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Adaptive Compressed Sensing for Sparse Signals in Noise
M. A. Iwen∗, A. H. Tewfik+, Fellow, IEEE

Abstract—This paper studies the problem of recovering a
signal with a sparse representation in a given orthonormal basis
using as few noisy observations as possible. Herein, observations
are subject to the type of background clutter noise encountered
in radar applications. Given this model, this paper proves for the
first time that highly sparse signals contaminated with Gaussian
background noise can be recovered by adaptive methods using
fewer noisy linear measurements than required by any possible
recovery method based on non-adaptive Gaussian measurement
ensembles.

I. I
This paper considers adaptive acquisition strategies for

estimating a signal, f , which admits a sparse representation in
terms of a linear combination of k unknown elements from a
set of N orthonormal functions. Adaptive Bayesian techniques
for estimating the support of a sparse signal were proposed by
Ji et al. and Castro et al. (e.g., see [3] and [4], respectively).
These Bayesian methods have been demonstrated to work
well empirically, often requiring fewer noisy measurements
to recover sparse signals than non-adaptive competitors in
practice. Similarly, (compressive) distilled sensing techniques
[5], [6], [7] demonstrate that adaptive methods can improve
error bounds for sparse recovery problems over nonadaptive
techniques in other measurement noise models related to the
one considered herein. Finally, very recently Indyk et al.
demonstrated that adaptive compressed sensing methods can
outperform nonadaptive methods in the standard compressed
sensing context [8]. In this paper we develop additional theory
supporting the further use and consideration of such adaptive
methods by proving that a simple adaptive measurement
procedure can reliably recover sparse signals using fewer
linear measurements than any possible approach utilizing non-
adaptive Gaussian measurement matrices when the measure-
ments are contaminated with background noise.

A. The Noise Model

Let Φ = {φi | 1 ≤ i ≤ N} be a set of real valued
orthonormal functions on [0, 1] which span a given function
space of interest. A generic observable signal (i.e., function on
[0, 1]) can have a component outside of Φ. However, sparse
approximation techniques generally only consider the signal’s
projection, f , onto Φ and, furthermore, assume that f has a
sparse representation in Φ. Suppose that

f =
N∑

i=1

fi · φi.

This paper expands on results first reported in [1]. The vast majority of this
paper was written in early 2010 and is available as an expanded preprint [2].
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Given a sparsity assumption for f it makes sense to define the
support of f in Φ to be the positions where its coefficients,
fi, are nonzero (or otherwise larger in magnitude than an
application dependent threshold). The support of f is thus

supp( f ) =
{

j
∣∣∣ | f j| > 0

}
⊆ [1,N].

Note that in order to recover f one must identify supp( f ).
Thus, the primarily focus of this paper – signal recovery – is
integrally linked to support identification.

A solution to the sparse approximation problem necessi-
tates the design of a set of test, or measurement, functions
M j : [0, 1] −→ R, 1 ≤ j ≤ m. Each test function, M j, is a
specified linear combination of basis elements from Φ. In this
paper each of these test functions, M j, will generate noisy
observations of the form

y j = 〈M j, f + P j〉 = 〈M j, f 〉 + 〈M j, P j〉, (1)

where 〈 f , g〉 denotes the inner product between f , g : [0, 1]→
R. In the above equation P = {P j | 1 ≤ j ≤ m} is a sequence
of identically distributed measurement noise processes. Each
P j is assumed to be independent of all the other P j′ processes
whenever j , j′. In effect, every measurement of f is con-
taminated with background noise, or clutter noise, generated
by a rapidly varying random background signal.

In practice, measurement noise will consist of two com-
ponents. The first component will be due to environmental
or physical noise outside of the processing and acquisition
system (e.g., clutter in radar). This component will depend on
the measurement function. For example, using a wider beam
to cover a wider area in radar will increase the observed clutter
noise. The second noise component is due to thermal noise in
the acquisition and processing circuitry. This noise component
does not depend on the measurement function, and its effect
can be reduced by using more sophisticated electronics (e.g.,
by cooling a detector).

