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Chapter 1

Why We Should Care: Online
Computing, Artificial Intelligence,
and Data, Data, DATA!

Artificial Intelligence, which began being generally useful in the 2020’s, resulted from the
combination of three crucial historical developments: (i) the exponential increase in available
computing power from the 1950’s until the 2020’s,1 (ii) the development of machine learning
techniques beginning in the second half of the 20th century (Neural Network methods in
particular), and (iii) the collection of super-massive data sets for training and learning.2

This book is meant to give the reader a solid introduction to the mathematics necessary
to begin understanding developments (ii) and (iii) above. In particular, you will learn
about the mathematics needed to understand what a neural network is, how one might be
trained, and how the algorithms work that one might use to compile, process, analyze, and
store the types of extremely super-massive datasets needed to train one well. Many of the
mathematical topics needed are covered beginning in Chapter 2.

In this chapter we simply aim to prepare you to understand why that material is so
important, as well as to state some application problems in a mathematical way that makes
them easier to begin understanding more rigorously. Our main contention is this: learning
the mathematics first makes all the application problems below much easier to learn about
and begin solving later! However, we do understand that mathematics is difficult, and that
it helps to have some solid motivation going into a long hike to help keep you trekking
uphill until you reach the beautiful views nearer to the top of the mountain. We hope the
following sections will help give you that motivation.

1Mainly due to steady innovations in integrated circuit manufacturing techniques over many decades –
read up on Moore’s law for a good time!

2Largely made possible by the development of modern communication infrastructure and the subsequent
wide-scale adaptation of the internet beginning in the early 1990s.

3
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1.1 Data, and What You Might Do with It

Let N be a positive integer. Herein we will let [N ] denote the first N non-negative integers
from 0 to N − 1, [N ] := {0, . . . , N − 1} for any natural number N ∈ N = {0, 1, 2, 3, . . . }.
Our data herein will (almost always) be a vector of N numbers indexed by [N ]. We will
denote vectors with boldface letters. For example, x ∈ RN is a vector. We denote the
entries of x by xj ∈ R. Pictorially, we have

x =


x0

x1
...

xN−1

 .

In most settings we consider in this book vectors will be rich enough to represent the
data we want to work with. This is primarily because, given the discrete and finite nature
of digital computers, one can always simply vectorize other data one might have even if it
isn’t a vector to begin with. A related application example follows.

Example 1.1.1 (Image Classification Described with Vectors and Functions).
Suppose we want a model to separate pictures into two classes: pictures of cats and pictures
of dogs. How can we describe this mathematically? Let’s start with a picture of a cat.
Assume this picture is 1000 pixels by 1000 pixels, and each pixel has some triple of color
values associated to it (one for red, one for green, and one for blue), each a real number
in the interval [0, 1]. Since a pixel is described by its three color values, each pixel in this
image can be described a vector of length 3:rg

b

 ∈ R3

where r denotes the red value of the pixel, and so on. Doing this for each pixel in the image,
we attain 1000× 1000 = 106 vectors of length 3. We can re-express this data as a single
object by concatenating these vectors (in some arbitrary order, such as reading the pixel rows
of the image left-to-right and top-to-bottom) into one large vector xcat ∈ R3×106. Hence,
our cat picture is now simply a big vector.

Now, let’s focus on the question of classification. A classification model can be thought of
as a function whose input is, e.g., a 1000× 1000 picture of a cat or a dog, and whose output
is either “cat” or “dog”. If we assign the label 0 to cats, and 1 to dogs (or the other way
around, if you prefer cats!), then our classification question boils down to finding a function
f : R3×106 → {0, 1} such that, given a vectorized picture xcat of a cat or a vectorized picture
xdog of a dog, we correctly get f(xcat) = 0 and f(xdog) = 1.
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We can use a similar framework for other sorts of problems. For example, the problem
of reducing noise in a 1000 × 1000 cat picture can be viewed as a problem of finding a
function f : R3×106 → R3×106 such that f(xcat) is “less noisy” than the original picture xcat.

There are a lot of specific image processing methods and techniques built around
processing images as two-dimensional objects. For simplicity herein, however, we will use
the flexibility of discrete representations to allow us to turn any image, etc., into a vector
as an excuse to ignore non-vector data (i.e., we will vectorize everything). Though this
can always be done, we note that it certainly shouldn’t always be done... Nonetheless,
it’s generally useful enough that we will do it here. It also will make understanding the
mathematics involved much easier, which we will take as an additional reason to assume
that our datasets are almost always collections of vectors herein.

1.2 The Basics of Feed-forward Neural Networks (FNNs)

Continuing for the moment in the spirit of our first example above, we will now briefly
take a detour to discuss what kinds of functions f one might actually build and evaluate
with a computer to, e.g., classify images as in Example 1.1.1. FNNs provide exactly one
such “computer friendly” class of functions that are also expressive enough to be able to do
many useful tasks quite well. Given their value in artificial intelligence applications we will
now take some time to explain what they are and how they depend on, and utilize, ideas
from, e.g., both linear algebra and optimization. To begin we will first discuss the atomic
building block of every neural network – the neuron.

1.2.1 Affine Functions and Single Neurons

Let x and y be vectors in RN . We define the inner product of x and y, denoted 〈x,y〉,
to be the sum

〈x,y〉 =
N−1∑
j=0

xjyj (1.1)

Definition 1.2.1 (Affine Functions). Fix w ∈ RN and a b ∈ R. Then the affine function
determined by w and b is the function aw,b : RN → R defined by

aw,b(x) := 〈x,w〉+ b

Here w is called the affine function’s weight vector and b is called its bias.

Note that we can also write the above as a single inner product of two vectors in RN+1,

〈x,w〉+ b =

〈(
x
1

)
,

(
w
b

)〉
.

We can also represent an affine function aw,b : RN → R graphically as in Figure 1.1.
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x0

x1

xN−1

1

〈x,w〉+ b

w0

w1

wN−1

b

aw,b(x)

Figure 1.1: A graphical representation of an affine function aw,b : RN → R. The first
column of boxes represents the inputs (i.e., the entries of x). The edge weights are the
entry of the weight vector w that multiplies each corresponding input entry in the affine
function’s inner product (e.g., w0 multiplies against x0, etc.). The dotted box around the
constant input 1 used here to include the bias b as an edge weight is often omitted.

Definition 1.2.2 (Neurons). A neuron η : RN → R is a composition of an affine function
aw,b with a nonlinear function σ : R→ R given by

η(x) := σ(aw,b(x)) = σ(〈x,w〉+ b)).

Note that a neuron is determined by two choices: the parameters w ∈ RN and b ∈ R, and
the activation function σ.

A neuron also admits the commonly used graphical representation in Figure 1.2. In
Figure 1.2 the first column of boxes is called the input layer and the circle is called a
node or neuron. Some typical choices of activation functions σ include the

• Perceptron (or Heaviside, or step function): σ(y) =

{
0 if y ≤ 0

1, if y > 0

• Sigmoid: σ(y) = 1/(1 + e−y)

• Hyperbolic tangent: σ(y) = tanh(y)



7

x0

x1

xN−1

1

σ(〈x,w〉+ b)

w0

w1

wN−1

b

η(x)

Figure 1.2: A graphical representation of a neuron. The first column of boxes represents the
inputs (i.e., the entries of x). The edge weights are the entry of the weight vector w that
multiplies each corresponding input entry in the neuron’s inner product (e.g., w0 multiplies
against x0). Note in particular that a circle is used to represent a neuron here, as opposed
to a box which is used to represent an affine function as per Figure 1.1. Again, the dotted
box around the constant input 1 used here to include the bias b as an edge weight is often
omitted.

• Rectified Linear Unit (ReLU): σ(y) = max(0, y)

• Leaky ReLU: σa(y) = max(ay, y) with 0 ≤ a < 1.

• Absolute value (or modulus): σ(y) = |y|

• Smoothed versions of (leaky) ReLU to eliminate non-differentiability at y = 0.

Example 1.2.3 (A Simple Way to Smooth Non-Differentiability). Fix a ∈ [0, 1) and
α ∈ R+, and define the function g : R→ R to be

g(y) =


a, y < −α
1, y > α

a+ 1−a
2α · (y + α), −α ≤ y ≤ α
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A smoothed leaky ReLU function, σ̃a,α(x), can be defined to be

σ̃a,α(x) =

∫ x

0
g(y) dy. (1.2)

Exercise 1.2.1. The following problems concern the smoothed (leaky) ReLU function
σ̃a,α : R→ R defined in (1.2) with a = 1/2 and α = 1/4.

(a) Compute the integral in (1.2) and write down the resulting piecewise polynomial
formula for σ̃ 1

2
, 1
4
(x). What is σ̃ 1

2
, 1
4
(1)?

(b) Plot σ̃ 1
2
, 1
4

together with the leaky ReLU function σ 1
2
.

Given an activation function σ : R→ R we will extend it to a function σ : RN → RN

for any given N ∈ N entrywise by

σ(x) :=


σ(x0)
σ(x1)

...
σ(xN−1)

 .

We will now continue to build on this notation in order to help combine multiple neurons
into more complicated (and useful!) functions.

1.2.2 Layers of Neurons, and Some Helpful Matrix Notation

A matrix W ∈ RN×d is a table of data with N rows and d columns. We denote the entry
in the jth row and kth column of W by Wj,k ∈ R for all j ∈ [N ] and k ∈ [d]. We denote the
jth row of W , which is a vector in Rd, by Wj,: ∈ Rd. Similarly, we denote the jth column
of W , which is a vector in RN , by W:,j ∈ RN . We can also build a matrix out of vectors.
Given d vectors w0, . . . ,wd−1 ∈ RN , we can write the N × d matrix whose jth column is
W:,j = wj for all j ∈ [d] as  | |

w0 · · · wd−1

| |

 ∈ RN×d.

Given a matrix W ∈ RN×d and a vector y ∈ RN we will also denote by (W |y) ∈ RN×(d+1)

matrix whose first d columns are the columns of W , and whose (d+ 1)st column is y.

The transpose of a matrix W ∈ RN×d, denoted by W T ∈ Rd×N , is the d×N matrix
with entries given in terms of W by (W T )j,k = Wk,j for all j ∈ [d] and k ∈ [N ]. That
is, we swap the roles of rows and columns so that, e.g., Wj,: = W T

:,j for all j ∈ [N ].
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Finally, a matrix W ∈ RN×d also always represents a linear function W : Rd → RN where
W (x) = Wx ∈ RN has entries given by

(Wx)j :=
∑
k∈[d]

Wj,kxk

for all j ∈ [N ].

Exercise 1.2.2. Let x ∈ RN , y ∈ Rd, and W ∈ RN×d. Show that 〈x,Wy〉 = 〈W Tx,y〉.

We can also represent a matrix graphically as multiple affine functions. Let W ∈ RN×d

and x ∈ Rd. Then we can express the matrix-vector product Wx ∈ RN with the diagram
in Figure 1.3

x0

xd−1

(Wx)0

(Wx)N−1

W0,0

W0,d−1

WN−1,d−1

WN−1,0

Figure 1.3: A graphical representation of a matrix W ∈ RN×d as an input layer of width d
connected directly to a linear output layer of width N .

We now have enough notation to define and represent a single layer of neurons.

Definition 1.2.4 (A Layer of Neurons). A layer of neurons ` : RN → Rd is determined
by a collection of d weight vectors w0, . . . ,wd−1 ∈ RN , d biases b0, . . . , bd−1, and a choice
of activation function σ : R→ R. We call d the width of `. The layer ` is defined using
these parameters by

`(x) :=

 σ(〈x,w0〉+ b0)
...

σ(〈x,wd−1〉+ bd−1)

 = σ

 〈x,w0〉+ b0
...

〈x,wd−1〉+ bd−1

 = σ(Wx + b),
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where W T =

 | |
w0 · · · wd−1

| |

 ∈ RN×d and b =

 b0
...

bd−1

. Note that ` : RN → Rd is

effectively created by stacking d different neurons η0, . . . , ηd−1 : RN → R into a vector. Here
W ∈ Rd×N is called the layer’s weight matrix and b is called the layer’s bias vector.

Above can also write `(x) = σ(Wx + b) as `(x) = σ

(
Ã

(
x
1

))
, where Ã = (W |b) ∈

Rd×(N+1). Thus, if we define the affine function A : RN → Rd by A(x) := Ã

(
x
1

)
= Wx+b,

we may further write ` compactly as a composition of σ and A, i.e., `(x) = σ(A(x)) =
(σ ◦A)(x). This compositional form will be used below. Finally, we note that one can also
represent a layer of d neurons graphically as per Figure 1.4.

x0

xN−1

1

σ(〈x,W0,:〉+ b0)

σ (〈x,Wd−1,:〉+ bd−1)

W0,0

W0,N−1

Wd−1,N−1

Wd−1,0

b0
bd−1

Figure 1.4: A graphical representation of a layer of neurons ` : RN → Rd defined by
`(x) = σ(Wx + b) with weight matrix W ∈ Rd×N and bias vector b ∈ Rd. Here the input
layer of width N connects to a layer of d neurons.

1.2.3 Feed-Forward Neural Networks (FNNs) in Full Generality

Informally, a FNN is a series of layers of neurons with each layer feeding its outputs “forward”
into the layer following it. From the discussion of neuron layers above, we can therefore
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choose to describe an FNN as a concatenation of functions that alternate between affine
functions and the activation function. More formally, one can define FNNs as follows.

Definition 1.2.5 (Feed-forward Neural Network (FNN)). A Feed-forward Neural
Network (FNN) f : RN → RdL is determined by an activation function σ : R→ R, a
depth L ∈ N, and layer widths d0, . . . , dL. It contains an input layer with N inputs, L layers
of neurons (often called hidden layers), and a final linear output layer with dL outputs.
More specifically, let `0 : RN → Rd0 and `j : Rdj−1 → Rdj ∀j ∈ {1, . . . , L− 1} be L layers
of neurons, and let AL : RdL−1 → RdL be an affine function defined by AL(y) := WLy + bL

for WL ∈ RdL×dL−1, bL ∈ RdL. The resulting FNN of depth L, f , is then given for all
x ∈ RN by

f(x) =
(
AL ◦ `L−1 ◦ `L−2 ◦ · · · ◦ `1 ◦ `0

)
(x)

=
(
AL ◦ σ ◦AL−1 ◦ σ ◦AL−2 ◦ · · · ◦ σ ◦A0

)
(x),

where AL−k(y) = WL−k(y) + bL−k, with WL−k ∈ RdL−k×dL−k−1 and bL−k ∈ RdL−k for all
k ∈ [L], and A0(y) = W 0y + b0, with W 0 ∈ Rd0×N and b0 ∈ Rd0.

Even after fixing the activation function σ we note that FNNs are functions that depend
on a potentially huge number of parameters. Using our notation from above, the number
of parameters in a FNN f is equal to the sum of the number of weights in the matrices
W j and the number of biases in the vectors bj for all j ∈ [L+ 1]. Recall that when j > 0,
W j ∈ Rdj×dj−1 and bj ∈ Rdj , and when j = 0, W 0 ∈ Rd0×N and b0 ∈ Rd0 . Thus, the
total number of parameters for a depth L FNN f with input layer width N and hidden
layer widths d0, d1, . . . , dL is

# FNN parameters = d0(N + 1) +

L∑
j=1

dj(dj−1 + 1).

Finding a good way of choosing all of these parameters during training so that the resulting
trained FNN is capable of, e.g., correctly classifying cat versus dog pictures is usually
accomplished via optimization techniques. Techniques one can use to help reduce the
number of these parameters in order to save space when storing a previously-trained FNN
is something we will discuss more in, e.g., Sections 2.2.5 and 2.3. We urge you to keep
reading to learn about these useful tricks, and more!

For now though, we will simply try to mitigate the fact that the general definition of a
depth L FNN given above is rather complicated. In order to help digest it, let’s consider
some examples. Our first example will be that of a shallow FNN (that is, of an FNN of
depth L = 1).

Example 1.2.6 (A Shallow FNN f : R→ R). A shallow (i.e., L = 1) FNN f : R→ R

will have the form

f(x) = b1 +

d0−1∑
j=0

w1
jσ
(
w0
jx+ b0j

)
. (1.3)
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where b1 ∈ R is the single output layer bias (the output width is d1 = 1), b0j for all j ∈ [d0]
are the biases of the single layer of neurons of width d0, and where the weights of the layer
of neurons and the output layer are w0

j , w
1
j ∈ R for all j ∈ [d0], respectively.

Example 1.2.7 (The Graphical Representation of a Shallow FNN f : R3 → R2). For a
graphical representation of a shallow (i.e., depth L = 1) FNN f : R3 → R2 with widths
d0 = 2 and d1 = 2 see Figure 1.5. Note that such a network will be determined by two
weight matrices W 0 ∈ R2×3, W 1 ∈ R2×2 and two bias vectors b0,b1 ∈ R2. Hence, it has a
total of 14 parameters.

x0

x1

x2

1

1

W 0
0,0

W
01,0

W
0
0,1

W 0
1,1

W
0
0,

2

W
0
1,2

b
0 0

b
0

1

W 1
0,0

W 1
1,0

W
1
0,1

W 1
1,1

b
1 0

b
1

1

output

output

Figure 1.5: An example of a shallow neural network f : R3 → R2. We call a depth 1 FNN
shallow. The leftmost layer is the input layer with N = 3 inputs. The middle layer, which
is the only nonlinear layer in this diagram, is a hidden layer of neurons with d0 = 2 neurons.
The right layer is the output layer with dL = 2 outputs.

Example 1.2.8 (The Graphical Representation of a Depth L = 2 FNN f : R2 → R2). For
a graphical representation of a depth L = 2) FNN f : R2 → R2 with widths d0 = 3, d1 = 2,
and d2 = 2 see Figure 1.6. Such a network will be determined by three weight matrices
W 0 ∈ R3×2, W 1 ∈ R2×3, W 2 ∈ R2×2 and three bias vectors b0 ∈ R3,b1,b2 ∈ R2. Hence,
it has a total of 23 parameters.
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Figure 1.6: An example of a neural network f : R2 → R2 of depth L = 2. The leftmost
layer is the input layer with N = 2 inputs. The second layer from the left is the first hidden
layer of neurons, which has d0 = 3 neurons. The third layer from the left is the second
hidden layer of neurons, which has width d1 = 2, and the rightmost layer is the linear
output layer, which has dL = d2 = 2 outputs.

Exercise 1.2.3. Draw the graphical representation of a shallow neural network f : R→ R

of width d0 = 5. How many parameters does it have?

