in a Iq,h-subset for at most blogk Nc values of q by
the Chinese Remainder Theorem. Thus, xj may collide with
any of the other ≤ (k−1) spikes for at most (k−1) ·blogk Nc
values of q. Hence, more than half of our potential q-values
must isolate xj from the other at most k−1 spike supports. �

Looking at Lemma 3 we can see that if we select
log2

(
k

1−p

)
q-primes independently and uniformly at random,

and then form their related Iq-subsets, we will isolate all of
f ’s spikes at least once with probability at least p. Hence,
we can utilize log2

(
2k

1−p

)
q-primes in order to guarantee that

we fail in isolating all spikes with probability at most 1−p
2 .

Let qmax be the largest of our randomly selected primes. If we
also guarantee that Algorithm 1 will fail (in the presence of an
isolated spike) on any of these at most qmax · log2

(
2k

1−p

)
total

Iq,h-subsets with probability at most 1−p
2 , we will assure our

overall desired success probability. This can be accomplished
by using Algorithm 1 with enough measurements to ensure
that it fails in correctly locating an isolated spike at each binary
search stage with probability at most

1− p

2 · qmax · log2

(
2k

1−p

)
· log2 N

. (11)

The end result will be that we correctly locate each spike at
least once with probability at least p. We can then estimate
each located spike’s magnitude using Lemma 2. Note that
qmax ≤ 10k · logk N log2(5k · logk N).

To finish recovery, we simply return all the spikes Algo-
rithm 1 outputs (allowing only one x̃j from each sj interval)
which have estimated magnitudes that are larger than half the
smallest spike magnitude we care to detect. By not reporting
spikes with smaller estimated magnitudes we exclude the
recovery of ‘fake’ or ‘insignificant’ spikes. If we have prior
knowledge of the smallest spike magnitude, Cmin, in f (see
Equation 2) we can guarantee f ’s approximate recovery with
high probability. If we have no prior knowledge of the smallest
spike magnitude, then all at most k spikes with magnitude
larger than the supplied Cmin value will be returned. Thus,
in general, we can guarantee the recovery of all sufficiently
large (i.e., at least Cmin in magnitude) spikes in f with
high probability. See Algorithm 2 for multiple spike recovery
pseudocode.



Algorithm 2 NO MORE THAN K DELTAS

1: Input: Maximum number of spikes k, Position toler-
ance N , magnitude tolerance α, smallest spike magni-
tude of interest Cmin, success probability p

2: Output: Estimates of magnitudes > 1
2Cmin,

{C̃1, . . . , C̃k}, and their positions, {x̃1, . . . , x̃k}
3: Find all spikes at least once...
4: SPIKES ←− ∅
5: for j = 1, j < O

(
log
(

k
1−p

))
, j + + do

6: q ←− Randomly select one of 2kblogk Nc primes > k
7: Form Iq (see Equation 10)
8: for each Iq,h ∈ Iq do
9: (x̃, C̃)←− Algorithm 1(Iq,h,2N ,α,1 - Equation 11)

10: if |C̃| > 1
2Cmin then

11: SPIKES ←− SPIKES ∪ {(x̃, C̃)}
12: end if
13: end for
14: end for
15: Remove excess spike approximations...
16: {(x̃0, C̃0), (x̃1, C̃1) . . . } ←− Sort SPIKES by x̃’s
17: for n = 0, n < |SPIKES|, n + + do
18: while |x̃n − x̃n+1| ≤ N

2 do
19: SPIKES ← SPIKES − {(x̃n+1, C̃n+1)}
20: end while
21: end for
22: Return SPIKES

We are now ready to consider the measurements required
to locate all k spikes and estimate their magnitudes. Let σ2

[0,1]

be the variance of our measurement noise over [0, 1]. Then

we can see that Var
[
mIq,h

(t)
]

will be O

(
σ2
[0,1]

q

)
. Applying

Theorem 3 to each of our O
(
qmax · log2

(
2k

1−p

))
Iq,h-subsets

with the required Algorithm 1 success probability guarantee
(see Equation 11) we can see that we need no more than

O

(
σ2

[0,1]

C2
min

(
1 +

1
Nα2

)
log2

k · log2
(

k log N
1−p

)
· log2 N

1− p

+

k · log2

(
k log N

1− p

)
· log2 N

log k

)
(12)

measurements to find and estimate all k spikes with probability
at least p. We obtain the following theorem.

Theorem 4: Fix α ∈ (0, 1
2 ), p ∈ (0, 1), and Cmin ∈ R+.

Let σ2 be the variance of m[0,1](t). Finally, suppose that there
are at most k spikes, C1 · δ(x − x1), . . . , Ck · δ(x − xk), in
[0, 1]. Then Algorithm 2 can, with probability at least p, output
x̃j , C̃j for all spikes with |Cj | ≥ Cmin such that both

∣∣x̃j −
xj

∣∣ ≤ 1
2N and

∣∣C̃j −Cj

∣∣ ≤ α ·Cmin are true. The number of
required measurements is bounded above by Equation 12.

Theorem 2 is a corollary of Theorem 4. Discretizing Theo-
rem 4 is simply a matter of carefully splitting sub-arrays during
each binary search (i.e., each invocation of Algorithm 1).

Splitting an even length sub-array is done in the obvious way.
Splitting an odd length sub-array can be done by ignoring the
last array element during the binary search and individually
testing it later for a spike with Lemma 2. In order to send the
probability of success, p, to 1 as N goes to infinity we can
simply set p = 1− 1

log N in Equation 12.

V. CONCLUSION

As presented here Algorithm 1 is adaptive,
requiring the fast bisection of its initial input subset.
Assuming that both bisecting and measuring intervals
can be done at unit cost, Algorithm 2 runs in

O

((
σ2
[0,1]

C2
min

+
σ2
[0,1]

N ·α2C2
min

+ k

)
· logO(1)

(
N

1−p

))
-time. Hence,

for modest noise levels the required runtime is sublinear
in N . Finally, if we adaptively create our Iq-subsets with
smaller q-values as more spikes are discovered, we should
be able to reduce the measurement costs of Algorithm 2
significantly in practice. If our measurements are also fast
to construct on the fly, adaptive creation of our Iq-subsets
should also decrease the runtime in practice.

Finally, we point out that the simplicity of Algorithm 1
allows us to obtain similar theoretical results for much more
general types of measurement noise. For example, it is suffi-
cient that the measurement noise matrix, G, have i.i.d. entries
with arbitrary mean and bounded variance. Furthermore, noise
matrix entries may simply be uncorrelated.
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