In many previous studies (e.g., see [9], [10], [11] and refer-
ences therein) the measurements utilized for signal (support)
recovery were of the form

y j = 〈M j, f 〉 + w j, (2)

where w j ∼ N(0, 1) is independent Gaussian noise for each j,
f is considered as a sparse vector in RN (i.e., the problem is
discrete), and M j ∼ N(0, IN×N) is a random vector indepen-
dently drawn from the zero-mean isotropic Gaussian distribu-
tion for each j. The measurements provided by Equation 2
account for situations where the second (thermal) component
of measurement noise discussed in the preceding paragraph
dominates the first (clutter) noise component. In contrast,
the noise model considered herein (see Equation 1) focuses
on situations where the first noise component dominates the
second noise component.
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The measurement model in the Equation 1 will be referred
to as non-adaptive if the generation of the jth measurement, y j,
is independent of all previous noisy observations, yn, 1 ≤ n ≤
j − 1. In effect, a set of measurements M = {M1, . . . , Mm}

is non-adaptive if it can be wholly instantiated before any
measurements are actually taken. If, on the other hand, any
single measurement may depend on the results of previous
measurements, M will be called adaptive. We will always
suppose that f =

∑N
i=1 fi ·φi is k-sparse with respect to Φ. The

value Cmin = min
{
|〈 f , φi〉|

∣∣∣ i ∈ supp( f )
}

will always be the
magnitude of the smallest of the k non-zero coefficients of f .

B. Results

Much of the previous work on solving sparse support
identification problems has concentrated on methods utiliz-
ing non-adaptive randomly generated Gaussian measurements
contaminated with zero mean Gaussian noise. The non-
adaptive Gaussian measurement ensembles, M j ∼ N(0, IN×N)
for 1 ≤ j ≤ m, are particularly relevant to study given
their near-optimal properties with respect to non-adaptive
compressive sensing measurement design (e.g., see [12], [13],
[14], [15]). Here, we will momentarily focus on the following
result concerning support recovery using noisy non-adaptive
Gaussian measurements contaminated with Gaussian noise.
The objective is to construct a lower bound on the number of
measurements, m, required by any sparse recovery algorithm
in order to correctly recover the support of f using the general
measurement model considered herein (see Equation 1).

Theorem 1. Suppose that G =
{
G j

∣∣∣ 1 ≤ j ≤ m
}

is an ensem-
ble of m non-adaptive random standard Gaussian noise pro-
cesses independently drawn for each j. Create test functions
by setting

M =

M j =

N∑
i=1

〈G j, φi〉 · φi

∣∣∣ 1 ≤ j ≤ m

 .
Furthermore, let P j for 1 ≤ j ≤ m be m independent
Gaussian measurement noise processes with mean 0 so that
the accumulated noise for each Equation 1 measurement,
conditioned onM j, is 〈M j,P j〉 ∼ N(0, ‖M j‖

2
2 ·σ

2/N). Then,
there exists a constant c ∈ R+ such that any algorithm using

m < c ·
σ2

C2
min

· log(N/k)

non-adaptive Gaussian measurements as input will asymptot-
ically fail to reliably recover supp( f ) and, therefore, f itself.
That is, for N sufficiently large any algorithm will fail to
recover supp( f ) with probability bounded above 0.

Proof: See Section II below.1 �

In effect, Theorem 1 provides a non-adaptive Gaussian
measurement bound below which any recovery method must
fail to be asymptotically reliable for the support identification
of some sparse input vectors. In this paper ideas from group

1Since the initial appearance of Theorem 1 in [1], [2] a similar result by
Aeron et al. has appeared independently in [16].

testing [17] are utilized in combination with statistical binary
detection and estimation techniques [18] to produce the fol-
lowing theorem.