Exercise 1.2.4. Draw the graphical representation of a depth L = 3 neural network
f : R→ R with widths d0 = 2, d1 = 2, d2 = 2. How many parameters does it have?

We will now briefly discuss why choosing, e.g., a greater value for its depth L might
allow a FNN to “work better” at a variety of tasks. This is directly linked to the notion of
the “expressivity” of an FNN.

Some Basics Concerning the Expressivity of FNNs

In practice the activation function σ : R→ R is always chosen to be a nonlinear function.
The reason why is directly linked to the notion of the “expressivity” of an FNN. Suppose
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for example that we choose σ : R→ R in (1.3) to be linear so that σ(y) = ay + c for some
a, c ∈ R. Substituting this activation function into (1.3) we obtain

f(x) = b1 +

d0−1∑
j=0

w1
jσ
(
w0
jx+ b0j

)
= b1 +

d0−1∑
j=0

w1
j

[
a
(
w0
jx+ b0j

)
+ c
]

=

d0−1∑
j=0

w1
jaw

0
j


︸ ︷︷ ︸

=: ã

x+

b1 +

d0−1∑
j=0

w1
j (ab

0
j + c)


︸ ︷︷ ︸

=: c̃

= ãx+ c̃,

with the two new constants ã, c̃ ∈ R defined as above. That is, if we choose σ to be linear
then the complicated shallow FNN f : R→ R in (1.3) is just another linear function itself.
All the weight and bias parameters used to define it were a total waste of time! Stated
another way, choosing σ to be linear only allows shallow FNNs such as (1.3) to express
simple linear functions.

As we shall see next, choosing σ to be something even “barely nonlinear” such as a
ReLU function σ(y) = ReLU(y) := max(0, y) already allows shallow FNNs such as (1.3)
to express/represent significantly more complicated functions than simple linear ones.3

The following Theorem is paraphrased from Foucart’s fantastic book on data science [20].
Informally, it tells us that choosing σ to be a ReLU function allows shallow FNNs such
as (1.3) to express any continuous piecewise linear function you like. Note that this is a
dramatically larger class of functions than the simple linear ones shallow FNNs such as
(1.3) can express if σ is chosen to be linear. Hence, in this case choosing σ to be nonlinear
increases expressivity.

Theorem 1.2.9 (See Theorem 24.1 in [20]). Let σ : R → R be the ReLU function
ReLU(x) = max{0, x}. Then, every continuous piecewise linear function f : R→ R as in
(1.4) can be expressed by a shallow FNN whose single hidden layer contains n+ 2 neurons.
More specifically, let

f(x) =



a0x+ b0 x ≤ τ1

a1x+ b1 τ1 ≤ x ≤ τ2

...

an−1x+ bn−1 τn−1 ≤ x ≤ τn
anx+ bn τn ≤ x

(1.4)

where τ1 < τ2 < · · · < τn are real numbers, and a0, . . . , an and b0, . . . , bn are real numbers
such that the function f above is continuous (i.e., ajτj+1 + bj = aj+1τj+1 + bj+1 for all
j ∈ [N ]). In other words, f is a piecewise linear function whose slope changes finitely many
(specifically, n) times. Any such function can be obtained via a shallow FNN of width n+ 2.

3Note that the ReLU function itself is linear everywhere except at 0. Hence, I feel it is appropriate to
label it as “barely nonlinear”.
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Proof. We begin by noting two useful properties of the ReLU function:

ReLU(γx) = γReLU(x) ∀x ∈ R, γ > 0, and

x = ReLU(x)− ReLU(−x) ∀x ∈ R.

Using these two properties, we can write f as the following linear combination of n + 2
ReLU functions as follows

f(x) = a0x+ b0 +
n∑
j=1

(aj − aj−1)ReLU(x− τj)

= ReLU(a0x+ b0)− ReLU(−a0x− b0) +
n∑
j=1

(aj − aj−1)ReLU(x− τj).

Note that the class of piecewise linear functions is actually quite powerful approximation-
theoretically since one can, e.g., approximate any continuous function R → R within a
bounded domain arbitrarily well using increasingly fine piecewise linear approximations.
Thus, the theorem above tells us that even when using the most basic tools available to us
(a straightforward nonlinear activation function within a FNN with just a single layer) we
can already approximate a very general class of functions from R→ R as well as we want.

When we consider functions of two variables, however, things become a bit more
complicated. For example, [20] also shows that the bivariate piecewise linear function
g(x0, x1) = min (0,max(x0, x1)) can not be exactly represented by a shallow ReLU FNN
of any width. That said, as the next theorem demonstrates, g can in fact be exactly
represented by a FNN of depth L = 2. This simple example is meant to demonstrate the
following more general principal: Increasing the depth of a FNN increases its expressivity.

Theorem 1.2.10 (Section 24.3 in [20]). Define the function g : R2 → R by g(x0, x1) =
min{0,max{x0, x1}}. This function g cannot be generated by a shallow ReLU FNN, but g
can be obtained as a depth L = 2 ReLU FNN.

Proof. For a proof that g cannot be generated by a shallow ReLU FNN, consult [20,
Theorem 24.1]. Below we show explicitly how g can be written as a depth 2 ReLU FNN.

g(x0, x1) = min{0,max{x0, x1}}
= −ReLU(−max{x0, x1})
= −ReLU(−(x0 + ReLU(x1 − x0)))

= −ReLU(−ReLU(x0) + ReLU(−x0)− ReLU(x1 − x0))

We can also draw this neural network as in Figure 1.7, omitting arrows with weight 0.
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1.3 TO INCLUDE

1.4 Approximate Counting (CMSE 890 Lecture 1)

As way of introduction, in order provide some interesting and relevant examples that are
illustrative of the larger course content, we consider three by now quotidian problems in
big data settings.

Counting objects is a common challenge in settings involving very large data sets.
Memory efficient methods are needed in order to make object counts feasible for routine
use on these data. This type of problem and the ensuing discussion will also serve as an
introduction to some key ideas for the course. In it we see a deterministic, simple sounding
task (counting in the case) which under further study shows the need for fast and memory
efficient algorithms that give good approximations to well constructed statistics questions.

A formal statement of the problem is as follows: Given a sequence {zj}Nj=1 where
∀j, zj ∈ U and some item w ∈ U of interest, count the number of occurrences of term w in

the sequence {zj}Nj=1.

Goal. Estimate the count of w occurring in the sequence using dlog2dlog2Nee bits of
memory. We require our estimate of the count be larger than the actual count, but no more
than twice the actual count.

The source of the overestimate error on the count will be made clear shortly. Examples
abound for data sets for which counts of this sort are useful

Example 1.4.1. U is the set of all possible phone numbers, and {zj}Nj=1 is a list of phone
numbers which have communicated with a particular cellphone tower over some period of
time. The term w is a phone number of interest, perhaps a known spammer.

Example 1.4.2. U is all possible pairs of words in the English language. So hello world

or thank you are members of U . The sequence {zj}Nj=1 is a list of all pairs of words that
appear in emails contained in some user’s inbox. The term w then could be buy pepsi

which is of interest to perhaps stock traders or advertisers.

Example 1.4.3. U is all possible IP addresses and {zj}Nj=1 is a list that contains the
originating IP address for all packets received by a certain router. The term w is the IP
address of a server used by a movie streaming service of interest to an internet service
provider.

We may wish to consider counts of many different terms w for say all cell-phone towers
in a particular country, or all users of some particular email service. Clearly, the size of
such data sets means that counts can be potentially very large. Since N is an integer, a
priori, we would need (maximally) blog2Nc+ 1 bits to store a count of each w.
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Note. We can store N using blog2Nc+ 1 bits. We have blog2Nc = k only if k ≤ log2N <
k + 1 if and only if 2k ≤ N < 2k+1. That is, 2k ≤ N < 2k+1 is the range of integers which
requires k+ 1 bits. So the integers requiring 4-bits for example are 8 through 15. Depending
on implementation there are other bits required to say, store the sign of the integer. For
simplicity we say that storing an integer of size N requires dlog2Ne bits, though this may
be off by one, or some other constant, depending on implementation.

A first, naive approach is to increment a counter after one scan of the sequence, and
then store the logarithm of that count.

Algorithm 1 Naive Counter

Input: {zj}Nj=1 , w

Output: approximate count of w in {zj}Nj=1

for j = 1 to N do
if zj = w then
w̃ ← w̃ + 1

end if
end for
E ← dlog2 w̃e

Since E is of size at most dlog2Ne it takes at most dlog2dlog2Nee bits to store. Due to
the information lost by taking the ceiling, we also have that w̃ ≤ 2E ≤ 2w̃.

Question 1.4.4. Does E and the algorithm 15 achieve our goal?

No. While it is true that E occupies the right number of bits, the counter itself w̃ would
need to occupy possibly dlog2Ne bits when running the algorithm.

Another problem which is similar to counting objects is the distinct elements problem.
Here we concerned with determining the number of distinct elements which appear in a
given sequence, as opposed to the frequency.

Formally, given a sequence {zj}Nj=1 where ∀j, zj ∈ U , and |U | = D we wish to compute

the cardinality of {zj}Nj=1 as a set.

Goal. Estimate the number of distinct elements in a sequence using a number of bits
independent of both N and D.

One can imagine many different settings where such a count of distinct elements would
be useful.

Example 1.4.5. U is the set of all possible phone numbers, and {zj}Nj=1 is a list of phone
numbers which have communicated with a particular cellphone tower over some period of
time. The cardinality of the sequence as a set would be the number of unique cellphones
that used the tower.
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Example 1.4.6. U is all possible pairs of words in the English language. The sequence
{zj}Nj=1 is a list of all pairs of words that appear in a user’s current email outbox. The
cardinality of the sequence as a set would be an indicator of the variation of a given user’s
word choice in writing emails.

We consider two naive solutions to this problem, and observe how they do not achieve
the stated goal.

Algorithm 2 Naive Distinct Elements by D-array

Input: {zj}Nj=1

Output: number of distinct elements in {zj}Nj=1

Let A := array of zeros of size D
for j = 1 to N do

if A[zj ] = 0 then
A[zj ] := 1

end if
end for
‖A‖0

Algorithm 3 Naive Distinct Elements by Sorted List

Input: {zj}Nj=1

Output: number of distinct elements in {zj}Nj=1

Let L[j] := zj
Sort L
for j = 1 to N − 1 do

if L[j] = L[j + 1] then
flag L[j + 1] for removal

end if
end for
|L|

However, neither of these algorithms meet the requirements of the stated goal. In the
case of algorithm 19 the array A clearly occupies D bits. In the case of 20, the list L needs
N entries, and so will occupy at least N bits of memory. In a future lecture, we will study
the Flajolet-Martin Algorithm which does solve the distinct element problem with constant
memory.

The third problem we consider is Nearest Neighbor in R. Here we have a set of points,
and are presented with a query point and wish to return the closet point in our set to the
query point, reckoned by a norm of interest. Formally, we have S ⊂ RD, and query y ∈ RD
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and compute yNN = arg min ‖x− y‖. The set S has cardinality N which can be very large.
Naturally we can extend this to k-nearest neighbors by returning a list of the k closest
points.

A simple linear scan then of the set is perhaps the most obvious solution to the problem

Algorithm 4 Naive Nearest Neighbors

Input: S,y, ‖ · ‖
Output: yNN

d =∞
for x in S do

if ‖x− q‖ < d then
yNN ← x

end if
end for

This problem is a fundamental building block type of problem in many algorithms and
data science applications.

Example 1.4.7. S is the a database of gray-scale images. A query point q is a novel image,
we return the image that is closest to using the `1 norm

Example 1.4.8. S is a database of names of people who bought departing tickets from a
given airport. A query point q is a name of a passenger of interest, we return the name
that is closest to it using the Hamming distance.

Example 1.4.9. S is a database of users of a dating website. Each user has a vector
of different features, which is computed from data collected about their interests, hobbies,
preferences, etc. A query point q represents a particular user, and developers for the website
have engineered a norm which represents similarity between users. The closest point in S is
recommended as a potential partner.

Since each of the N points in S needs to be compared to the query point, and calculating
the norm of the difference depends on the dimension D of the space, this scan has O(ND)
complexity. We will later study how to improve on this using good approximations.

Definition 1.4.10. For p ≥ 1, the `p-norm of a vector in x ∈ CD is a map ‖ · ‖p : CD →
[0,∞) defined by

‖x‖p =

 D∑
j=1

|xj |p
1/p

if p =∞ then ‖x‖∞ = maxj |xj |
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Exercise 1.4.1. Given norms ‖ · ‖† and ‖ · ‖? on CD and α, β ∈ [0,∞), prove that
‖x‖+ = α‖x‖† + β‖x‖? is also a norm in CD

Other applications that will be relevant to our study in this course are

1. Fast Monte Carlo integration approximation

2. Fast approximate solutions to classic numerical linear algebra problems in the big
data setting such as

(a) least square regression

(b) matrix-matrix multiplication

(c) Principal Component Analysis

3. Compressive sensing

4. Heavy Hitter problems

Heavy Hitter problems refer to cases where we want to find those values which occur
most frequently in a large (streaming) sequence of data. For example, a seller such as
Walmart may be interested in the hundred most purchased items across many different
stores on a minute by minute or second by second time-frame. Another subtype of Heavy
Hitter problem appears in group testing. Here, many specimens are collected and tested
together in batches. So for example, 20 patients may submit specimens that are combined
into batches containing samples from 5 different specimens, and say samples from each
specimen are included in 3 different batches which are then tested for the disease. If the
prevalence of the disease is sufficiently small, batching schemes can be designed to economize
testing but still ensure identifiability of patients who have the disease.

1.5 Fast Function Approximation via Compressive Sensing
(MTH 994 Lecture 1)

The main problem that the course addresses is as follows
Design an algorithm, i.e. a computable function, ∆ : Cm → CN where m ≤ N and a set

of linear measurements Φ ∈ Cm×N for a given subset Fp ⊂ CN with parameters p ∈ Cr

such that for all (n,x) ∈ Z ×Fp the following holds

‖∆(Φx + n)− x‖X ≤ Cp,X,Y inf
y∈Fp

‖x− y‖Y + C̃p,X,Y,Z‖n‖Z + εp,X,Y,Z (1.5)

In effect, what we seek is a reconstruction or invertibility property for our algorithm,
namely, ∆(Φx) = x. We know that this property cannot hold in the generic case where
x ∈ CN since m ≤ N and thus the null space of Φ will be at least of dimension N −m.
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So, the condition that x ∈ Fp makes the desired property possible, and the nature of Fp

crucial to our understanding and solution to the problem.
Some key remarks for equation 1.5:

1. The algorithm ∆ : Cm → CN should be implementable in a manner that is fast,
memory efficient, and robust to noise.

2. The norms ‖ · ‖X,Y,Z will usually be `p-norms for p = 1, 2, . . .

3. n ∈ Cm is arbitrary noise on the input Φx. Deterministic or probabilistic pertubations
to the input are both possible and the more general the case we can accommodate in
our algorithm the better.

4. εp,X,Y,Z ∈ R+ is a small error. This can be round-off error, though often in the sequel
we will take it to be zero.

5. Constants like Cp,X,Y are absolute in the sense that they are independent of any
particular x and noise n.

6. Often, we consider the compressed measurement case, where for Φ ∈ Cm×N we have
m� N .

7. Fp ⊂ CN will be some geometrically simple set parameterized by p, such as

(a) (Manifold) M[d,τ ], a d-dimensional sub-manifold of RN whose reach is bounded
by τ . There are other possible parameters, such as volume or diameter which
could be used to describe the geometry of the manifold.

(b) (Compressed sensing) Ks ⊂ CN , where Ks is the set of s-sparse vectors in CN ,
i.e
{
x ∈ CN |‖x‖0 ≤ s

}
which is equivalently

⋃
S⊂[N ],|S|=s span {ej}j∈S where ej

are the standard basis vectors. That is, the span of vectors with s non-zero
entries.

Note that when εp,X,Y,Z = 0 and in the absence of noise, n = 0, equation 1.5 implies
the invertibility property, ∆(Φx) = x, ∀x ∈ Fp, which is equivalent to the following, by the
linearity of Φ

x 6= y ⇐⇒ Φ(x− y) 6= 0∀x,y ∈ Fp (1.6)

However, numerically 1.6 is not a tenable, realistic property to design around. So we define
a stronger property which will imply 1.6.

This is known as the Johnson-Lindenstrauss (JL) embedding property. We say that Φ
has the JL-property when ∃ε ∈ (0, 1) such that

|‖Φ(x− y)‖2X − ‖x− y‖2Y | ≤ ε‖x− y‖2Y , ∀x,y ∈ Fp (1.7)

Analyzing this property in terms of different spaces and matrices will occupy much of our
subsequent study. We now conclude the introduction lecture with a discussion of function
approximation, and how it relates to the key property 1.7 larger goals of the course.
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Running Example. Suppose D = [0, 1]D, the D-dimensional cube, and f ∈ H for
H = L2

µ(D,C), the separable Hilbert space of square intergrable complex valued functions
on domain D

1. Pick a countable orthornormal basis B of H.

B = {bj}j∈ZD

For example, B is the Fourier basis. Note that through a Gram-Schmidt process we
are guaranteed the existence of a maximal orthonormal set in seperable Hilbert space.

2. Pick a finite subset B′ ⊂ B with |B′ | = N . For example, B′ corresponds to some
frequencies such as those in a hyperbolic cross, or frequencies in (Z ∩ [−M,M ])D for
some M ∈ [0,∞)

3. Approximate f by its projection PB′f =
∑

j∈I bj〈bj , f〉 where I is the index set

corresponding to the finite basis, I =
{
j ∈ ZD|bj ∈ B

′
}

, so |I| = N = |B′ |

Given m input measurements 〈a1, f〉, . . . , 〈am, f〉 we can restate the example in terms
of 1.7 by setting x ∈ CN to xj = 〈bj , f〉 and Φ ∈ Cm×N , Φ`,j = 〈a`, bj〉, ∀j ∈ I such that
each input measurement satisfies

〈a`, f〉 = 〈a`, PB′f〉+ 〈a`, (I − PB′ )f〉︸ ︷︷ ︸
n`

= 〈a`,
∑
j∈I

bj〈bj , f〉〉+ n`

=
∑
j∈I
〈a`, bj〉xj + n`

=
∑
j∈I

Φ`,jxj + n`

Note the noise vector n is due to the truncation error incurred by using only a finite
number of basis elements in this function approximation setting. So, if we also have that x
is in (or near) Fp ∈ CN then the conclusion of the running example is indeed statement of
the result 1.7.