Theorem 2. Let P j for 1 ≤ j ≤ m be m independent Gaussian
measurement noise processes with mean 0 so that the accumu-
lated noise for each Equation 1 measurement, conditioned on
the adaptive test function M j, is 〈M j,P j〉 ∼ N(0, ‖M j‖

2
2 ·

σ2/N). Furthermore, suppose that σ2/C2
min is Ω

(
k · ln3 N

)
.2

Then, there exists a constant c ∈ R+ such that whenever the
number of allowed measurements, m, exceeds

c ·
σ2

C2
min

· ln2 (k · ln N)

Algorithm 1 will approximate f precisely enough to reliably
recover supp( f ) with probability → 1 as N → ∞.

Proof: Algorithm 1 is outlined in Section III. See [2] for the
proof.

In order to compare Theorems 1 and 2, consider the
following example. Suppose that k is lnO(1) N and σ2/C2

min
is Ω

(
k · ln3 N

)
. In this regime one can see that any asymp-

totically reliable non-adaptive Gaussian measurement scheme
will require the use of

Ω

 σ2

C2
min

· ln N


measurements. On the other hand, the adaptive methods de-
veloped below are asymptotically reliable using

O
 σ2

C2
min

· ln2 (ln N)


measurements. Hence, if f is sufficiently sparse and its mea-
surements sufficiently noisy, the adaptive methods presented
below will asymptotically outperform any sparse support re-
covery method utilizing non-adaptive Gaussian measurement
ensembles. That is, adaptive methods can outperform nonadap-
tive methods for target location in noisy environments.

Intuitively, it should not be surprising that methods uti-
lizing non-adaptive measurements are less effective under
the observational model in Equation 1 than methods based
on adaptive measurements. Every non-adaptive measurement
must necessarily allocate significant amounts of sensing energy
to a large fraction of the basis elements in Φ (i.e., to a large
fraction of the entire search area). This essentially guarantees
that every non-adaptive observation will be contaminated with
a large fraction of the additive observational noise from the
entire search area. Adaptive measurements, on the other hand,
can eventually avoid observational noise from large portions of
the search area by ignoring regions where signal components
are unlikely to be present. The end result is that any method
utilizing non-adaptive observations must ultimately deal with
higher collective noise levels from their measurement ensem-
bles than methods which adaptively focus their measurements
toward regions likely to contain signal components.

2Let f , g : R+ → R+. Then, f is Ω(g) if and only if g is O( f ).
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II. P  T 1

It suffices to consider the discrete case were a k-sparse f ∈
R

N is known a priori to have f j = Cmin for all j ∈ supp( f ).
We sketch the proof here (see appendix A of [2] for a detailed
proof). The non-adaptive measurements are given by an m×N
random matrix, M, with each row, M j, independently drawn
from the zero-mean isotropic Gaussian distributionN(0, IN×N).
We define the background noise, P, to be an m × N random
real-valued noise matrix consisting of m ·N independently and
identically distributed (i.i.d.) normal random variables. Finally,
we assume that we have a single detector which, at time t j ∈

R
+, returns a noisy linear measurement (i.e., a discrete dot

product along the lines of Equation 1) of the form

〈M j, f + P j〉 = 〈M j, f 〉 + 〈M j,P j〉. (3)

Let ~1k be the k length vector of ones and IN×N be the N×N
identity matrix. We then define ~v to be Cmin ·~1k. Next, for each
U ⊂ [1,N] ∩ N with |U | = k, we will define MU to be the
m × k matrix formed by selecting the columns of M indexed
by U. Finally, we define the random vectors ~p, ~w ∈ Rm to
have p j = 〈M j,P j〉 ∼ N(0, ‖M j‖

2
2 · σ

2/N), conditioned on
M, and w j ∼ N(0, σ2), respectively, for all j ∈ [1,m] ∩N.

Order the k-element subsets of [1,N]∩N lexicographically
and then index them from 1 to Ñ =

(
N
k

)
. For any i ∈ [1, Ñ]∩N

we will let U[i] denote the ith subset in this ordering. Next, let
D be an m ×m diagonal matrix with D j, j = ‖M j‖

2
2 ·σ

2/N for
each j ∈ [1,m]∩N. From above we know that D → σ2 ·Im×m

as N → ∞ almost surely. It is not difficult to see that non-
adaptive Gaussian measurements of f will produce a random
vector of the form Pi =MU[i]~v+ ~p ∼ N

(
MU[i]~v,D

)
for some

i ∈ [1, Ñ] ∩N. The Kullback-Leibler divergence between two
such potential non-adaptive measurement distributions is

D (Pi‖Pi′ ) =
1
2

((
MU[i]~v −MU[i′]~v

)T
D−1 (MU[i]~v −MU[i′]~v

))
.