Note that a large number of basis elements may be required to reduce error of the
approximation, especially for high dimensional input space D. This means that computa-
tionally, function approximation may be intractable unless we use the structure of Fp to
compress the computation of

∑
j∈I Φ`,jxj .
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Example 1.5.1 (Function Approximation, 1-D sparse Fourier Transform). Suppose f :
[0, 1] → C, f ∈ L2([0, 1],C) ∩ C1([0, 1]). Choose the orthonormal basis B =

{
e2πkix

}
k∈Z

and select the finite subset B′ =
{
e2πkix

}
k∈[−N,N ]∩Z.

Let the input measurements be point samples inside the domain, i.e. a` = δx` where
δx` = δ(x− x`) for x` ∈ [0, 1], ∀` ∈ [m]. Choose Fp to be Ks, the s-sparse vectors in the

Fourier basis, x = f̂
∣∣
k∈[−N,N ]∩Z has at most s non-zero entries (alternatively we may relax

this and say that the bulk of the energy of x is in at most s-entries).

Note that Φ has several constraints - it’s entries are now taken from point evaluations
of different basis functions at the different sample points x`; and yet we still require that it
preserves the norms of vectors in Fp as stated in 1.7. Additionally, in order to achieve an
improvement in the speed of our algorithm, we need to improve on the usual Fast Fourier
Transform sampling complexity. Instead of the bound m ≤ N logN we want m ≤ s logC N
where C is a small positive, absolute constant. In this way we can benefit from the sparsity
of Fp. Lastly, we want to be able to recover x, i.e. find ∆ : Cm → CN that is able to run
in O(s logC N) (in contrast to O(N logN) required for the standard FFT−1(FFT (x)))

Exercise 1.5.1. Prove that 1.7 implies 1.6

Exercise 1.5.2. Prove that 1.7 implies

|‖Φ(x− y)‖X − ‖x− y‖Y | ≤ ε
‖x− y‖Y

1 +
√

1− ε
≤ ε‖x− y‖Y

2− ε

1.6 Tensor Applications

Definition 1.6.1. An n-mode or order-n tensor (or n-th order) is an n dimensional array
of complex values, written as

A ∈ CI0×I1×···×In−1

where Ij ∈ N, j ∈ [n]. An n-mode tensor’s entries are indexed by a vector i ∈ [I0]× [I1]×
· · · × [In−1] where (A)i = ai = ai0,...,in−1 ∈ C

Example 1.6.2 (1 and 2 mode tensors). 1. A 1-mode tensor, a ∈ CI0 is a vector with
entries aj ∈ C, j ∈ [I0]. We will denote 1-mode tensors, vectors, the usual way with
bolded lowercase letters

2. A 2-mode tensor, A ∈ CI0×I1 is a matrix with entries ai0,i1 ∈ C for i0 ∈ [I0], i1 ∈ [I1].
Equivalently ak, k ∈ [I0]× [I1]. We will denote 2-mode tensors, matrices, the usual
way with capital un-bolded letters.

We introduce some terminology that will be useful when describing tensors
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Definition 1.6.3 (Fiber). Fibers are 1-dimensional subsets of an n-mode tensor. They are
formed by fixing n− 1 of the dimensions and then ranging over all indices in the remaining
dimension. So for any k ∈ [n], and A ∈ CI0×···×In−1 then a k-mode fiber would be a vector
a ∈ CIk where indices i0, . . . , ik−1, ik+1, . . . , in−1 are fixed, i.e. using Matlab notation

(A)i0,...,ik−1,:,ik+1,...,in−1
= ai0,...,ik−1,:,ik+1,...,in−1

So for example, given a matrix A ∈ CI0×I1 then Ai,: = ai,: ∈ CI1 is a mode-2 fiber (i.e.
row). A mode-1 fiber, a:,j is a column of the matrix.

Definition 1.6.4 (Slice). A matrix formed by varing 2 indices and fixing all other indices
of a tensor. That is, suppose j, k ∈ [n] where j 6= k then

A = Ai0,...,ij−1,:,ij+1,...,ik−1,:,ik+1,...,in−1 ∈ CIj×Ik

Figure 1.8: Figure seen in [35]

Definition 1.6.5 (Sub-tensor). A k-subtensor of an n-mode tensor (k < n) is denoted by
a vector of length n − k of indices and a set of k mode indices from the set [n]. That is
given distinct j0, . . . , jk−1 ∈ [n] and define vector i ∈

⊗
i 6=j` [Ii] of length n− k. Let

Aj0,...,jk−1,i ∈ C
Ij0×···×Ijk−1
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Using this subtensor notation then a mode-k fiber is a subtensor Ak,i where k ∈ [n] and
i ∈ [I0]× . . . [Ik−1]× [Ik+1]× · · · × [In−1]. There are

∏
`6=k I` potentially different mode-k

fibers, one for each possible i.
A slice then is denoted A`,k,i ∈ CI`×Ik . There are

∏
j 6=`,k Ij slices of dimension I` × Ik.

Next we will discuss reshaping operators - this involves many different possible ways of
changing the dimensions of tensors so that they have the same number of entries.

Definition 1.6.6 (Vectorization). For A ∈ CI0×···×In−1 vec(A) = a where a ∈ C
∏n−1
k=0 Ik

Definition 1.6.7 (Mode-k Flattening). For A ∈ CI0×···×In−1 the k-mode flattening is a
matrix A(k) ∈ CIk×

∏
j 6=k Ij . We have effectively made the k-th dimension into the rows of

the matrix, and the columns are then the different mode-k fibers. In particular
(
A(k)

)
j,`

=
A`1,...,`k−1,j,`k+1,...,`n−1. The columns are the fibers Ak,i.

Definition 1.6.8 (Reshaping). We can reshape an n-mode into any other m-mode tensor
with a reshaping operation R : CI0×···×In−1 → CJ0×···×Jm−1 provided

n−1∏
j=0

Ij =

m−1∏
`=0

J̃`

k-mode flattening and vectorization are two particular reshaping operations.

What is the underlying vector space we can use to study tensors? To answer that, we
consider the following norm, inner-product, and operations on tensors:

Definition 1.6.9 (2-norm of a Tensor). For A ∈ CI0×···×In−1 then given any k ∈ [n] we
have

‖A‖22 = ‖A(k)‖22 = ‖a‖22 =
∑
i∈I
|ai|2

where I = [I0]× · · · × [In−1]

Definition 1.6.10 (Inner-product). For tensors A,B ∈ CI0×···×In−1 then

〈A,B〉 =
∑
i∈I

aibi = 〈a,b〉

that is, the inner-product of the vectorization of the tensors. Note that this is equivalent to
〈A(k), B(k)〉HS = Trace(Ak(B(k))∗), ∀k ∈ [n], the Hilbert-Schmidt inner product for matrices

Addition and scalar multiplication work component-wise, i.e.

(A+ B)i = ai + bi

(αA)i = αai, ∀α ∈ C
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1.6.1 Restricted Inner and Matrix Products

Given long vectors, as may result from reshaping a tensors for example, we may perform
inner products with smaller vectors by using well chosen samples or parts from the longer
vectors.

Definition 1.6.11. k-mode product of A ∈ CI0×···×Id−1 and U ∈ CJk×Ik for k ∈ [d] is a
tensor in CI0×···×Ik−1×Jk×Ik+1×···×Id−1 denoted by

(A×k U)i0,...,ik−1,:,ik+1,...,id−1
= UAi0,......,id−1

In other words, the k-mode product applies the matrix U to all the mode-k fibers of
the tensor A. For example, suppose A ∈ C5×3×2 and U ∈ C4×5. Then A×1 U ∈ C4×3×2

where each of the mode-1 fibers is now the product of UA:,j,`, for some j ∈ [3], ` ∈ [2].
In the 2-mode tensor case, i.e., matrices, the usual matrix-matrix multiplication can be

understood in terms of 1-mode tensor product.

AB = A
[

b1 b2 . . . bn
]

=
[
Ab1 Ab2 . . . Abn

]
= B ×1 A

Lemma 1.6.12. (A+ B)×k U = A×k U + B ×k U

Proof. For any i0 ∈ I0, . . . , ik−1 ∈ Ik−1, ik+1 ∈ Ik+1, . . . , id−1 ∈ Id−1 we have

[(A+ B)×k U ]i0,...,ik−1,:,ik+1,...,id−1
= U(A+ B)i0,...,ik−1,:,ik+1,...,id−1

= UAi0,...,ik−1,:,ik+1,...,id−1
+ UBi0,...,ik−1,:,ik+1,...,id−1

= A×k U + B ×k U

Lemma 1.6.13 (Properties of k-mode products). Let A,B ∈ CI0,...,Id−1 , α, β ∈ C, U`, V` ∈
Cm`×I`, ∀` ∈ [d]. Then

1. (αA+ βB)×j Uj = α(A×j Uj) + β(B ×j Uj)

2. A×j (αUj + βVj) = α(A×j Uj) + β(A×j Vj) that is, k-mode product is bilinear

3. If j 6= ` then
(A×j Uj)×` V` = (A×` V`)×j Uj

Note that the run-time complexity is the same regardless of the order one applies the
k- or j-mode products

4. If W ∈ Cp×mj then (A×j Uj)×j W = A×j (WUj) ∈ CI0×Ij−1×p×Ij+1×...Id−1
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Definition 1.6.14 (Kronecker Product). The Kronecker product of two matrices U×Cm×n

and V ∈ Cp×q is a matrix

U ⊗ V =

u11V . . . u1nV
...

...
um1V . . . umnV


where U ⊗ V ∈ Cmp×nq

Lemma 1.6.15. Let A ∈ CI0,...,Id−1, U` ∈ Cm`×I` then

1. (A×j Uj)(j) = UjA(j) ∈ Cmj×
∏
6̀=j I`

2. (A×0 U0 ×1 U1 · · · ×d−1 Ud−1)(j) = UjA(j) (Ud−1 ⊗ Ud−2 ⊗ · · · ⊗ Uj+1 ⊗ Uj−1 ⊗ · · · ⊗ U0)T

we have assumed a column-major convention for matricization.

In order for the identity seen in Lemma 1.6.15 to hold, we need specify our precise
matricization convention.

In our convention, the entry at location (i0, . . . , id−1) in A ∈ CI0×···×Id−1 is located in
the matrix as entry (in, j) where

j =

d−1∑
k=0
k 6=n

ikJk

where

Jk =
k−1∏
m=0
m 6=n

Im

set Jk = 1 if the index of the product above is empty.

Example 1.6.16 (3-mode). The following example appears in [35]: Consider a tensor
A ∈ R3×4×2, the frontal slices are as follows

A:,:,0 = A0 =

1 4 7 10
2 5 8 11
3 6 9 12

 , A:,:,1 = A1 =

13 16 19 22
14 17 20 23
15 18 21 24


The three different unfoldings are then as follows. Consider n = 0,

A(0) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24
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Note

J0 =
0−1∏
m=0
m 6=0

Im = 1, J1 =
1−1∏
m=0
m 6=0

Im = 1, J2

2−1∏
m=0
m6=0

Im = I1 = 4

Now to see how to locate a particular entry, note that A1,2,1 = 20, so in our unfolding

A(k)
(i,j) we can simply copy the index that corresponds to the n-th mode, i.e. the first here,

i = 1. To find the column, compute j =
∑d−1

k=0
k 6=n

ikJk = 2(1) + 1(4) = 6. So our entry with

value 20 is in location (1, 6).

Consider n = 1,

A(1) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


Again, to locate our entry,A1,2,1 = 20, we return the index on the n-th mode as our row,
i = 2, and repeat the same calculation for j:

Note

J0 =
0−1∏
m=0
m6=1

Im = 1, J1 =
1−1∏
m=0
m 6=1

Im = I0 = 3, J2

2−1∏
m=0
m 6=1

Im = I0 = 3

.

This time we leave out the J1 factor: j =
∑d−1

k=0
k 6=n

ikJk = 1(1) + 1(3) = 4. So our entry

with value 20 is located in (2, 4).

Consider n = 2, A(2)

(
1 2 3 4 5 6 7 8 . . .
13 14 15 16 17 18 19 20 . . .

)
Again, to locate our entry,A1,2,1 = 20, we return the index on the n-th mode as our row,
i = 1, and repeat the same calculation for j:

Note

J0 =
0−1∏
m=0
m6=2

Im = 1, J1 =
1−1∏
m=0
m 6=2

Im = I0 = 3, J2

2−1∏
m=0
m 6=2

Im = I0 = 3

.

This time we leave out the J2 factor: j =
∑d−1

k=0
k 6=n

ikJk = 1(1) + 2(3) = 7. So our entry

with value 20 is located in (1, 7).
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1.6.2 Low Rank Approximation

Our next topic concerns how different methods can be used to approximate tensors. Our
first attempt will illustrate the need for better decompositions other than simply reshaping
tensors into familiar objects.

Suppose we have q tensors of size CI0×···×Id−1 , A1, . . . ,Aq. We will compress the tensors
by performing PCA on the vectorized tensors. Our goal then in this case is to solve the
minimization problem:

m∑
j=1

min
Sj∈CI0×···×Id−1

‖Aj − Sj‖22

This is equivalent to
m∑
j=1

min
sj∈S⊆C

∏d−1
m=0 Im

‖aj − sj‖2

where vec(Aj) = aj ∈ C
∏d−1
m=0 Im . We can use the SVD of the following data matrix

[
a1 a2 . . . aq

]
= UΣV ∗ ∈ Cq×

∏d−1
m=0 Im

Once we have the singular vectors, we can tensorize their outer product using the inverse
of our vectorizing reshaping operation. That is

Aj ≈
m∑
k=1

σj,kTk

where Tk are the tensors obtained from the principal directions (obtained from the singular
vectors of SVD of the data matrix) and σj,k are the appropriate principal scores (again
computed from the singular vectors and singular values of the data matrix).

What compression does this achieve? The space required for our original collection
of tensors A1, . . . ,Aq ∈ CI0×···×Id−1 is O(q

∏d−1
m=0 Im). After PCA, we need keep m basis

tensors of the same dimension CI0×···×Id−1 and our coordinates or principal scores will also
need to be stores and there are mq of these. So the space is O(m

∏d−1
m=0 +qm) which is

unsatisfactory because the dependence on
∏d−1
m=0 is unchanged. Additionally, there’s no

interpretable structure to the basis tensors Tk. This motivates us then to look to another
approach for decomposing (and therefore compressing) tensors.

Definition 1.6.17 (Rank one Tensor). Given d-vectors xj ∈ CIj for j ∈ [d], the outer-
product

X =
d−1
©
j=0

xj ∈ CI0×···×Id−1
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has entries given the product of corresponding entries of the vectors, i.e.

Xi0,...,id−1
=

(
d−1
©
j=0

xj

)
i0,...,id−1

= (x0)i0 (x1)i1 . . . (xd−1)id−1

any d-mode tensor where it is possible to write it as such an outer product of d vectors is a
rank one tensor.

Note that storing a rank one tensor means storing only the vector components, rather
than all entries. This definition in the 2-mode case is the familiar rank one matrix case, for
u ∈ Cm,v ∈ CN

A = u ◦ v = uv∗

then matrix A ∈ Cm×N is a rank one matrix.

Definition 1.6.18. A ∈ CI0×···×Id−1 is a r tensor if it can be written as the sum of r rank
one tensors, that is

A =
r−1∑
`=0

(
d−1
©
j=0

x
(`)
j

)

Figure 1.9: Schematically a rank R decomposition for a 3-mode tensor X as seen in [35]

Note that unlike the PCA example given above, this decomposition does not require us to
consider a set of tensors; a single tensor will be decomposable in this fashion. Furthermore,
each of the basis tensors in this case does have a simple structure - it can be stored as d

vectors and so takes up O
(
r
∑d−1

j=0 Ij

)
-space.

So with this definition, we ask then how, given a tensor A can we find its rank r
decomposition. How to select or determine r is a question we will set aside for the time
being.

Given A ∈ CI0×···×Id−1 we want to find a rank r approximation as

arg min
x
(`)
j ∈C

Ij ,j∈[d],`∈[r]

‖A −
r∑
`=1

(
d−1
©
j=0

x
(`)
j

)
‖
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In the generic case, the above optimization problem is difficult. However, the base case
of d = 2 leads to consider a method which in practice can yield good results, though its
gaurauntees are not well understood.

In the event that d = 2 then the optimization problem is equivalent to

min
α`
‖A−

r−1∑
`=0

αlu`v
∗
`‖F =

√√√√N−1∑
j=r

σj(A)

where α` = σ`(A) and u`,v` are the singular vectors of A. That is, the best rank r
approximation to a matrix A is given by the leading r factors from the SVD.

So the idea then for our tensor decomposition is to reduce to the d = 2 case. Suppose
for the time being that we have A ∈ CI0×···×Id−1 , we know it is rank r and we know all but
the first mode vectors in each of the r rank 1 factors. That is, we have

d−1
©
j>0

x
(`)
j

for all ` ∈ [r]. With this (mostly) complete factorization for A, we can find the missing
mode by solving a least squares problem.

So,

A =

r−1∑
`=0

(
d−1
©
j=0

x
(`)
j

)
Now consider the subtensor A([d]\{0},i0). This is the tensor found by fixing an index in the
0-th mode and varying all other indices. Naturally then there are I0 such subtensors. For
any i0 ∈ I0 the entries of the subtensor A([d]\{0},i0) are equal to

r−1∑
`=0

(
x

(`)
0

)
i0

d−1
©
j>0

x
(`)
j

That is, we have a sum of products of scalar unknowns with d− 2 outer product - and so
after a careful rearrangement of elements, we will have a linear system:

 vec
(
©d−1
j=0 x

(0)
j

)
vec
(
©d−1
j=0 x

(1)
j

)
. . . vec

(
©d−1
j=0 x

(r−1)
j

) 


(
x

(0)
0

)
i0(

x
(1)
0

)
i0

...(
x

(0)
0

)
i0

 = . . .

 vec
(
A([d]\{0},i0)

) 
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Let us denote B0 as the
∏d−1
j=1 Ij × r matrix formed by using the vectorized d − 1-mode

outer products as columns. Note that A([d]\{0},i0) = A(k)
i0,:

, that is the vectorized subtensor
is equal to the i0-th row of the 0-mode unfolding of A

So, in order to solve the missing unknown, we have I0 overdetermined linear systems of

the form A
(0)
:,i0

= B0x to solve in order find all the unknowns. i.e. denoting x` =
(
x(`)0

)
i0

for ` ∈ [r]
x = arg min

y∈Cr
‖b−B0y‖2

Solving this for all i0 ∈ [I0].
This can be formulated equivalently as follows(

A(k)
)T

= Bk

[
x

(0)
k x

(1)
k . . . x

(r−1)
k

]T
where we have combined the Ik different vector least square fitting problems into one matrix
least square fitting problem of the form

arg min
X∈Cr×Ik

∥∥∥∥(A(k)
)T
−BkX

∥∥∥∥2

F

that is X will solve for all the k-mode missing factor vectors.
With this in hand, we are now ready to address the question of how to obtain the

complete factorization of an arbitrary rank r tensor – our proceeding formulation only
addressed how to find the k-mode missing factor vectors supposing all the other r(d− 1)
factor vectors were known.

Algorithm 5 Alternating Least Squares Minimization

Input: A ∈ CI0×···×Id−1

Output:
{

x
(`)
j

}
j∈[d],`∈[d]

Initialize
{

x
(`)
j

}
j∈[d],`∈[r]

randomly

for i = 1 to maximum iterations do
for k = 0 to d− 1 do[

x
(0)
k x

(1)
k . . . x

(r−1)
k

]
← arg minX∈Cr×Ik

∥∥∥(A(k)
)T −BkX∥∥∥2

F
end for

end for
return

{
x

(`)
j

}
j∈[d],`∈[d]

Note that the above algorithm requires the solution of (d)max_iterations overdeter-
mined least square problems - a potential bottleneck which can be mitigated by using fast
approximate least square methods like the one described in Theorem 4.3.3.
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Also note that the algorithm is a greedy algorithm an - its convergence properties are
not well understood nor does it guarantee any type of global optimality.

Next we turn to another important Tensor decomposition method.

1.6.3 Tucker Rank and Decomposition

Definition 1.6.19. A tensor A ∈ CI0×...Id−1 has (r1, . . . , rd−1)-Tucker rank if there exists
a core tensor C ∈ Cr0×...rd−1 and matrices Uj ∈ CIj×rj , ∀j ∈ [d] such that

A = C
d−1

×
j=0

Uj

Figure 1.10: Schematically a Tucker decomposition for a 3-mode tensor X with core tensor
G and factor matrices A,B,C as seen in [35]

Note the space requirement to store a Tucker decomposition of a tensor isO
(∏d−1

j=0 rj +
∑d−1

j=0 Ijrj

)
,

where the first term accounts for all the entries of the core tensor and the second term
accounts for all entries of the factor matrices. Recall that O

(∏d−1
j=0 Ij

)
space is required

to store the unfactored tensor, and so in the event that the Tucker rank is appreciably
smaller than the original mode for at least some of the modes, the Tucker decomposition
will occupy significantly less space.

Note that as a convention, Uj can be taken to have orthonormal columns - by orthonor-
malizing Uj , we can suitably alter C.

To approximate a tensor with a low Tucker rank representation, we can solve the
following optimiziation problem

arg inf
C∈Cr0×···×rd−1

{Uj}j∈[d],U
∗
j Uj=I

‖A − C
d−1

×
j=0

Uj‖22
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when the number of modes is larger than 2, this optimization problem is difficult to
solve. One approach is to use the SVD of each of the d different unfoldings of A

Algorithm 6 Higher Order SVD

Input: A ∈ CI0×···×Id−1 , (r0, . . . , rd−1)
Output: C, {Uj}j∈[d]

Compute rj-truncated SVD of mode-j unfolding of A

A(j) = UjΣjV
∗
j , ∀j ∈ [d]

C ← A×d−1
j=0 U

∗
j ∈ Cr0×···×rd−1

return C, {Uj}j∈[d]

Note that for each unfolding, the full SVD has form

A(j) = U︸︷︷︸
Ij×Ij

Σ︸︷︷︸
Ij×

∏
j 6=k

Ik V ∗︸︷︷︸∏
j 6=k Ik×

∏
j 6=k Ik

the rj-truncated SVD has form

A(j) ≈ U︸︷︷︸
Ij×rj

Σ︸︷︷︸
rj×rj

Ik V ∗︸︷︷︸
rj×

∏
j 6=k Ik

This problem then is repeated for each of the d different modes. This is potentially a
bottleneck computationally and so can likely benefit from fast approximations to the SVD
as described in algorithm ??.

Now, to further improve the decomposition, we can take an approach like 5 and alternate,
successively solving for Uj and iterate on this processes.
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Algorithm 7 Higher Order Orthogonal Iteration

Input: A ∈ CI0×···×Id−1 , (r0, . . . , rd−1)
Output: C, {Uj}j∈[d]

Initalize
{
U

(0)
j

}
← HOSV D(A)

for i = 1 to M do
∀j update U

(i−1)
j by computing(

A×
k 6=j

(
U

(i−1)
k

)∗)(j)

= U
(i)
j Σ

(i)
j

(
V (i)

)∗
j

end for
C ← A×k 6=j

(
U

(M)
k

)∗
return C,

{
U

(M)
j

}
j∈[d]

Next we will show one way in the Tucker and CP rank relate. First though we note a
Lemma which shows that how the mode-k product of a CP rank one tensor with a matrix
U can be expressed as another rank one tensor.

Lemma 1.6.20. Let xj ∈ CIj , Uk ∈ Cmj×Ij for all j ∈ [d] then(
d−1
©
j=0

xj

)
×k Uk =

(
k−1
©
j=0

xj

)
© Ukxk©

(
d−1
©

j=k+1
xj

)

Proof. Note that the k-mode fibers the tensor
(
©d−1
j=0 xj

)
are scalar multiples of the same

vector, xk
That is, the k-mode fiber indexed by (`0, . . . , `k−1, `k + 1, . . . , `d−1) isd−1∏

j 6=k
(xj)`j

xk

but
(∏d−1

j 6=k(xj)`j

)
is a scalar. So the identity follows now from noting the definition of the

mode-k product. (Each column of the unfolding is a scalar multiple of the same vector,
scalar commutes with matrix-vector multiplication)

Theorem 1.6.21. If A ∈ CI0×...Id−1 has Tucker rank (r0, . . . , rd−1) then it has CP rank of
at most

∏d−1
j=0 rj
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Proof. The tensor has an exact Tucker decomposition, so

A = C
d−1

×
j=0

U∗j

Note that we can express any tensor in the standard basis; here the standard basis for
tensors is a tensor with only one non-zero entry.

So for example for some ` ∈ [r0]× · · · × [rd−1] the associated standard basis element is

d−1
©
j=0

e`j

where e`j is the usual standard basis vector in Crj . Denote I = [r0]× · · · × [rd−1]. Thus

C =
∑
`∈I
C`

(
d−1
©
j=0

e`j

)

Now use this expression in the Tucker decomposition of A

A = C
d−1

×
j=0

U∗j

=

[∑
`∈I
C`

(
d−1
©
j=0

e`j

)]
d−1

×
j=0

U∗j

=
∑
`∈I
C`

(
d−1
©
j=0

U∗j e`j

)

=
∑
`∈I
C`

d−1
©
j=0

(U∗j )`j

where we have used Lemma 1.6.20, and denoted the `j-th column of Uj as (Uj)`j . We

therefore have the sum of rank one tensors. There are
∏d−1
j=0 rj possible values for ` and

so we have a CP decomposition of that rank. This provides an upper bound on CP rank,
since the decomposition may not be optimal.
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x0

x1

1

-1

-1

1

-1

1

-1

-1 g(x0, x1)

Figure 1.7: The graphical representation of the depth L = 2 ReLU FNN from the proof of
Theorem 1.2.10 that computes g(x0, x1) = min{0,max{x0, x1}}.
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Chapter 2

Linear Algebra over the Real and
Complex Numbers

In this chapter we will introduce/review linear algebra over the complex numbers. We note
immediately, however, that the real numbers are also complex numbers! If the reader is
intimidated by (or temporarily disinterested in) doing linear algebra over the
complex numbers, they can simply skip down to Section 2.2 and replace the
symbol “C” everywhere it appears there with an “R”. Doing so will not affect
the correctness of anything in this chapter, or limit your understanding in an
important way until Section 2.4. We will also continue to use the matrix notation
and conventions discussed in, e.g., Section 1.2.2 going forward. All of that material (where
one restricts oneself to thinking about the reals R ⊂ C) also remains true in this chapter.
In short, if you know how linear algebra works over C, then you can reduce to linear
algebra over R by simply replacing “C” everywhere it appears with an “R”. Doing linear
algebra over the complex numbers instead of the reals in the first place does require a few
minor adaptations, though (mainly, you need to use complex conjugation in a few crucial
definitions). We will do that for you below. Before we begin, however, let’s review the
complex numbers.

2.1 The Complex Numbers

In this book the letter i will be reserved for the imaginary number
√
−1. That is, i2 := −1.

A complex number is an object of the form z = x+ iy for x, y ∈ R. The set of complex
numbers is denoted

C := {x+ iy | x, y ∈ R} .

The number x in z = x+ iy is called the real part of z, and is denoted Re(z) ∈ R. Similarly,
the number y is called the imaginary part of z, and is denoted Im(z) ∈ R. A real number
is simply a complex number with a zero imaginary part. Hence, R ⊂ C. There is also a

39



40

common geometric interpretation of a complex number as illustrated in Figure 2.1. In fact,
the existence of this picture is why C is sometimes also referred to as “the complex plane”.

Real Axis

Imaginary Axis

z = (Re(z), Im(z)) = |z|eiθ

Re(z)

Im(z)

|z|

Re(z) = |z| cos(θ)

Im(z) = |z| sin(θ)

θ

z = (Re(z),−Im(z)) = |z|e−iθ

Figure 2.1: The geometry of a complex number z ∈ C.

Figure 2.1 represents many of most important quantities related to a complex number
z = x+ iy stemming from geometry. In particular, the modulus, magnitude, or absolute
value of z = x+ iy is denoted by |z|. It is defined to be the Euclidean distance from the
origin to (Re(z), Im(z)) = (x, y) in the complex plane. It is therefore also the length of the
hypotenuse of a right triangle whose other two sides have lengths |Re(z)| and |Im(z)|, and
so can be computed using the Pythagorean theorem to be

|z| =
√

(Re(z))2 + (Im(z))2 =
√
x2 + y2.

Note that if z ∈ R so that z = Re(z) (i.e., if y = 0) then |z| = |Re(z)| = |x|. That is, this
definition extends the usual definition of absolute value over the real numbers R to all of C.

Exercise 2.1.1. Let z ∈ C. Prove that |Re(z)| ≤ |z| and |Im(z)| ≤ |z| always hold.

Another fundamental geometric quantity illustrated in Figure 2.1 related to z = x+ iy
is its phase angle or argument, θ = arg(z) ∈ [0, 2π), defined to be the angle between the
real axis and the vector from the origin to (Re(z), Im(z)) = (x, y) in the complex plane.
Using the geometric definitions of sin and cos involving right triangles one can immediately
derive the formulas

x = Re(z) = |z| cos θ and y = Im(z) = |z| sin θ.
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Similarly, one can appeal to trigonometry to see that, e.g, the phase angle θ of z = x+ iy is

θ = arg(z) := cos−1

(
Re(z)

|z|

)
= cos−1

(
x√

x2 + y2

)
,

where one needs to remember to correct θ based on the quadrant of the complex plane z
belongs to in the usual way. Note that positive real numbers (with sign 1 = cos(0)) always
have the phase angle θ = 0, and that negative real numbers (with sign −1 = cos(π)) always
have the phase angle θ = π. Hence, phase angles effectively extend the notion of “sign”
from the real numbers R to all of C in a consistent fashion.

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 can be added component-wise
(effectively as vectors) via the definition

z1+z2 = (x1+iy1)+(x2+iy2) := (x1+x2)+i(y1+y2) = Re(z1)+Re(z2)+i(Im(z1)+Im(z2)).

Note again that the usual relationship between R and C holds: if z1, z2 ∈ R so that
Im(z1) = Im(z2) = 0 then this definition of addition matches addition in R. We have once
again managed to extend the usual definition (of addition here) from R to all of C in a
totally consistent way.

Similarly, two complex numbers z1, z2 ∈ C can be multiplied using the standard
distributive law for the multiplication of two real numbers, but making sure to use the
identity i2 = −1. Indeed, if z1 = x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1 + iy1)(x2 + iy2) := x1x2 + ix1y2 + iy1x2 + i
2y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2).

Note once again that this definition of multiplication matches multiplication over the reals
whenever z1, z2 ∈ R so that y1 = y2 = 0 = Im(z1) = Im(z2). This, of course, allows us to
compute powers of z ∈ C, zn, for any positive integer n in a way that is again a consistent
extension of how one computes powers of real numbers.

Exercise 2.1.2. Verify the following properties of complex number addition and multiplica-
tion.

1. Commutativity of addition and multiplication: z1 +z2 = z2 +z1 and z1z2 = z2z1

for all z1, z2 ∈ C.

2. Associativity of addition and multiplication: (z1 + z2) + z3 = z1 + (z2 + z3) and
(z1z2)z3 = z1(z2z3) for all z1, z2, z3 ∈ C.

3. Distributivity: z1(z2 + z3) = z1z2 + z1z3 for all z1, z2, z3 ∈ C.

Exercise 2.1.3. Let z1, z2 ∈ C. Show that |z1z2| = |z1||z2|.
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Importantly, we can now see that more complicated functions that can be defined on
R in terms of series expansions (like exp, cos, sin, . . . ) should also believably extend in a
consistent way to all of C since all of their basic building blocks (addition, multiplication,
and integer powers) have been consistently extended from R to all of C.1 Recall the Taylor
series for the exponential function centered at 0 is

exp(x) = e
x =

∞∑
n=0

xn

n!
.

This series converges absolutely for every x ∈ R. The exponential function of any complex
number z ∈ C can be defined analogously as

exp(z) = e
z =

∞∑
n=0

zn

n!
. (2.1)

It matches the usual definition of exp on R (i.e., whenever z ∈ R ⊂ C) for all the reasons
emphasized above. For more of this extensions interesting properties on C we recommend
taking a look at, e.g., [10].

Euler’s Identity

We may now derive Euler’s identity for complex exponentials. Consider the purely imaginary
number z = iθ for some θ ∈ R. In this case, we have

exp(iθ) = e
iθ =

∞∑
n=0

(iθ)n

n!
. (2.2)

Before simplifying the above expression, we observe that since i2 = −1, we have

i
2n = (−1)n and i

2n+1 = (−1)ni for all n ≥ 0.

1If you want to learn about how very nicely this idea ends up working out, I strongly recommend taking
a class on complex analysis!
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Breaking the sum (2.2) into the parts where n is even and n is odd we get that

e
iθ =

∑
n even

(iθ)n

n!
+
∑
n odd

(iθ)n

n!

=

∞∑
n=0

(iθ)2n

(2n)!
+

∞∑
n=0

(iθ)2n+1

(2n+ 1)!

=
∞∑
n=0

i2nθ2n

(2n)!
+
∞∑
n=0

i2n+1θ2n+1

(2n+ 1)!

=

∞∑
n=0

(−1)nθ2n

(2n)!
+

∞∑
n=0

(−1)niθ2n+1

(2n+ 1)!

=

( ∞∑
n=0

(−1)nθ2n

(2n)!

)
+ i

( ∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

)
.

Now recall from calculus that the Taylor series for cos θ and sin θ about 0 are

cos θ =
∞∑
n=0

(−1)nθ2n

(2n)!
and sin θ =

∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!
,

and that the series above converge absolutely for all θ ∈ R. Consequently, we obtain
Euler’s identity, i.e., that

e
iθ = cos θ + i sin θ. (2.3)

Exercise 2.1.4. Use Euler’s identity and trigonometric identities involving sine and cosine
to show that eiθeiω = ei(θ+ω) holds for all ω, θ ∈ R.

Exercise 2.1.5. Use induction in addition to the last exercise to prove that (eiθ)n = einθ

holds for all n ∈ N.

The Polar Representation of a Complex Number

As illustrated in Figure 2.1, every z = x + iy ∈ C corresponds to a point (x, y) =
(Re(z), Im(z)) in the complex plane. This suggests another way of representing a complex
number using polar coordinates as done for R2. Specifically, if x = r cos θ and y = r sin θ
for some r ≥ 0 and θ ∈ [0, 2π), then a complex number z = x+ iy can be represented in
terms of r and θ as follows:

z = x+ iy = r cos θ + ir sin θ = r (cos θ + i sin θ) . (2.4)

Note that the identity cos2(θ) + sin2(θ) = 1 shows that r = |z| in the polar representation
above.
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Using Euler’s identity in (2.4) gives us the polar representation of a complex number in
terms of complex exponentials:

z = reiθ.

Stating the same formula another way, we have that

z = Re(z) + iIm(z) = |z|ei arg(z).

Exercise 2.1.6. Prove the following useful identities involving the polar representation of
complex numbers.

1. Show that if z = reiθ, then for any n ∈ N we have zn = rn (cos(nθ) + i sin(nθ)) .

2. Every complex number of unit modulus can be written as eiθ for some θ ∈ [0, 2π).

3. If z = reiθ and w = seiϕ, then zw = rsei(θ+ϕ).

Complex Conjugation

The complex conjugate of a complex number z = x+iy is the complex number z̄ = x−iy.
Geometrically, as illustrated in Figure 2.1, z̄ is the reflection of z across the real axis. One
can verify that

Re(z) =
z + z̄

2
, Im(z) =

z − z̄
2i

.

Consequently, a complex number z is a real number if and only if z = z̄.

Exercise 2.1.7. Prove the following useful identities involving complex conjugation. Let
z1, z2 ∈ C.

1. Show that z1 + z2 = z1 + z2.

2. Show that z1z2 = z1 z2.

3. Show that |z1|2 = z1z1.

4. Show that |z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2).

Exercise 2.1.8. Let z ∈ C have the polar representation z = reiθ. Show that z̄ = re−iθ.

Exercise 2.1.9. Let z ∈ C be nonzero. Show that

z−1 :=
1

z
=

z̄

|z|2
.
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The Roots of Unity

Fix n ∈ N and consider the equation

zn = 1, z ∈ C.

We wish to find all solutions z ∈ C of this equation. First, notice that necessarily |z| = 1.
Hence, z = eiθ for θ ∈ [0, 2π). By Euler’s formula, this means that

1 = cos(nθ) + i sin(nθ),

which implies cos(nθ) = 1 and sin(nθ) = 0. This can only happen if nθ = 2πk for some
k ∈ Z. Thus, θ = 2πk

n must hold. Note that we have n distinct values of θ ∈ [0, 2π) satisfying

this formula, one for each k ∈ [n]. The set of these solutions is therefore {e
2πki
n | k ∈ [n]}

are called the nth roots of unity. Notice that they all satisfy zn = 1 by design, and are
placed in an equidistant fashion around the unit circle |z| = 1 in the complex plane. These
values will be of special significance later in Section 2.4.