Furthermore, this divergence is a function of the random non-
adaptive measurement matrix M. Hence, we have that

D (Pi‖Pi′ ) =
C2

min

σ2

 · (k − ∣∣∣U[i] ∩ U[i′]
∣∣∣) · m∑

j=1

N
Y j
· Z2

j

where Y j = ‖M j‖
2
2 ∼ χ

2
N and Z j ∼ N (0, 1) are dependent for

each j ∈ [1,m] ∩N.
More carefully considering the dependence of Y j ∼ χ

2
N

and Z j ∼ N (0, 1) for each j ∈ [1,m] ∩ N we can see
that it is entirely due to the at most 2k standard normal
variables making up the entries ofM j indexed by U[i]∪U[i′].
Furthermore, the net contribution of these at most 2k variables
to Y j will always be nonnegative. Therefore we will have

E [D (Pi‖Pi′ )] ≤
C2

min

σ2

 (k − ∣∣∣U[i] ∩ U[i′]
∣∣∣) · m

1 − 2k−2
N

. (4)

The remainder of the proof depends on employing the
following weakened form of Fano’s inequality (see Lemma
2 in [9]). That is, the average probability of error, perror, in
performing a hypothesis test over a family of distributions

{P1, . . . ,PÑ} is bounded by

perror ≥ 1 −
1

Ñ2 ·
∑Ñ

i,i′=1 D (Pi‖Pi′ ) + log 2

log
(
Ñ − 1

) .

Considering the expected average probability of success as a
function of the random non-adaptive measurement matrix we
can see that

E
[
1 − perror

]
≤

k

log
(
Ñ − 1

) C2
min

σ2

 m
1 − 2k−2

N

+
log 2

log
(
Ñ − 1

)
by Equation 4. Applying Markov’s Inequality we have

P

[
1 − perror ≥

1
2

]
≤

2k

log
(
Ñ − 1

) C2
min

σ2

 m
1 − 2k−2

N

+
2 · log 2

log
(
Ñ − 1

) .
If the right hand side of the inequality above is less than one
then the probability of choosing a Gaussian measurement ma-
trix capable of “almost always” decoding the correct support
of most sparse vectors, f , will also be less than one.

Finishing, we can see that P
[
1 − perror ≥

1
2

]
< 1

2 whenever

m <

1 − 2k−2
N

8

 · σ2

C2
min

·
log
(
Ñ − 1

)
k

with N ≥ 2k ≥ 32. Theorem 1 follows.
Note that methods from [9] can be used even more directly

to prove that non-adaptive Bernoulli measurement matrices,
M ∈ {−1, 1}m×N , can also only accommodate reliable sparse
recovery in the presence of Gaussian background noise if m
is Ω
(
σ2

C2
min
· log (N/k)

)
. Similarly, we expect that more compli-

cated modifications of this argument can also be used to prove
that this scaling for m is also required for other random non-
adaptive measurement ensembles utilized for sparse recovery
problems (e.g., see [19]).

III. A A

It suffices to consider recovering functions of the form

f (x) =
k∑

j=1

C j · δ(x − x j) (5)

where δ(x) is a Dirac delta, each C j ∈ R, and x j ∈ [0, 1],
for j ∈ Z ∩ [1, k]. This is a simplified model for the problem
of recovering an unknown number of ideal point targets with
reflectivity C j located at positions x j. The model assumes
prior knowledge of the range of the arbitrary positions x j,
which we normalize to the interval [0, 1]. The model also
captures radar imaging of targets that consist of a collection
of point reflectors. Selecting the measurement functions, M j,
corresponds to selecting a radar beamform and illumination
pattern.