The Triangle Inequality for Complex Numbers

We will now prove the triangle inequality for complex numbers.

Lemma 2.1.1 (The Triangle Inequality for C).

|z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C. (2.5)

Furthermore, equality holds in (2.5) if and only if z1 = cz2 for some real number c ≥ 0.

Proof. Using the results of Exercises 2.1.7, 2.1.1, and 2.1.3 we can see that

|z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2)

≤ |z1|2 + |z2|2 + 2|z1z2|
= |z1|2 + |z2|2 + 2|z1||z2|
= |z1|2 + |z2|2 + 2|z1||z2|
= (|z1|+ |z2|)2 .

Taking square roots now gives us the desired inequality.
Now suppose that we have equality in (2.5). If either z1 or z2 is 0 we are finished.

Thus, suppose that z1 = r1e
iθ1 and z2 = r2e

iθ2 with r1, r2 > 0. Notice that the only
place we have an inequality in the argument above is in the estimate Re(z1z2) ≤ |z1z2|. If
|z1 +z2| = |z1|+ |z2|, then we must, in fact, have Re(z1z2) = |z1z2|. That means Im(z1z2) =
r1r2 sin(θ1−θ2) = 0. Given that r1, r2 > 0 we must therefore have sin(θ1−θ2) = 0, implying
that θ1 − θ2 = mπ for some integer m.
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If m were odd it would imply that

Re(z1z2) = r1r2 cos(θ1 − θ2) = r1r2 cos(mπ) = −r1r2 < 0.

This is impossible here since we have Re(z1z2) = |z1z2| = r1r2 > 0. Therefore, m must be
even, and so θ1 − θ2 = 2πn for some integer n. This implies that arg(z1) = arg(z2), and so
z1 = cz2 for some positive real number c.

We now have all the prerequisites we need to begin discussing linear algebra over C.

2.2 Basic Linear Algebra over C and R

A complex valued matrix A ∈ Cm×n is a matrix of complex values with m rows and n
columns whose entries are denoted by Aj,k ∈ C for all j ∈ [m] and k ∈ [n]. A complex
valued vector x ∈ Cn of length n is also considered to be an n × 1 matrix (i.e, vectors
are “column vectors” by default). It’s entries are denoted by xj ∈ C for all j ∈ [n], and
can themselves be safely considered to be scalars, length 1 vectors, and 1× 1 matrices as
convenient.

Given a matrix A ∈ Cm×n and a vector x ∈ Cn, their matrix-vector product,
Ax ∈ Cm, is a vector which can be defined in two equivalent ways. First, it can be defined
entrywise via

(Ax)j :=
∑
k∈[n]

Aj,kxk ∈ C ∀j ∈ [m]. (2.6)

Alternatively, it can defined as a weighted sum of the columns of A via the formula

Ax =
∑
k∈[n]

xkA:,k ∈ Cm. (2.7)

Both equations are true and will be used often below.

Exercise 2.2.1. Show that (2.6) holds if and only if (2.7) holds.

We can use the matrix-vector product notation to describe the product of two
matrices. For any natural numbers m, n, p, and two matrices A ∈ Cm×n and B ∈ Cn×p,
we can write

AB = A

 | |
b1 · · · bp
| |

 =

 | |
Ab1 · · · Abp
| |

 (2.8)

where bj = B:,j denotes the jth column of B and Abj is the matrix-vector multiplication
described above. We can also define matrix-matrix multiplication entrywise by

(AB)j,k :=
n−1∑
l=0

Aj,lBl,k (2.9)
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Note further that since we always consider a vector v ∈ Cn to be an n × 1 matrix, the
resulting matrix-matrix product Av agrees with the matrix-vector product definition of Av
above.

Exercise 2.2.2. Show that (2.8) holds if and only if (2.9) holds.

Matrix-vector multiplication also allows us to view matrices as functions. Given A ∈
Cm×n, A acts on Cn by vector multiplication, and can therefore be viewed as a map
A : Cn → Cm defined by A(x) = Ax for all x ∈ Cn. One can confirm that A is then a
linear function (i.e., that A(αx + βy) = αAx + βAy for all α, β ∈ C and x,y ∈ Cn), and
that the range of A (as a function) is the column space of A (as a matrix). That is,

Range(A) = Column Space of A

= C(A) = span {A:,j | j ∈ [n]}

=

∑
j∈[n]

αjA:,j | αj ∈ C ∀j ∈ [N ]


= {Ax | x ∈ Cn} ⊂ Cm.

Let A ∈ Cm×n be a matrix. The adjoint of A, denoted A∗ ∈ Cn×m, is the conjugate
transpose of A, i.e., the matrix produced by transposing A and taking the complex conjugate
of each entry. It is defined entrywise by (A∗)j,k = Ak,j . Note that if A ∈ Rm×n then
A∗ = AT . We also note that A = (A∗)∗ always holds (check this!).

Exercise 2.2.3. Let A,B ∈ Cm×n. Show that (A+B)∗ = A∗ +B∗.

Exercise 2.2.4. Let A ∈ Cm×n and B ∈ Cn×p. Show that (AB)∗ = B∗A∗.

Given two vectors of the same length, x,y ∈ Cn, we can define their Euclidean inner
product to be

〈x,y〉 :=
n−1∑
j=0

xjyj = x∗y ∈ C.

Also note that when two vectors x and y are real-valued, the complex inner product of
x and y equals the real inner product of x and y. Thus, we can view linear algebra over
the complex numbers as a natural extension of linear algebra over the reals, where any
statement about complex linear algebra still holds true when we restrict ourselves to the real
numbers. This again supports my prior claim that you can simply “replace C everywhere
in this section with R” and have a chapter on linear algebra over R as a result, should you
desire to do so.

These next four exercises are highly recommended. As always, using the result of prior
exercises to will help you complete subsequent ones more quickly is also always highly
recommended.
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Exercise 2.2.5. Let x,y ∈ Cn. Show that 〈x,y〉 = 〈y,x〉.

Exercise 2.2.6. Show that the inner product is conjugate-linear in the first argument and
linear in the second argument. That is, for α, β ∈ C and x,y, z ∈ Cn show that

1. 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉, and that

2. 〈x, αy + βz〉 = α〈x,y〉+ β〈x, z〉.

Exercise 2.2.7. Let A ∈ Cm×n and x ∈ Cn. Show that (Ax)j = 〈(A∗):,j ,x〉 =
〈
Aj,:,x

〉
for all j ∈ [m].

Exercise 2.2.8. Let A ∈ Cm×n, x ∈ Cn, and y ∈ Cm. Show that both 〈Ax,y〉 = 〈x, A∗y〉
and 〈A∗y,x〉 = 〈y, Ax〉 hold.

Let’s now briefly review a geometric concept related to inner products that’s reserved
for real-valued vectors.

Some Inner Product Geometry for Real-valued Vectors x,y ∈ Rn

The inner product can be used to express the angle between two real vectors. Given two
non-zero vectors x,y ∈ Rn, the angle θ ∈ [0, π] between x,y ∈ Rn is

θ = cos−1

(
〈x,y〉√
〈x,x〉〈y,y〉

)
. (2.10)

Note that θ = π/2 (or 90 degrees) whenever 〈x,y〉 = 0, indicating that the two vectors are
perpendicular, or orthogonal, to one another. Further note that the angle between x and y
can always be reasoned about with regular two-dimensional plane geometry no matter how
large n is here since x and y will always belong to the (at most) two-dimensional subspace
span{x,y} ⊂ Rn. Hence, all the pictures of right triangles you are tempted to draw on a
piece of paper to better understand θ are 100% justified.2

Back to Cn: Using the inner product geometry for real-valued vectors as motivation, we
will also say that two complex-valued vectors x,y ∈ Cn are orthogonal if 〈x,y〉 = 0.
We will now recall an important inequality for inner products.

2Simply rewrite x and y in terms of an orthonormal basis of the span{x,y}, and then draw your pictures
with axes in the directions of these orthonormal basis vectors. If this footnote is confusing I recommend you
continue on, review orthogonality and orthogonal projections, and then come back here again for a rematch.
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The Cauchy–Schwarz Inequality

Note that for any vector x ∈ Cn, 〈x,x〉 =
∑

j∈[n] xjxj =
∑

j∈[n] |xj |2 ≥ 0 (this fact will

become important later). Now let t ∈ R, and x,y ∈ Cn, and set α := |〈y,x〉|
〈y,x〉 . One can see

that α is a complex number with magnitude 1. Finally, define the function f : R→ R by

f(t) := 〈tαx + y, tαx + y〉

Recall that f(t) ≥ 0 for all t ∈ R by the fact above.
Continuing, the following sequence of inequalities can be seen to hold using properties

of the inner product together with the definition of α (check each step!). We have that

0 ≤ f(t) = tα〈x, tαx + y〉+ 〈y, tαx + y〉
= t2αα〈x,x〉+ tα〈x,y〉+ tα〈y,x〉+ 〈y,y〉
= t2〈x,x〉+ 2Re(tα〈y,x〉) + 〈y,y〉
= 〈x,x〉t2 + 2|〈x,y〉|t+ 〈y,y〉,

which is a quadratic polynomial in t with real coefficients. Since the polynomial f above is
≥ 0 for all t, it must have at most one real root.

Recalling the quadratic equation for a generic polynomial p(t) = at2 + bt+ c, we note
that its discriminant b2 − 4ac must be non-positive (i.e., ≤ 0) in order for the polynomial
to have at most one real root. Applying this to our f above we learn that

(2|〈x,y〉|)2 ≤ 4〈x,x〉〈y,y〉

|〈x,y〉| ≤
√
〈x,x〉〈y,y〉.

This inequality holds for all vectors x,y ∈ Cn since we chose them arbitrarily. It is known
as the Cauchy-Schwarz Inequality (i.e., it has a name!) due to its importance.

Lemma 2.2.1 (The Cauchy-Schwarz Inequality). For any two vectors x,y ∈ Cn,

|〈x,y〉| ≤
√
〈x,x〉

√
〈y,y〉.

It is expressed here slightly differently than usual in Lemma 2.2.1, however. Usually it
is stated like “|〈x,y〉| ≤ ‖x‖2‖y‖2” where ‖ · ‖2 denotes the `2-vector norm, which we will
recall next.

2.2.1 General Norms on Cm×n, and the Euclidean Vector Norm

A matrix norm on Cm×n is a function f : Cm×n → R+ := [0,∞) satisfying all of the
following properties:

1. (The triangle inequality): f(A+B) ≤ f(A) + f(B) for all A,B ∈ Cm×n,
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2. f(αA) = |α|f(A) for all α ∈ C and A ∈ Cm×n, and

3. f(A) = 0 ⇐⇒ A = 0m×n, where 0m×n denotes the m × n matrix of all zeros (i.e.,
the zero matrix).

Recall that we also view vectors in Cm as m× 1 matrices. Thus, a norm on m× 1 matrices
(i.e., on vectors in Cm) will also be called a vector norm for this reason.

We can now see that the Euclidean, or `2-norm, of a vector x ∈ Cn defined by
‖x‖2 :=

√
〈x,x〉 is indeed a vector norm.

Lemma 2.2.2. Let f : Cn → R+ be the `2-norm so that f(x) = ‖x‖2 :=
√
〈x,x〉. We

claim that f(x) = ‖x‖2 is a vector norm on Cn.

Proof. We will verify that each condition of a norm is satisfied. First, we will check that
the triangle inequality holds. Note that the last inequality just below depends on the
Cauchy-Schwarz inequality. Let x,y ∈ Cn. Then

‖x + y‖2 =
√
〈x + y,x + y, 〉

=

√
‖x‖22 + ‖y‖22 + 2Re(〈x,y〉)

≤
√
‖x‖22 + ‖y‖22 + 2|〈x,y〉|

≤
√
‖x‖22 + ‖y‖22 + 2‖x‖22‖y‖

2
2

= ‖x‖2 + ‖y‖2.

Next we verify that the norm scales correctly. Let α ∈ C and x ∈ Cn. We have that

‖αx‖2 =
√
〈αx, αx〉 =

√
αα〈x,x〉 =

√
|α|2〈x,x〉

= |α|‖x‖2.

Finally, we verify that the `2-norm of a vector x ∈ Cn can only be 0 if x is the vector of
all zeros, 0. We have that

‖x‖2 = 0 ⇐⇒ ‖x‖22 = 0 ⇐⇒
∑
j∈[j]

|xj |2 = 0 ⇐⇒ |xj | = 0 ∀j ∈ [n].

Having now shown that the `2-norm satisfies all the properties of a norm, we may conclude
that it indeed is one.

The following exercise demonstrates a useful property of the inner product which is
perhaps most easily seen by using the properties of the `2-norm.

Exercise 2.2.9. Let x ∈ Cn. Show that if 〈x,y〉 = 0 for all y ∈ Cn, then x = 0 must hold.
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Though the `2-norm is by far the most often used norm, all of the other norms in the
following exercises are also commonly used. Even if you don’t do each exercise (you should
of course!), you should look at them for the norm definitions.

Exercise 2.2.10. Show that the `1-norm defined by

‖A‖1 :=
∑

j∈[m],k∈[n]

|Aj,k|

is indeed a norm on Cm×n.

Exercise 2.2.11. Show that the Frobenius matrix norm defined by

‖A‖F :=

√ ∑
j∈[m],k∈[n]

|Aj,k|2

is indeed a norm on Cm×n. HINT: Suppose you vectorize A. What does the Frobenius
norm look like then?

Exercise 2.2.12. Show that the `∞-norm defined by

‖A‖∞ := max
j∈[m],k∈[n]

|Aj,k|

is indeed a norm on Cm×n.

Exercise 2.2.13. Show that the (`2, `2)-operator norm defined by

‖A‖2→2 := max
x∈Cn s.t. ‖x‖2=1

‖Ax‖2

is indeed a norm on Cm×n.

Exercise 2.2.14. Suppose that f : Cm×n → R+ and g : Cm×n → R+ are both norms on
Cm×n. Let α, β ∈ R+ \ {0}. Show that h = αf + βg will also be a norm on Cm×n.

With the aim in mind of recalling what the “rank” of a matrix really means, let’s now
briefly review linear independence and subspace basis properties.

2.2.2 Subspaces, Span, and Linear Independence

Let S = {v0, . . . ,vm−1} ⊂ Cn be a finite and nonempty set of vectors in Cn. The span of
S, denoted span(S), is the set

span(S) :=

∑
j∈[m]

αjvj | α0, . . . , αn−1 ∈ C

 ⊂ Cn.
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If S ⊂ Cn is infinite, we instead define the span of S to be the set

span(S) :=
⋃

A⊂S,A finite

span(A) ⊂ Cn.

Note that S ⊂ span(S) always holds for any S ⊂ Cn since x ∈ S implies that 1 · x ∈
span(S). Furthermore, note that 0 is in the span of every nonempty set S since 0 = 0 · x
for any x ∈ S.

Exercise 2.2.15. Verify that if A ⊂ S, then span(A) ⊂ span(S).

Exercise 2.2.16. Let S, T ⊂ Cn. Verify that span(T ∩ S) ⊂ span(T ) ∩ span(S).

A subset L ⊂ Cn is called a linear subspace of Cn if span(L ) = L . That is,
subspaces are sets that are closed under taking spans. Note that the so-called trivial
subspace {0} ⊂ Cn is always a subspace since span({0}) = {0}. Similarly, Cn is a linear
subspace because both of the following hold: (i) Cn ⊂ span(Cn) (since S ⊂ span(S) for
any S ⊂ Cn), and (ii) span(Cn) ⊂ Cn (trivially by definition).

Example 2.2.3 (The Span of S is a Linear Subspace for Every Nonempty S ⊂ Cn). We
need to show that

span (span(S)) = span(S).

As usual with set equalities of this type we will proceed by showing that both (i) span(S) ⊂
span (span(S)), and (ii) span (span(S)) ⊂ span(S), hold. In fact (i) follows from the fact
above that S ⊂ span(S) holds for any S ⊂ Cn. Hence, we only really need to verify (ii).

To verify that span (span(S)) ⊂ span(S), let y ∈ span (span(S)). By the definition of
span, y must be the linear combination of a finite number p ∈ N of elements of span(S).
Hence, y will have the form

y =

p−1∑
j=0

βj

qj−1∑
k=0

αj,kxj,k

 =

p−1∑
j=0

qj−1∑
k=0

βjαj,kxj,k,

where βj ∈ C and qj ∈ N for all j ∈ [p], and where xj,k ∈ S and αj,k ∈ C for all k ∈ [qj ]
for each j ∈ [p]. Thus, we can see that y ∈ span(S) too since it will be a linear combination

of a finite number, min
(∑

j∈[p] qj , |S|
)
∈ N, of elements of S.

Exercise 2.2.17. Let L ,K ⊂ Cn be two linear subspaces of Cn. Show that L ∩K is
also a linear subspace of Cn.

A set of vectors {v0, . . . ,vm−1} ⊂ Cn is called linearly independent if
∑

j∈[m] αjvj =
0 if and only if αj = 0 for all j. In other words, no nontrivial (i.e., all zero) linear
combination of the vectors can equal the zero vector. If a set of vectors is not linearly
independent, we call it linearly dependent.
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Exercise 2.2.18. Show that any set of vectors in Cn containing the zero vector is linearly
dependent.

Definition 2.2.4 (The Standard Basis Vectors of Cn). The standard basis vectors of
Cn are the n vectors {ej}j∈[n] := {e0, e1, . . . , en−1, } ⊂ Cn whose entries are given by

(ej)k =

{
1 if j = k

0 if j 6= k

for all k ∈ [n].

Example 2.2.5 (The Standard Basis Vectors are Linearly Independent). The standard
basis vectors {ej}j∈[n] ⊂ Cn are linearly independent because for any α0, α1, . . . , αn−1 ∈ C
we can see that

0 =
∑
j∈[n]

αjej =


α0

α1
...

αn−1

 ⇐⇒ αj = 0 ∀j ∈ [n].

Having just defined a set of vectors called the “standard basis”, it behooves us to briefly
recall what a “basis” actually is. We do so next.

2.2.3 Bases, Orthonormal Bases, Dimension, and Rank

The following lemma ultimately guarantees that the notions of “dimension” and “rank” are
well defined. Since these notions are inextricably linked to the notion of a “basis”, we will
prepare the ground for them here.