Let I be a subset of [0, 1] and define the indicator function
for I,

II : [0, 1] 7→ {0, 1},

to be

II(x) =
{

1 if x ∈ I
0 otherwise .
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Without loss of generality, we will assume that we can measure
any subset I ⊆ [0, 1] at time t ∈ R+ via

〈II, f 〉 =
∫
II · f dx +

∫
II dPt, (6)

where Pt(x) represents stochastic measurement noise (i.e., a
diffusion process). We assume for each time t ∈ R+ that∫

II dPt and
∫
IJ dPt

are independent and identically distributed (i.i.d.) whenever
I ∩ J = ∅ and ∫

II dx =
∫
IJ dx. (7)

Similarly, we assume for every two times t1 , t2 that∫
II dPt1 and

∫
IJ dPt2

are i.i.d. as long as I,J ⊆ [0, 1] satisfy Equation 7. We define
σ2
I

to be the variance of 〈II, f 〉 for a given I ⊆ [0, 1]. Given
the assumptions above, we can see that σ2

I
= σ2

J
whenever

I,J ⊆ [0, 1] satisfy Equation 7. Finally, we will denote the
variance of the noise over the unit interval by σ2 = σ2

[0,1].

A. Single Spike Targeting

In this section we will assume that our function f consists of
a single Dirac delta (i.e., k = 1 in Equation 5). We will employ
a simple adaptive binary search procedure to locate the support
of f . Suppose for the time being that the single Dirac delta has
a positive magnitude, C1 > 0. If so, we can look for the support
of f (i.e., x1) in [0, 1] using a binary search strategy. As long as
the additive measurement noise is independent and identically
distributed (i.i.d.) on both subintervals under consideration
(e.g.,[0, 1

2 ) and [ 1
2 , 1] to begin with), the subinterval which

contains x1 will produce measurements with larger means than
the subinterval not containing x1. Thus, our measurements of
the subinterval containing x1 will tend to be larger more often.
Using this observation to our advantage, we can correctly
choose the subinterval containing x1 with high probability by
choosing the subinterval that returns the largest measurements
most often. Repeated application of this decision principle
yields a binary search.

If C1 is negative the binary search is analogous. We simply
repeatedly choose the subinterval which returns smaller mea-
surements more often. Finally, we deal with the fact that we
don’t have apriori knowledge of the sign of C1 by performing
two binary searches in parallel. One search assumes that C1
is positive, while the other assumes it is negative. One of the
two searches must succeed with high probability since C1 is
nonzero (i.e., either positive or negative). If C1 is positive,
our search assuming positivity will locate the spike with high
probability. If C1 is negative, our search assuming negativity
will locate the spike with high probability. The problem is
thus reduced to deciding which search result (i.e., the interval
resulting from the search assuming C1 is positive versus
negative) is correct. We denote the interval resulting from the
binary search assuming C1 is positive by I+. Similarly, we let
I− denote the interval resulting from the binary search that

assumes C1 is negative. We are guaranteed to have I+∩I− = ∅.
To finish we must decide whether x1 ∈ I

+ or x1 ∈ I
−.

To help make our final decision we arbitrarily chose an
interval whose noise characteristics will be, by assumption,
distributed identically to the additive noise in both the resulting
positive/negative binary search intervals (i.e., I+ and I−).
The resulting positive/negative interval containing x1 should
yield measurements with a mean that is different from the
arbitrary interval measurements’ mean. Hence, we estimate the
measurement means of both intervals resulting from our binary
searches, and then compare them to the mean of our arbitrary
interval measurements. Whichever binary search result differs
most from our arbitrary interval in terms of measurement mean
will be the correct search result with high probability. See [2]
for details.