Lemma 2.2.6 (The Exchange Lemma). Let B1, B2 ⊂ Cn be finite. Furthermore, suppose
that B2 is linearly independent, and that L := span(B2) ⊂ span(B1). Then |B2| ≤ |B1|.

Proof. Suppose, towards a contradiction, that |B1| < |B2|. Let B1 = {x0,x1, . . . ,xs−1} ⊂
Cn, and B2 = {y0,y1, . . . ,ys+m−1} ⊂ Cn, where m > 0. Recall that the yj vectors
are linearly independent by assumption. Furthermore, we have the assumed inclusion
L = span(B2) ⊂ span ({x0,x1, . . . ,xs−1}).

Because y0 ∈ span(B1), there exist α0, . . . , αs−1 ∈ C such that

y0 =
∑
j∈[s]

αjxj .

Furthermore, because the yj vectors are linearly independent, we recall that y0 can’t be
the zero vector. Hence, at least one of the αj ’s must be nonzero. Without loss of generality
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(w.l.g.), we may assume that α0 6= 0. Thus, we can write x0 in terms of y0 and the other
xj ’s to see that

x0 =
1

α0

y0 −
s−1∑
j=1

αjxj

 .

Hence, L ⊂ span ({y0,x1,x2, . . . ,xs−1}) also holds. Note that we have effectively ex-
changed x0 for y0 in our initially assumed inclusion.

Now, we repeat this process to exchange x1 for y1 in the last inclusion just above: Since
y1 ∈ L , y1 ∈ span({y0,x1, . . . ,xs−1}). Thus, there exists β0 ∈ C and γ1, . . . , γs−1 ∈ C
such that

y1 = β0y0 +

s−1∑
j=1

γjxj .

Note that at least one γj ∈ C above must be nonzero (otherwise, we’d have y1 = β0y0,
violating the assumed linear independence of the yj ’s). Without loss of generality, we may
assume that γ1 6= 0. Thus, we can write

x1 =
1

γ1

y1 − β0y0 −
s−1∑
j=2

γjxj

 .

As a result we have successfully exchanged x1 for y1 in our prior inclusion to see that
L ⊂ span ({y0,y1,x2, . . . ,xs−1}) also holds.

Repeating this process s− 2 more times we find that L ⊂ span ({y0,y1,y2, . . . ,ys−1})
must hold. This generates a contradiction, however, because it implies that ys ∈ B2 can be
written as a linear combination of y0, . . . ,ys−1, contradicting the fact that yj ’s are linearly
independent. Therefore, |B1| < |B2| can’t hold.

The following corollary of Lemma 2.2.6 guarantees that any two linearly independent
sets that generate the same subspace have to have the same cardinality.

Corollary 2.2.7. Let B1, B2 ⊂ Cn be finite sets that are both linearly independent. Fur-
thermore, suppose that span(B1) = span(B2). Then, |B1| = |B2|.

Exercise 2.2.19. Prove Corollary 2.2.7.

We are now able to give a well defined definition of the dimension of a linear subspace.
Let L be a linear subspace of Cn. A basis of L is any linearly independent finite set
B with L = span(B).3 Note that by Corollary 2.2.7 all bases of L must have the same
cardinality. We call this cardinality the dimension of L , and denote it by dim(L ) ∈ [n+1].

3Note that by our definition of “linear subspace” it’s not immediately clear that every linear subspace of
C
n has to have a basis. They do, and you can build a basis for any subspace of Cn in a finite number of

steps using the Gram–Schmidt algorithm (see, e.g, Section 2.2.4).
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If L is the subspace containing only the zero vector, we say that L is the trivial subspace
and has dimension zero.

Example 2.2.8 (The Dimension of Cn). The n standard basis vectors {ej}j∈[n] ⊂ Cn are
indeed a basis of Cn because they are linearly independent and satisfy Cn = span

(
{ej}j∈[n]

)
.

As a result, we can see that the dimension of Cn is n.

Exercise 2.2.20. Let L be a linear subspace of Cn. Use Lemma 2.2.6 to show that any
linearly independent set of vectors B ⊂ L has cardinality ≤ n.

Exercise 2.2.21. Let L ⊂ Cn be a linear subspace. Prove that the dimension of L is at
most n.

Exercise 2.2.22. Let L ⊂ Cn be a linear subspace. Show that any linearly independent
set of vectors B ⊂ L has cardinality ≤ the dimension of L .

The following lemma is crucial in several later arguments.

Lemma 2.2.9. Let L ,K ⊂ Cn be two linear subspaces of Cn with L ∩K = {0}. Then
L ∪K contains dim(L ) + dim(K ) linearly independent vectors.

Proof. Let r = dim(L ) and B = {bj}j∈[r] ⊂ L be a basis of L . Similarly, let s = dim(K )
and A = {ak}k∈[s] ⊂ K be a basis of K . We can see that B ∪ A must have cardinality
dim(L ) + dim(K ) since L ∩ K = {0}, and neither B nor A can contain 0 (recall
Exercise 2.2.18). Hence, we will be finished if we can show that B∪A is linearly independent.

Suppose for the sake of contradiction that B ∪ A is linearly dependent. Then, there
exists a nonzero vector α ∈ Cr+s such that∑

j∈[r]

αjbj +
∑
k∈[s]

αk+rak = 0 ⇐⇒ L 3
∑
j∈[r]

αjbj =
∑
k∈[s]

(−αk+r)ak ∈ K

⇐⇒
∑
j∈[r]

αjbj = 0 and
∑
k∈[s]

(−αk+r)ak = 0

since L ∩K = {0}. Furthermore, at least one of
∑

j∈[r] αjbj or
∑

k∈[s](−αk+r)ak is a

nonzero sum since α ∈ Cr+s is nonzero. However, we then have a contradiction since both
A and B are linearly independent.

Exercise 2.2.23. Let L ,K ⊂ Cn be two linear subspaces of Cn with dim(L )+dim(K ) >
n. Prove that there exists a nonzero vector x ∈ L ∩K .

Exercise 2.2.24. Let L ,K ⊂ Cn be two linear subspaces of Cn with dim(L )+dim(K ) >
n. Prove that L ∩K is a linear subspace of Cn with dim(L ∩K ) ≥ 1.

Given a matrix A ∈ Cm×n, we define the rank of A to be the dimension of its column
space C(A) ⊂ Rm (which, as a reminder, is the span of the columns of A).
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Exercise 2.2.25. Show that a rank r matrix A ∈ Cm×n has exactly r linearly independent
columns.

Exercise 2.2.26. Show that the rank of a matrix A ∈ Cm×n is always ≤ min{m,n}.

We define a set of nonzero vectors {vj}j∈[m] ⊂ Cn to be mutually orthogonal (or
just orthogonal) if, for all j 6= k, 〈vj ,vk〉 = 0. We will also say that a set containing a
single vector {v} ⊂ Cn is trivially orthogonal since it contains nothing else for v to fail
to be orthogonal with. The next lemma shows that orthogonal vectors are always linearly
independent. Hence, they always form a basis of their span.

Lemma 2.2.10. An orthogonal set of nonzero vectors is always linearly independent.

Proof. Let {yj}j∈[m] ⊂ Cn be orthogonal nonzero vectors. Suppose that there exist some
α0, . . . , αm−1 ∈ C such that ∑

j∈[m]

αjyj = 0.

Let k ∈ [m]. Since the inner product of the zero vector with any other vector is 0, we can
see that

0 =

〈
yk,

∑
j∈[m]

αjyj

〉
=
∑
j∈[m]

αj〈yk,yj〉 = αk〈yk,yk〉 = αk‖yk‖22.

Recalling the properties of norms, we note that since yk 6= 0, ‖yk‖22 > 0. Hence, αk = 0
must hold for all k ∈ [m].

A set of orthogonal vectors in Cn that all have norm 1 is called an orthonormal set.
Note that given a set of orthogonal nonzero vectors, we can normalize each of them by

replacing yj with each
yj
‖yj‖2

. This then guarantees that
∥∥∥ yj
‖yj‖2

∥∥∥
2

= 1
‖yj‖2

‖yj‖2 = 1. Thus,

any orthogonal set of nonzero vectors can be turned into an orthonormal set. If a set of
orthonormal vectors span a linear subspace L ⊂ Cn, we say that they are an orthonormal
basis for L .

Exercise 2.2.27. Show that the standard basis vectors {ej}j∈[n] ⊂ Cn form an orthonormal
basis of Cn.

Orthonormal bases have several nice properties. For example, if we know that a vector
x ∈ Cn is in the span of an orthonormal basis {vj}j∈[m] ⊂ Cn, then we can find an
expansion of x in terms of {vj}j∈[m] by noting that

x =
∑
j∈[m]

αjvj ⇐⇒ 〈vk,x〉 =
∑
j∈[m]

αj〈vk,vj〉 = αk‖vk‖22 = αk ∀k ∈ [m]. (2.11)

Thus, we can easily recover the coefficients αj ∈ C of the linear combination making up x
by taking the inner product of x with the orthonormal basis vectors. In addition, these
coefficients will also satisfy the famous Pythagorean theorem.
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Theorem 2.2.11 (The Pythagorean Theorem). Suppose {vj}j∈[m] = {v0,v1, . . . ,vm−1} ⊂
Cn is an orthonormal set of vectors. Then∥∥∥∥∥∥

∑
j∈[m]

αjvj

∥∥∥∥∥∥
2

2

=
∑
j∈[m]

|αj |2

for all α0, . . . , αm−1 ∈ C. Equivalently, for any x ∈ span
(
{vj}j∈[m

)
,

‖x‖22 =
∑
j∈[m]

|〈x,vj〉|2

Proof. Note that the second equation follows immediately from the first since we have
x =

∑
j∈[m]〈vj ,x〉vj . To show the first equation let α0, . . . , αm−1 ∈ C. Then,∥∥∥∥∥∥

∑
j∈[m]

αjvj

∥∥∥∥∥∥
2

2

=

〈∑
j∈[m]

αjvj ,
∑
k∈[m]

αkvk

〉
=
∑
j∈[m]

∑
k∈[m]

〈αjvj , αkvk〉

=
∑
j∈[m]

∑
k∈[m]

αjαk〈vj ,vk〉 =
∑
j∈[m]

αjαj〈vj ,vj〉 =
∑
j∈[m]

|αj |2.

Having hopefully reminded you why orthonormal bases are so great, we will now discuss
how to generate one.

2.2.4 Orthonormal Bases, the Gram–Schmidt Algorithm, and the QR
Decomposition of a Matrix

Algorithm 8 is an implementation of the Gram–Schmidt Algorithm which, when given a
finite set S ⊂ Cn as input, outputs an orthonormal basis of span(S). Before we analyze
this algorithm to see that it works as intended we highly recommend that the reader take a
close look at it. Here are some recommended exercises to help you pay close attention to
how it works.

Exercise 2.2.28. Run Algorithm 8 on the set

S =

{(
1
i

)
,

(
2 + i

1

)}
⊂ C2

by hand. Verify that the basis B ⊂ C2 it produces for span(S) is indeed an orthonormal
basis.
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Algorithm 8 The Gram–Schmidt Algorithm for Finite Sets

1: Input: A finite set S ⊂ Cn with at least one nonzero element.
2: Output: An orthonormal set B ⊂ Cn with span(B) = span(S).

# Initialize S and B.
3: Pick a nonzero x0 ∈ S, and set b0 := x0/‖x0‖2 and B = {b0}.
4: Set S = S \ {0,x0}, and initialize j = 1.
5: while S 6= {} do
6: Pick xj ∈ S, and set yj = xj −

∑j−1
`=0〈b`,xj〉b`.

# If yj = 0 then xj ∈ span(B) already, so we’ll immediately remove this xj from S
# in Line 11 and pick a new one. If yj 6= 0 then xj /∈ span(B), so we will add a new
# element to B so that xj will then belong to its new span.

7: if yj 6= 0 then
8: Set bj := yj/‖yj‖2 and let B = B ∪ {bj}.
9: Set j = j+1.

10: end if
11: Set S = S \ {xj}.
12: end while
13: Return B.

Exercise 2.2.29. Run Algorithm 8 on the set

S =


 1
−1
1

 ,

1
1
0

 ,

4
0
2

 ⊂ C3

by hand. Verify that the basis B ⊂ C3 it produces for span(S) is indeed an orthonormal
basis.

When you are finished inspecting Algorithm 8 come back here and we prove a lemma
which takes a step toward showing that the set B Algorithm 8 outputs is always an
orthonormal basis for the span of the input set S.

Lemma 2.2.12. The set B ⊂ Cn output by Algorithm 8 is always orthonormal.

Proof. First, we observe from Lines 3 and 8 of Algorithm 8 that each bj ∈ B will have
norm 1. Thus, it only remains to show that B is orthogonal. To show orthogonality it
suffices to show that the set {b`}j`=0 = {b0,b1, . . . ,bj} ⊂ B is orthogonal for all j ∈ [|B|].
We will proceed by induction on j.

To begin, we note that {b`}0`=0 = {b0} when j = 0 is trivially orthogonal as a singleton

set. Now, as our induction hypothesis, assume that {b`}j`=0 is orthogonal. To show that

{b`}j+1
`=0 must also then be orthogonal it suffices to show that 〈bk,bj+1〉 will be 0 for all
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integers k ∈ [0, j]. Referring to Lines 6 and 8 of Algorithm 8, and noting that the vector
permanently selected as xj in Line 6 has its yj 6= 0 for all j ∈ [|B|], we can see that indeed

〈bk,bj+1〉 =

〈
bk,

1

‖yj+1‖2

(
xj+1 −

j∑
`=0

〈b`,xj+1〉b`

)〉

=
1

‖yj+1‖2

(
〈bk,xj+1〉 −

j∑
`=0

〈b`,xj+1〉〈bk,b`〉

)

=
1

‖yj+1‖2
(〈bk,xj+1〉 − 〈bk,xj+1〉) = 0

for all k ∈ [0, j], where we have used the inductive hypothesis that {b`}j`=0 is orthogonal in

the last line. As a result we can see that {b`}j+1
`=0 will also be orthogonal whenever {b`}j`=0

is for all j = 0, 1, . . . , |B| − 2, finishing our induction argument.

Lemma 2.2.12 guarantees that the output, B ⊂ Cn, of Algorithm 8 is always orthonormal,
but in order for it to be a basis of span(S) we also need that span(B) = span(S). This is
established in our next lemma.

Lemma 2.2.13. The set B ⊂ Cn output by Algorithm 8 always satisfies span(B) = span(S).

Proof. It suffices to show that span{x`}j`=0 = span{b`}j`=0 for all j ∈ [|B|] (think about
why!4). We will show this by induction on j. To begin, we note that when j = 0 we
have span{x0} = span{b0} since b0 is a nonzero scalar multiple of x0 (see Line 3). Now,
suppose for the sake of induction that span{x`}j`=0 = span{b`}jl=0. We will prove that then

span{x`}j+1
`=0 = span{b`}j+1

l=0 must also hold in the usual two steps.

span{x`}j+1
`=0 ⊂ span{b`}j+1

l=0 : Let x ∈ span{xl}j+1
l=0 . Then, we can write

x = αj+1xj+1 + y

where αj+1 ∈ C and y ∈ span{x`}j`=0 = span{b`}j`=0. By Lines 6 and 8 of Algorithm 8 we
also have that

xj+1 = ‖yj+1‖2bj+1 +

j∑
`=0

〈b`,xj+1〉b`

so xj+1 ∈ span{b`}j+1
`=0 . Therefore, x ∈ span{b`}j+1

`=0 .

4Recall that only the final vector permanently selected to be xj in Line 6 has its yj 6= 0. All other
initially-selected/temporary xj candidates have yj = 0, indicating that they are already in the span of
{b`}j−1

`=0 .
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Algorithm 9 The Gram–Schmidt Algorithm for Subspaces of Cn

1: Input: A nontrivial subspace L ⊂ Cn (i.e., an L 6= {0}).
2: Output: An orthonormal set B ⊂ Cn with span(B) = L .
3: Pick x ∈ L \ {0} and initialize B = {x/‖x‖2}.
4: while L 6⊂ span(B) do
5: Pick x ∈ L \ span(B).
6: Let y = x−

∑
b∈B〈b,x〉b.

7: Set B = B ∪ {y/‖y‖2}.
8: end while
9: Return B.

span{b`}j+1
l=0 ⊂ span{x`}j+1

`=0 : Let z ∈ span{b`}j+1
`=0 . Then we can write

z = βj+1bj+1 + y

where βj+1 ∈ C and y ∈ span{b`}j`=0 = span{x`}j`=0. Again, by Lines 6 and 8 of
Algorithm 8 we also have that

bj+1 =
1

‖yj+1‖2

(
xj+1 −

j∑
`=0

〈b`,xj〉b`

)
,

where the sum
∑j

`=0〈b`,xj〉b` above is in span{b`}j`=0 = span{x`}j`=0. Thus, bj+1 ∈
span{x`}j+1

`=0 which in turn implies that z ∈ span{x`}j+1
`=0 .

Having now shown that both span{x`}j+1
`=0 ⊂ span{b`}j+1

`=0 and span{b`}j+1
`=0 ⊂ span{x`}j+1

`=0

hold, we conclude that indeed span{x`}j+1
`=0 = span{b`}j+1

l=0 .

Combining Lemmas 2.2.12 and 2.2.13 we obtain the following theorem guaranteeing
that Algorithm 8 always produces an orthonormal basis of the span of its input set, as
intended.

Theorem 2.2.14. Algorithm 8 always returns an orthonormal basis B of span(S) ⊂ Cn.

The Gram–Schmidt algorithm is also useful for a lot of other theoretical reasons as well,
which I would like to briefly mention here (please indulge me!). For example, based on
our definition of what a subspace of Cn is, it’s is not immediately clear that every such
subspace has to have a basis. This can be established by, e.g., analyzing Algorithm 9 which
is a variant of Algorithm 8 (except for subspaces). Please go and look it over.

Looking at Algorithm 9 we can see that a slightly modified version of Lemma 2.2.12
will again guarantee that B will remain orthonormal at all times. The main open question
here is therefore whether the “while loop” in Line 4 of Algorithm 9 will ever terminate
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Algorithm 10 Gram–Schmidt for Extending an Orthonormal Basis

1: Input: An orthonormal basis B of a subspace L ⊂ Cn.
2: Output: An orthonormal basis B̃ of Cn with B ⊂ B̃.
3: Initialize B̃ = B.
4: while Cn 6⊂ span

(
B̃
)

do

5: Pick x ∈ Cn \ span
(
B̃
)

.