To conclude, we note that by employing a binary search for
single spike recovery we are essentially transforming the spike
localization problem into O(log2 N) binary detection problems.
Without loss of generality, at each stage of our binary search
we must decide whether measurements of the left subinterval
currently under consideration were generated by (i) a spike in
noise, or (ii) noise alone. The answer to this question entirely
determines whether the left or right subinterval becomes the
new interval of interest in the next stage of our binary
search. When viewed from this perspective the single spike
recovery problem becomes equivalent to a series of statistical
detection/estimation problems (see [18]). We simply localize
the spike by repeatedly detecting its presence in each right/left
subinterval. Hence, there are as many strategies for recovering
a single spike as there are strategies for detecting the presence
of a signal in noise. Other possible approaches include the
use of optimal sequential detection methods (e.g., [20]) at
each stage of our binary search. These methods could be
used to collect measurements dynamically until a decision
regarding the presence/absence of a spike can be made with
error probability below a user specified tolerance.

B. Recovering Multiple Spikes One at a Time

Given that any two distinct spike locations, x j1 and x j2 , are
assumed to have |x j1 − x j2 | >

1
N , we may represent [0, 1] by

its N subintervals,

s0 =

[
0,

1
N

)
, s1 =

[
1
N
,

2
N

)
, . . . , sN−1 =

[
1 −

1
N
, 1
]
, (8)

only k of which contain spikes (i.e., we may consider [0, 1]
to be a k-sparse array of length N). Keeping this in mind we
will demonstrate how to create q disjoint unions of these s j-
subsets, each of length O

(
1
q

)
, which will isolate each spike

from all the other (k−1) spikes with fixed probability. We can
then use several of these disjoint unions to separate each of
our spikes from all the others with arbitrarily high probability.
We begin by describing our disjoint unions of s j-subsets.

Let q be one of the first 2kblogk Nc prime numbers larger
than k. For each h ∈ [0, q) ∩ Z form the set

Iq,h =
⋃

j≡h mod q

s j (9)
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Algorithm 1 NM T  D
1: Input: Maximum number of spikes k, Position tol-

erance N, smallest spike magnitude of interest Cmin,
success probability p

2: Output: Estimates of magnitudes > 1
2Cmin, {C1, . . . ,Ck},

and their positions, {x1, . . . , xk}

3: Find all spikes at least once...
4: S PIKES ←− ∅
5: for j = 1, j < P = O

(
log
(

k
1−p

))
, j + + do

6: q←− Randomly select one of 2kblogk Nc primes > k
7: Form Iq (see Equation 10)
8: for each Iq,h ∈ Iq do
9: (x̃, C̃)←− Section III-A methods on Iq,h

10: if |C̃| > 1
2Cmin then

11: S PIKES ←− S PIKES ∪ {(x̃, C̃)}
12: end if
13: end for
14: end for
15: Remove excess spike approximations...
16: {(x̃0, C̃0), (x̃1, C̃1) . . . } ←− Sort S PIKES by x̃’s
17: for n = 0, n < |S PIKES |, n + + do
18: while |xn − xn+1| ≤

N
2 do

19: S PIKES ← S PIKES − {(x̃n+1, C̃n+1)}
20: end while
21: end for
22: Return S PIKES

and then set

Iq =
{
Iq,0, Iq,1, . . . , Iq,q−1

}
. (10)

Iq is our set of unions of disjoint s j-subsets.
To recover all spikes, we simply apply the methods of

Section III-A to each subset in Iq separately, for several
randomly selected values of q. We then collect all the output
spikes (allowing only one from each s j interval) which have
estimated magnitudes that are larger than half the smallest
spike magnitude we care to detect. By not reporting spikes
with smaller estimated magnitudes we exclude the recovery
of ‘fake’ or ‘insignificant’ spikes. If we have prior knowledge
of the smallest spike magnitude, Cmin, in f (see Equation 5) we
can guarantee f ’s approximate recovery with high probability.
If we have no prior knowledge of the smallest spike magnitude,
then all at most k spikes with magnitude larger than any given
Cmin value will be returned. Thus, in general, we can guarantee
the recovery of all sufficiently large (i.e., at least Cmin in
magnitude) spikes in f with high probability. See Algorithm 1
for multiple spike recovery pseudocode.