6: Let y = x−
∑

b∈B̃〈b,x〉b.

7: Set B̃ = B̃ ∪ {y/‖y‖2}.
8: end while
9: Return B̃.

(subspaces are, after all, infinite sets . . . there are many worst-case x values to pick from in
each iteration!). We need not fear, however. The while loop must terminate after at most n
iterations no matter what by the Exchange Lemma (Lemma 2.2.6) exactly because B will
always be linearly independent (see, e.g., Exercise 2.2.20). More precisely, it will terminate
after dim(L ) ≤ n iterations (see, e.g., Exercise 2.2.22). Failing to do so would generate a
contradiction. Formalizing this argument proves the following theorem.

Theorem 2.2.15. Every nontrivial subspace L ⊂ Cn has an orthonormal basis.

As a final thought regarding Gram–Schmidt algorithm variants, we note that they can
also be used to expand an orthonormal basis of a low-dimensional subspace of Cn into
a larger orthonormal basis of all of Cn. This fact comes in handy on many occasions.
More precisely, suppose that we have an orthonormal basis B of a subspace L ⊂ Cn with
|B| = dim(L ) < n in our possession. Then, we can use Algorithm 10 to extend it to a
larger basis B̃ of Cn with B ⊂ B̃. Please go take a look at Algorithm 10, paying special
attention to its similarities and differences with Algorithm 9.

Looking at Algorithm 10 we can see that it is effectively a continuation of Algorithm 9.
That is, Algorithm 10 effectively picks up where Algorithm 9 leaves off and then continues
in the exact same way after substituting L with Cn everywhere in its “while loop”. As
a consequence of this substitution, we can use essentially the same reasoning as above to
see that Algorithm 10 will indeed output an orthonormal basis B̃ of Cn. Furthermore, the
fact that B ⊂ B̃ is entirely a result of how B̃ is initialized. Formalizing this line of thought
proves the following theorem.

Theorem 2.2.16. Let B ⊂ Cn be an orthonormal basis of a subspace L ⊂ Cn. Then there
exists an orthonormal basis B̃ of Cn such that B ⊂ B̃.

Exercise 2.2.30. Implement a version of Algorithm 10 in the language of your choice5

5The language of your choice can also be “by hand”.
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and use it to complete the orthonormal set

S =


1

2


1
−1
1
i

 ,
1

2


1
1
1
−i


 ⊂ C4

to an orthonormal basis of all of C4. Verify that your resulting orthonormal basis set is
indeed orthonormal.

Exercise 2.2.31. Prove that every set of n orthonormal vectors in Cn is an orthonormal
basis of Cn.

Exercise 2.2.32. Let L ⊂ Cn be a linear subspace of dimension r ≤ n. Prove that every
set of r orthonormal vectors in L is an orthonormal basis of L .

We will now explore yet another important consequence of the Gram–Schmidt algorithm
– the existence of a QR factorization for any matrix A ∈ Cm×n.

The QR Decomposition of a Matrix

Let’s consider what happens when we apply Algorithm 8 to the columns of a matrix
A ∈ Cm×n so that it’s input is S = {A:,j}j∈[n] ⊂ Cm. Even more specifically, suppose that
we run Algorithm 8 with x0 = A:,0, x1 = A:,1 (or, more generally, = the first column after
A:,0 that isn’t a multiple of A:,0), x2 = A:,2 (or, more generally, = the first column after x1

that isn’t in the span of x0 and x1), etc.. First, we know that Algorithm 8 will output an
orthonormal basis B ⊂ Cm of the column space, C(A), of A when its finishes. Second, by
the definition of rank we also know that |B| = rank(A). Denote the rank of A by r, and
the elements of B by {bj}j∈[r].

By our analysis of Algorithm 8 we can further see that A:,0 ∈ span({b0}), A:,1 ∈
span({b0,b1}), etc.. More generally, A:,j ∈ span

(
{b`}

min{j,r−1}
`=0

)
for all j ∈ [n]. As a

consequence, there exist complex numbers Ri,j ∈ C, with i, j ∈ [n] and i ≤ j, such that

A:,0 = R0,0b0

A:,1 = R0,1b0 +R1,1b1

...

A:,j =

min{j,r−1}∑
`=0

R`,jb` for all j ∈ [n].

Now, define Q ∈ Cm×r to be the matrix with the elements of B as its columns, and
R ∈ Cr×n to be the upper triangular matrix whose nonzero entries are defined above so
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that

Q =

 | |
b0 · · · br−1

| |

 and R =


R0,0 R0,1 · · · R0,r−1 · · · R0,n−1

0 R1,1 · · · R1,r−1 · · · R1,n−1

0 0
. . .

...
...

...
... 0 Rr−1,r−1 · · · Rr−1,n−1

 .

Doing so we can see that

 | | |
A0,: A1,: · · · A:,n−1

| | |

 =

 | | |
b0 b1 · · · br−1

| | |



R0,0 R0,1 · · · R0,r−1 · · ·

0 R1,1 · · · R1,r−1 · · ·

0 0
. . .

...
...

... 0 Rr−1,r−1 · · ·

 .

That is, A = QR. This is called a QR decomposition of A, and it is very useful
computationally since both Q and R have special properties. Namely, Q has orthonormal
columns, and R is upper triangular. By formalizing the discussion above one may prove
the following theorem.

Theorem 2.2.17 (Every Matrix Has a QR Decomposition). Let A ∈ Cm×n be rank r.
Then, there exists a matrix Q ∈ Cm×r with orthonormal columns, and an upper triangular
matrix R ∈ Cr×n, so that A = QR.

Example 2.2.18. The following is an example of a QR decomposition for a rank 2 matrix
A ∈ C4×4.

A =


1 2 3 1
1 2 3 −1
1 2 3 1
1 2 3 −1

 =


1
2

1
2

1
2 −1

2
1
2

1
2

1
2 −1

2

(2 4 6 0
0 0 0 2

)
= QR.

Note that the matrix Q guaranteed by Theorem 2.2.17 is also clearly rank r since Q has
orthonormal columns. In fact, with just a bit more work one can further see that R will
always be rank r as well. We will save this final rank analysis for Section 2.2.7, however.
For now, let us turn our attention to some implications of the QR decomposition with
regard to low rank matrix compression.

Exercise 2.2.33. Compute a QR decomposition of the matrix

A =

(
1 2
i 1

)
.

Verify that Q has orthonormal columns.
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Exercise 2.2.34. Compute a QR decomposition of the matrix

A =

 1 5 −1
−1 1 −1
2 1 1

 .

Verify that Q has orthonormal columns.

Some Comments on Computing a QR Decomposition of a Matrix: I hope that
this section has begun to convince you that the QR decomposition might be interesting. In
fact, we will see going forward that the QR decomposition is also incredibly useful – useful
enough that I am pretty certain that anyone reading this sentence will likely compute one
at some point (probably using a preexisting software package like – these days – MATLAB,
SciPy, LAPACK, or . . . there are many!). When you do compute that QR decomposition
it’s important to point out that it won’t be by (shouldn’t be by!) running Algorithm 8
on the columns of the matrix. Theoretically Algorithm 8 is fantastic, but in practice a
digital computer will likely turn a straightforward coding of Algorithm 8 into the inaccurate
numerical equivalent of a reeking garbage scow (i.e., it’ll be numerically unstable). In
practice QR decompositions are instead computed using Householder reflections which,
if interested, you can read about in standard numerical linear algebra texts such as, e.g.,
[51, 17].

2.2.5 Near-Optimal Compression of Low Rank Matrices, A Recap of
Gaussian Elimination, and Piles of Useful Notation

In this section we briefly consider the minimum number of complex values we need to store
in order to fully represent a rank r matrix A ∈ Cm×n. Clearly, we can always do it by
storing all mn entries in A, but can we do better? The answer is definitely “yes” if the
matrix is low rank. To see why, consider a QR decomposition of A ∈ Cm×n, A = QR.
Recalling that Qm×r and R ∈ Cr×n, we immediately see that in fact we can completely
represent A by instead storing the at most mr+ nr = r(m+ n) entries of Q and R. And if,
for example, n = m and r < n/2, storing the at most mr+ nr = 2nr < n2 entries of Q and
R will require less memory than directly storing the mn = n2 entries of A.

In fact, however, we can do even better than this by taking full advantage of the structure
that a QR decomposition guarantees us. Since, e.g, R is upper triangular we know that it
will always have (r−1)r

2 zero entries below its main diagonal in predictable positions. Thus,
there is no need to actually store those 0-valued entries of R. As a result, we can see that
it really suffices to only store

mr + rn− (r − 1)r

2
= r

(
m+ n− r − 1

2

)
(2.12)

complex numbers in order to fully represent both Q and R, and therefore A. Note that
this reduction in entries can have noticeable space-saving effects, especially when we need to
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store a large number of very large matrices. Further note that this is exactly the case one is
in when, e.g., one wants to store the many large weight matrices needed to fully describe a
trained deep neural network (recall Section 1.2.3)!

Exercise 2.2.35. Show that an upper triangular matrix R ∈ Cr×n with r ≤ n will always
have at least (r−1)r

2 zero entries below its main diagonal.

The number of complex entries (2.12) one needs to store in order to represent a QR
decomposition as described above is not quite optimal. To see why, we note that the
dimension of the manifold of rank r matrices in Cm×n is (m + n − r)r (see, e.g., [24,
Chapter 1]), so one should be able to represent any rank r matrix A ∈ Cm×n by storing
just (m + n − r)r complex values. This means that storing a QR decomposition of A

requires storing r2+r
2 additional complex values beyond the theoretical minimum. As we

will see, Gaussian elimination can help us reduce this number of additional values closer to
0. Using this as motivation we will now very briefly summarize Gaussian elimination while
simultaneously introducing and reviewing a lot of other very useful notation.

A Very Brief Review of Gaussian Elimination, and Some Useful Notation

First let’s recall some notation. As mentioned above, we view vectors u,v ∈ Cn as n× 1
matrices. As a result, the inner product 〈u,v〉 ∈ C can be viewed as the matrix product of
a 1× n matrix with an n× 1 matrix,

u∗v = (u0, u1, . . . , un−1)


v0

v1
...

vn−1

 =
∑
j∈[n]

ujvj = 〈u,v〉,

the result of which is a 1× 1 matrix (i.e., the scalar 〈u,v〉). We can similarly define the
“outer product of two vectors” in Cn as the product of an n× 1 matrix with a 1× n matrix.
That is, given u,v ∈ Cn, their outer product is

vu∗ =


v0

v1
...

vn−1

 (u0, u1, . . . , un−1) =


v0u0 v0u1 . . . v0un−1

v1u0 v1u1 . . . v1un−1
...

...
. . .

...
vn−1u0 vn−1u1 . . . vn−1un−1

 ∈ Cn×n.

Note that this is an n× n matrix whose (j, k)th entry is vjuk ∈ C.
Next, the standard basis of Cm×n consists of the mn matrices in Cm×n, denoted by

E(j,k) ∈ Cm×n, whose entries are given by(
E(j,k)

)
`,h

=

{
1 if ` = j and h = k

0 else
for all j, ` ∈ [m] and k, h ∈ [n].
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Note that we also have E(j,k) = eje
∗
k. We call these matrices the standard basis for Cm×n

because any matrix A ∈ Cm×n can be expressed as the linear combination

A =
∑
j∈[m]

∑
k∈[n]

Aj,kE
(j,k) =

∑
j∈[m]

∑
k∈[n]

Aj,keje
∗
k.

Continuing, given a vector v ∈ Cn, we denote the diagonal matrix in Cn×n with v on
its diagonal by diag(v) ∈ Cn×n. Equivalently, diag(v) is the n × n matrix with entries
given by

(diag(v))j,k =

{
vj if j = k

0 else
.

Finally, we will denote the vector of all ones in Cn by 1 ∈ Cn. The following exercises will
help you get more familiar with all of this notation.

Exercise 2.2.36. Let v ∈ Cn. Show that diag(v) =
∑

j∈[n] vjeje
∗
j =

∑
j∈[n] vjE

(j,j).

Exercise 2.2.37. Let v,u ∈ Cn. Show that diag(v)u = diag(u)v ∈ Cn. As a consequence,
show that diag(1)v = diag(v)1 = v holds for all v ∈ Cn.

We can now see that the n×n identity matrix, denoted by In ∈ Cn×n, can be expressed

in several equivalent forms. First, we know that its entries are (In)j,k =

{
1 if j = k

0 else
, for

all j, k ∈ [n]. As a consequence we can see that

In =

 | | |
e0 e1 · · · en−1

| | |

 = diag(1)

=
∑
j∈[n]

E(j,j) =
∑
j∈[n]

eje
∗
j .

Additionally, we recall that the inverse of a matrix A ∈ Cn×n, if it exists, is the matrix
A−1 ∈ Cn×n satisfying AA−1 = A−1A = In.

Having equipped ourselves with this new notation, we may now more easily and quickly
review Gaussian elimination. In short, Gaussian elimination is the process of multiplying
three types of invertible elementary matrices against a given matrix A ∈ Cm×n in order to,
usually, make A sparser (i.e., contain more zero entries). These three types of invertible
elementary matrices are:

1. Rescaling Matrices: These m ×m matrices multiply a given row and/or column of
A ∈ Cm×n by a scalar α ∈ C. We will denote them by

M(j, α) := diag(1 + (α− 1)ej) = Im + (α− 1)eje
∗
j
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for any given α ∈ C and j ∈ [m]. If multiplied against A ∈ Cm×n from the left,
M(j, α) ∈ Cm×m will multiply the jth row of A by α. If multiplied against A ∈ Cm×n

on the right, M(j, α) ∈ Cn×n will multiply the jth column of A by α.

Example 2.2.19. Let M(0, α) =

(
α 0
0 1

)
∈ C2×2. Then, we can see that both

M(0, α)

(
a b
c d

)
=

(
α 0
0 1

)(
a b
c d

)
=

(
αa αb
c d

)
, and(

a b
c d

)
M(0, α) =

(
a b
c d

)(
α 0
0 1

)
=

(
αa b
αc d

)
.

Exercise 2.2.38. Show that (M(j, α))−1 = Im + (1/α− 1)eje
∗
j = M

(
j, α−1

)
for all

α 6= 0 and j ∈ [m].

2. Summing Matrices: These m × m matrices add a multiple of one row/column to
another row/column. We will denote them by

S(j, k, α) := Im + αE(j,k) = Im + αeje
∗
k

for any given α ∈ C and j, k ∈ [m] with j 6= k. Given A ∈ Cm×n, the product
S(j, k, α)A effectively adds α(row k of A) to row j of A, and then stores the result
back in row j. Similarly, if S(j, k, α) ∈ Cn×n is multiplied against A from the right it
will add α(column j of A) to column k of A, and then store the result back in column
k.

Example 2.2.20. Let S(0, 1, α) =

(
1 α
0 1

)
∈ C2×2. Then, we can see that both

S(0, 1, α)

(
a b
c d

)
=

(
1 α
0 1

)(
a b
c d

)
=

(
a+ αc b+ αd
c d

)
, and(

a b
c d

)
S(0, 1, α) =

(
a b
c d

)(
1 α
0 1

)
=

(
a b+ αa
c d+ αc

)
.

Exercise 2.2.39. Show that (S(j, k, α))−1 = Im − αeje
∗
k = S(j, k,−α) for all α ∈ C

and j, k ∈ [m] with j 6= k.

3. Atomic Permutation Matrices: These m ×m matrices swap two rows/columns of a
given matrix. We will denote them by

P (j, k) := Im − eje
∗
j − eke

∗
k + eje

∗
k + eke

∗
j

for any given j, k ∈ [m] with j 6= k. If multiplied against A ∈ Cm×n from the left,
P (j, k) ∈ Cm×m will swap the jth and kth rows of A. If multiplied against A ∈ Cm×n

on the right, P (j, k) ∈ Cn×n will swap the jth and kth columns of A.
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Example 2.2.21. Let P (0, 1) =

(
0 1
1 0

)
∈ C2×2. Then, we can see that both

P (0, 1)

(
a b
c d

)
=

(
0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
, and(

a b
c d

)
P (0, 1) =

(
a b
c d

)(
0 1
1 0

)
=

(
b a
d c

)
.

Exercise 2.2.40. Show that (P (j, k))−1 = P (j, k) ∈ Cm×m for all j, k ∈ [m] with
j 6= k.

Exercise 2.2.41. Let P =
∏q−1
`=0 P (j`, k`) ∈ Cn×n, where j`, k` ∈ [n] with j` 6= k` for

all ` ∈ [q], be a product of q atomic permutation matrices. Show that P−1 = P ∗.

Having briefly reviewed Gaussian elimination, we will now return to our attempt to use
a QR decomposition of a low rank matrix to try to compress it as much as possible. We
will now show how Gaussian elimination can be used to help us improve on what we have
already achieved above.

Back to Near-Optimal Compression of Low Rank Matrices: Consider a QR
decomposition of A ∈ Cm×n, A = QR. Recalling that R ∈ Cr×n will be upper triangular,
we further note that there will be a permutation matrix P ∈ Cn×n so that RP will be
both upper triangular and have (RP )j,j 6= 0 for all j ∈ [r].6 In particular, one can see
that P can always be represented by a product of at most r − 1 atomic permutation
matrices which encode the process of swapping column 1 of R with the first column, j1,
of R that has R1,j1 6= 0, then swapping column 2 with the first column, j2, that has
R2,j2 6= 0, etc.. As a result, we can see that remembering (i.e., storing) P requires us to
remember at most r − 1 values in [n] (i.e., the columns j1, j2, . . . , jr−1 ∈ [n] of R satisfying
j` = min{k ∈ [n] | R`,k 6= 0}).

Using that RP will be both upper triangular and have (RP )j,j 6= 0 for all j ∈ [r], we
can now further see that there will exist an invertible matrix T ∈ Cr×r consisting of a
product of at most r2+r

2 elementary summing and rescaling matrices such that

TRP =
(
Ir|R̃

)
∈ Cr×n. (2.13)

That is, we can carry out Gaussian elimination to transform the first r columns of RP into
the r × r identity matrix. Note that R̃ ∈ Cr×(n−r) in (2.13). Recalling that our goal is to
compactly represent A ∈ Cm×n, we can now see that

A = QR = QT−1TRPP−1 = (QT−1)
(
Ir|R̃

)
P ∗,

6One can revisit Example 2.2.18 see that we do generally need a permutation matrix for this to be true.
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where we have used both (2.13) and that P−1 = P ∗ in the final equality.