IV. C

The adaptive algorithm described in this paper is only one
of many potential recovery methods that can be created by
combining combinatorial group testing constructions [17] with
signal estimation and detection methods [18]. More generally,
any good binary group testing matrix which tends to isolate
the members of any small number of signal components
can be used to segment a search space into smaller regions

likely containing only one signal component, or target. Signal
detection and estimation methods can then be used to search
each smaller region for a single isolated signal component.

Note that the recovery method considered herein is very
easy to parallelize since each disjoint region of the search
space dictated by the group testing construction in Sec-
tion III-B can be searched independently. This follows from
the fact that the group testing methods we used to segment
the search space are themselves non-adaptive, despite the fact
that each smaller resulting region is itself searched adaptively.
Although this non-adaptive partitioning of the search space
promotes parallelism, it may ultimately hurt performance. The
number of required measurements can probably be reduced by
partitioning the search space into smaller regions adaptively.

R
[1] M. A. Iwen, “Group testing strategies for recovery of sparse signals in

noise,” Proc. 43rd Asilomar Conf. on Signals, Systems, and Computers,
2009.

[2] M. Iwen and A. H. Tewfik, “Adaptive Group Testing Strategies for
Target Detection and Localization in Noisy Environments,” IMA Preprint
Series, vol. 2311, June 2010.

[3] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans.
Signal Processing, vol. 56, no. 6, pp. 2346–2356, June 2008.

[4] R. Castro, J. Haupt, R. Nowak, and G. Raz, “Finding needles in noisy
haystacks,” ICASSP, 2008.

[5] J. D. Haupt, R. G. Baraniuk, R. M. Castro, and R. D. Nowak, “Compres-
sive distilled sensing: Sparse recovery using adaptivity in compressive
measurements,” Proc. 43rd Asilomar Conf. on Signals, Systems, and
Computers, 2009.

[6] J. Haupt, R. Castro, and R. Nowak, “Improved bounds for sparse recov-
ery from adaptive measurements,” in Information Theory Proceedings
(ISIT), 2010 IEEE International Symposium on. IEEE, 2010, pp. 1563–
1567.

[7] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, “Compressive dis-
tilled sensing: Sparse recovery using adaptivity in compressive mea-
surements,” in Proc. 43rd Asilomar Conf. on Signals, Systems, and
Computers. IEEE, 2009.

[8] P. Indyk, E. Price, and D. Woodruff, “On the power of adaptivity in
sparse recovery,” FOCS, 2011.

[9] M. Wainwright, “Information-theoretic bounds on sparsity recovery in
the high-dimensional and noisy setting,” International Symposium on
Information Theory, June 2007.

[10] A. K. Fletcher, S. Rangan, and V. K. Goyal, “Necessary and sufficient
conditions on sparsity pattern recovery,” Preprint, April 2008.

[11] G. Reeves and M. Gastpar, “Sampling bounds for sparse support
recovery in the presence of noise,” Proc. IEEE Int. Symp. of Information
Theory, 2008.

[12] D. Donoho, “Compressed Sensing,” IEEE Trans. on Information Theory,
vol. 52, pp. 1289–1306, 2006.

[13] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, pp. 489–509, 2006.

[14] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans.
Inform. Theory, vol. 52, no. 1, Jan 2006.

[15] M. Rudelson and R. Vershynin, “Sparse reconstruction by convex relax-
ation: Fourier and gaussian measurements,” in 40th Annual Conference
on Information Sciences and Systems (CISS), 2006.

[16] S. Aeron, V. Saligrama, and M. Zhao, “Information theoretic bounds
for compressed sensing,” Information Theory, IEEE Transactions on,
vol. 56, no. 10, pp. 5111–5130, 2010.

[17] D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its
Applications. World Scientific, 1993.

[18] D. Middleton, An Introduction to Statistical Communication Theory.
New York, NY, USA: McGraw-Hill Book Company, Inc., 1960.

[19] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Constructive
Approximation, vol. 28, 2008.

[20] A. G. Tartakovsky, X. R. Li, and G. Yaralov, “Sequential detection
of targets in multichannel systems,” IEEE Transactions on Information
Theory, vol. 49, no. 2, Feb. 2003.