Letting Q̃ = QT−1 ∈ Cm×r we can finally see that A = Q̃
(
Ir|R̃

)
P ∗. Thus, to represent

A ∈ Cm×n we need to store Q̃ ∈ Cm×r, R̃ ∈ Cr×(n−r), and P ∈ Cn×n. Recalling from
above that we can store the permutation matrix P by remembering at most r − 1 values in
[n], we finally see that we can always represent any rank r matrix A ∈ Cm×n by storing
just mr + nr − r2 complex values (the optimal number!), plus at most r − 1 additional
integers in [n]. This is a clear improvement over (2.12).

To conclude, we briefly mention that there are other factors we might want to consider
when storing A in a factorized form beyond the total number of entries the factorization
requires us to store. For example, we might also want to ensure that both Q̃ ∈ Cm×r and
R̃ ∈ Cr×(n−r) are “well behaved”. We will describe in some more detail what “well behaved”
might mean in Section 2.3, as well as how one might come up with a good low rank matrix
to store in the first place. For a journal article that uses related ideas to those discussed in
this section to produce a similar compressed representation of a low rank matrix we refer
the interested reader to [11]. After finishing Sections 2.2 and 2.3 the attentive reader will
know everything they need to know in order to begin digesting its contents.

2.2.6 Set Addition, Orthogonal Projections, and Perpendicular Subspaces

We will now discuss even more of the useful properties possessed by orthonormal bases.
The first of these are related to set addition.

Definition 2.2.22 (Set Sums, Subtractions, and Rescalings). Let S and T be subsets of
Cn. We define the (Minkowski) sum of S and T , denoted by S + T , to be the set

S + T := {x + y | x ∈ S,y ∈ T}.

Similarly, for α ∈ C, we define the set rescaling αS ⊂ Cn to be {αx | x ∈ S}. We also
define the subtraction of two sets to be

S − T := S + (−1)T = {x− y | x ∈ S,y ∈ T} ⊂ Cn.

Note that if 0 ∈ S, then T ⊂ S + T . Similarly, if 0 ∈ T , then S ⊂ S + T . As a result, if
0 ∈ S ∩ T , then S ∪ T ⊂ S + T (check this!). For similar reasons, the sum of two linear
subspaces U and V of Cn will also always be a larger linear subspace of Cn containing both
U and V (i.e., U and V will be subspaces of U + V ).

Lemma 2.2.23. Let U, V ⊂ Cn both be linear subspaces of Cn. Then U + V is also a
linear subspace of Cn.

Proof. It suffices to show that span(U + V ) ⊂ U + V and we’ll be finished (why?). We can
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see that

x ∈ span(U + V ) =⇒ ∃p ∈ N s.t. x =
∑
`∈[p]

β`x` with {β`}`∈[p] ⊂ C & {x`}`∈[p] ⊂ U + V

=⇒ x =
∑
`∈[p]

β`(u` + v`) for {u`}`∈[p] ⊂ U & {v`}`∈[p] ⊂ V

=⇒ x =

∑
`∈[p]

β`u`


︸ ︷︷ ︸

=:u

+

∑
`∈[p]

β`v`


︸ ︷︷ ︸

=:v

.

We are now finished since, above, u ∈ span(U) = U and v ∈ span(V ) = V . Hence,
x ∈ U + V .

Exercise 2.2.42. Let U, V ⊂ Cn both be linear subspaces of Cn. Show that

max{dim(U),dim(V )} ≤ dim(U + V ) ≤ dim(U) + dim(V ),

where dim(U) ∈ [n+1] denotes the dimension of U , etc.. When will max{dim(U), dim(V )} =
dim(U + V )? When will dim(U + V ) = dim(U) + dim(V )?

Exercise 2.2.43. Let A,B ∈ Cm×n. Show that if A has rank r and B has rank s, then
A+B has rank at most r + s.

As we shall soon see, the sum of two “orthogonal” linear subspaces of Cn, U and V , will
behave much more predictably than the sum of two arbitrary linear subspaces of Cn. In
particular, orthonormal bases of each summed subspace U and V can be directly combined
to create a new orthonormal basis of U + V .

Definition 2.2.24 (Perpendicular Subspaces). Let U and V be linear subspaces of Cn.
We say that U and V are perpendicular, or orthogonal, if 〈u,v〉 = 0 for all u ∈ U and
v ∈ V . We will also denote this by writing U ⊥ V .

Lemma 2.2.25. Suppose that BU is an orthonormal basis of a linear subspace U ⊂ Cn,
BV is an orthonormal basis of a linear subspace V ⊂ Cn, and U ⊥ V . Then BU ∪BV is
an orthonormal basis of U + V .

Proof. Since BU and BV are orthonormal, every element in BU ∪BV has norm 1. Thus, we
only need to show that BU ∪BV is orthogonal. Let x,y ∈ BU ∪BV . Since BU is orthogonal,
if x ∈ BU and y ∈ BU , then 〈x,y〉 = 0. Since BV is orthogonal, if x ∈ BV and y ∈ BV ,
then 〈x,y〉 = 0. Since U ⊥ V , if x ∈ BU and y ∈ BV , or x ∈ BV and y ∈ BU , then
〈x,y〉 = 0. Hence, BU ∪BV is orthogonal.
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Now we will show that BU ∪BV is a basis of U + V . Since BU ∪BV is orthonormal, its
entries are linearly independent, so it remains to show that span(BU ∪BV ) = U + V . Let
BU = {b0, . . . ,br−1} and BV = {d0, . . . ,ds−1}. Then, for any vector x ∈ Cn, it holds that

x ∈ U + V ⇐⇒ ∃u ∈ U,v ∈ V such that x = u + v

⇐⇒ x =

∑
j∈[r]

αjbj

+

∑
j∈[s]

βjdj

 for some {αj}j∈[r] ∪ {βj}j∈[s] ⊂ C

⇐⇒ x ∈ span(BU ∪BV ).

Therefore, U + V = span(BU ∪BV ).

Corollary 2.2.26. If U, V ⊂ Cn are linear subspaces of Cn, and U ⊥ V , then dim(U+V ) =
dim(U) + dim(V ).

Given any linear subspace U ⊂ Cn, we define

U⊥ := {x ∈ Cn | 〈x,y〉 = 0 ∀y ∈ U} .

In other words, U⊥ is the set of all vectors orthogonal to everything in U . We will next
show that U⊥ is also a linear subspace of Cn.

Lemma 2.2.27. Let U ⊂ Cn be a linear subspace of Cn. Then, U⊥ is also a linear subspace
of Cn.

Proof. It suffices to show that span(U⊥) ⊂ U⊥ (why?). Let x ∈ span(U⊥). Then, x is a
linear combination of elements in U⊥ so that ∃p ∈ N, {x`}`∈[p] ⊂ U⊥, and {α`}`∈[p] ⊂ C
with x =

∑
`∈[p] α` x`. Now we can see that for every y ∈ U we have

〈x,y〉 =

〈∑
`∈[p]

α`x`,y

〉
=
∑
`∈[p]

α`〈x`,y〉 = 0

since {x`}`∈[p] ⊂ U⊥. Hence, x ∈ U⊥.

We are now prepared to define orthogonal projections with respect to a given orthonormal
set. Let U = {uj}j∈[r] be an orthonormal subset of Cn. We define the orthogonal
projection of x onto span(U) in terms of U to be the function PU : Cn → span(U)
defined by

PU (x) =
∑
j∈[r]

〈uj ,x〉uj

for all x ∈ Cn. Note that this definition explicitly depends on the orthonormal basis U of
span(U) that we started with. The idea behind projecting onto a linear subspace span(U),



72

however, is that the projection should return the portion of x “living inside” the linear
subspace span(U). That is, it’s the span of U that matters to us, not the set U itself. If, e.g.,
we pick a new orthonormal set V with the same exact span as U , then it really shouldn’t
matter whether we project onto span(U) = span(V ) using U or V . We should get the same
answer either way. The next result will help us show that this is indeed the case.

Lemma 2.2.28. Let U = {u`}`∈[r] and V = {v`}`∈[r] be two orthonormal bases of the same
linear subspace L = span(U) = span(V ) ⊂ Cn. Then,

〈uj ,x〉 =
∑
`∈[r]

〈v`,x〉〈uj ,v`〉

for all x ∈ Cn and j ∈ [r].

Proof. Let x ∈ Cn. Extend V to an orthonormal basis Ṽ of all of Cn by appealing to
Theorem 2.2.16. The orthonormal set Ṽ will take the form Ṽ = {v0, . . . ,vr−1,wr, . . . ,wn−1}
for some wr, . . . ,wn−1 ∈ Cn. Since Ṽ is an orthonormal basis of Cn we can write x as

x =
∑
`∈[r]

〈v`,x〉v` +
n−1∑
`=r

〈w`,x〉w`.

Additionally, since each uj ∈ U is in the span of V , we have for all r ≤ ` ≤ n− 1 that

〈uj ,w`〉 =

〈∑
k∈[r]

αj,kvk,w`

〉
=
∑
k∈[r]

αj,k〈vk,w`〉 = 0

since Ṽ is orthogonal. Hence,

〈uj ,x〉 =

〈
uj ,
∑
`∈[r]

〈v`,x〉v` +
n−1∑
`=r

〈w`,x〉w`

〉

=
∑
`∈[r]

〈v`,x〉〈uj ,v`〉+

n−1∑
`=r

〈w`,x〉〈uj ,w`〉

=
∑
`∈[r]

〈v`,x〉〈uj ,v`〉.

Using this lemma allows us to show that the orthogonal projection PU : Cn → span(U)
only depends on span(U), and not on the orthonormal set U itself.

Theorem 2.2.29. Let U = {uj}j∈[m] and V = {v`}`∈[m] be two orthonormal bases of the
same linear subspace L ⊂ Cn. Then, PU = PV .
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Proof. Let x ∈ Cn. Appealing to Lemma 2.2.28, we have that

PU (x) =
∑
j∈[m]

〈uj ,x〉uj =
∑
j∈[m]

∑
`∈[m]

〈v`,x〉〈uj ,v`〉

uj

=
∑
`∈[m]

〈v`,x〉

∑
j∈[m]

〈uj ,v`〉uj

 =
∑
`∈[m]

〈v`,x〉v` = PV (x),

where we have also used that each v` ∈ V is in the span of U (recall (2.11)).

We now know that an orthogonal projection only depends on the linear subspace of
Cn onto which one projects. Thus, for any linear subspace L ⊂ Cn we can define the
orthogonal projection onto L , denoted by PL : Cn → L , to be PL := PU where U is
any orthonormal basis of L you like.

Example 2.2.30. The orthogonal projection onto the x-axis of C2 is the function Px−axis

from C2 to the x-axis which sends the vector x =

(
x0

x1

)
∈ C2 to the vector

Px−axis (x) =

〈(
x0

x1

)
,

(
1
0

)〉(
1
0

)
= x0

(
1
0

)
=

(
x0

0

)
.

Exercise 2.2.44. Let L be a linear subspace of Cn. Verify that PL : Cn → L is a
linear function (i.e., that PL (αx + βy) = αPL (x) + βPL (y) holds for all x,y ∈ Cn and
α, β ∈ C).

Exercise 2.2.45. Let B = {bj}j∈[r] ⊂ Cn be an orthonormal basis of L = span(B).

Complete B to be an orthonormal basis B̃ = {bj}j∈[r] ∪ {u`}n−1
`=r ⊂ C

n of all of Cn using

Theorem 2.2.16. Prove that {u`}n−1
`=r is an orthonormal basis of L ⊥.

The following theorem characterizes many of the most important properties of orthogonal
projections.

Theorem 2.2.31. Let L be a linear subspace of Cn, and let x ∈ Cn.

1. If x ∈ L then PL (x) = x. As a consequence, PL (PL (x)) = PL (x) always holds.

2. x− PL (x) ∈ L ⊥.

3. ‖x‖22 = ‖PL (x)‖22 + ‖x− PL (x)‖22.

Proof. We prove each part below.

1. See Exercise 2.2.46.
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2. Let U = {uj}j∈[m] ⊂ Cn be an orthonormal basis of L , and y ∈ L . Then y =∑
j∈[m] αjuj , so that

〈x− PL (x),y〉 =
∑
j∈[m]

αj〈x− PL (x),uj〉

=
∑
j∈[m]

αj (〈x,uj〉 − 〈PL (x),uj〉)

=
∑
j∈[m]

αj

〈x,uj〉 −〈∑
`∈[m]

〈u`,x〉u`,uj

〉
=
∑
j∈[m]

αj

(
〈x,uj〉 − 〈uj ,x〉

)
= 0,

since 〈x,uj〉 = 〈uj ,x〉.

3. From (1) and (2) above we know that PL (x) and x− PL (x) are orthogonal. Hence,
normalizing them will produce an orthonormal set whose span contains x. This part
now follows from the Pythagorean theorem (see Theorem 2.2.11 and Figure 2.2).

Theorem 2.2.31 tells us that we can write Cn = L + L ⊥ for any linear subspace
L ⊂ Cn. In some sense we already know this though – recall, e.g., Exercise 2.2.45! The
main contribution of Theorem 2.2.31 is that it expresses this fact in a much simple way
using orthogonal projections. This more simply expressed property then also allows for a
simpler application of the Pythagorean theorem (see Figure 2.2).

Exercise 2.2.46. Prove part (1) of Theorem 2.2.31.

The next lemma demonstrates yet another incredibly useful way of characterizing what
the orthogonal projection onto a linear subspace actually does.

Lemma 2.2.32. Let x ∈ Cn. Then ‖x− PL (x)‖2 < ‖x− y‖2 for all y ∈ L \ {PL (x)}
(i.e, for all y ∈ L with y 6= PL (x)).

Proof. We have from Theorem 2.2.31 that

‖x− y‖22 = ‖PL (x− y)‖22 + ‖(x− y)− PL (x− y)‖22
= ‖PL (x)− PL (y)‖22 + ‖x− PL (x)− y + PL (y)‖22
= ‖PL (x)− y‖22 + ‖x− PL (x)‖22
> ‖x− PL (x)‖22.

Here we have used that PL (y) = y for all y ∈ L and that ‖PL (x)− y‖2 > 0 must hold
since PL (x)− y 6= 0.
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Figure 2.2: A pictorial representation of the projection of x ∈ Cn onto a linear subspace
L ⊂ Cn. Note that the right triangle whose hypotenuse is of length ‖x‖2 will in fact be
entirely contained in the two-dimensional linear subspace spanned by {PL (x),x− PL (x)}.

Looking at Lemma 2.2.32 we can see that PL (x) ∈ L is the unique closest point to x
in L with respect to `2-distances (recall Figure 2.2 as well). As a consequence, we can see
that in fact

PL (x) = arg min
y∈L
‖x− y‖2

also holds. That is, we could have defined PL (x) to be the closest point in L to x in the
first place if we had wanted. We will next discuss how to represent PL as a matrix.

Representing Orthogonal Projections with Matrices

The following fundamental matrices are used to represent all orthogonal projections.

Definition 2.2.33 (Orthonormal and Unitary Matrices). A matrix Q ∈ Cm×n with
orthonormal columns will be called an orthonormal matrix. If Q ∈ Cn×n is both
orthonormal and square we will call it a unitary matrix.

In fact the attentive reader will recognize that we have already been introduced to
orthonormal matrices. In particular, the “Q” in a QR decomposition of a given matrix is
always an orthonormal matrix. The next few highly recommended exercises will introduce
you to some of the very useful properties of orthonormal matrices.

Exercise 2.2.47. Let Q ∈ Cm×n be an orthonormal matrix. Prove that n ≤ m.
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Exercise 2.2.48. Let Q ∈ Cm×n. Show that Q∗Q = In if and only if Q is orthonormal.

Exercise 2.2.49. Let Q ∈ Cm×n be an orthonormal matrix and x,y ∈ Cm. Show that
(Im −QQ∗)x = x−QQ∗x is orthogonal to QQ∗y.

Let B = {q`}`∈[r] ⊂ Cn be an orthonormal basis of a linear subspace L . We can form
an orthonormal matrix Q ∈ Cn×r by letting the columns of Q be the elements of B so that
Q:,` = q` for all ` ∈ [r], so that

Q =

 | | |
q0 q1 · · · qr−1

| | |

 .

We can represent the orthogonal projection onto L = C(Q) = span(B) using an orthogonal
projection matrix QQ∗ ∈ Cn×n by

PL = QQ∗ =
∑
j∈[r]

qjq
∗
j . (2.14)

To see that (2.14) holds it suffices to check that PL (x) = QQ∗x =
(∑

j∈[r] qjq
∗
j

)
x for

all x ∈ Cn (see Exercise 2.2.50). Let x ∈ Cn. We have that

QQ∗x = Q

− q0 −
...

− qr−1 −

x = Q

 〈q0,x〉
...

〈qr−1,x〉

 =

 | | |
q0 q1 · · · qr−1

| | |


 〈q0,x〉

...
〈qr−1,x〉


=
∑
j∈[r]

qj〈qj ,x〉 = PL (x)

=
∑
j∈[r]

qjq
∗
jx =

∑
j∈[r]

qjq
∗
j

x.

Using (2.14) we can also establish the equivalence of orthogonal projection matrices built
from orthonormal matrices with the same column spaces.

Lemma 2.2.34. Let Q,V ∈ Cm×n be two orthonormal matrices with the same column
span (i.e., with C(Q) = C(V )). Then QQ∗ = V V ∗.

Proof. It suffices to show that QQ∗x = V V ∗x for all x ∈ Cn (see Exercise 2.2.50). Using
Theorem 2.2.29 and (2.14) we have that

QQ∗x = PC(Q)(x) = PC(V )(x) = V V ∗x

for all x ∈ Cn.
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Exercise 2.2.50. Let A,B ∈ Cm×n. Suppose that Ax = Bx for all x ∈ Cn. Show that
A = B.

The next theorem shows that orthonormal projection matrices built from unitary
matrices are always equivalent to the identity matrix.

Theorem 2.2.35. The following are equivalent:

1. U ∈ Cn×n is unitary,

2. U∗U = In,

3. U∗ is unitary, and

4. UU∗ = In.

Proof.

(2) ⇐⇒ (1): Let U ∈ Cn×n and set uj := U:,j ∈ Cn for all j ∈ [n]. Note that
(U∗U)`,k = 〈u`,uk〉 for all `, k ∈ [n]. As a result we can see that

U∗U = In ⇐⇒ (U∗U)`,k = (In)`,k ∀`, k ∈ [n]

⇐⇒ 〈u`,uk〉 =

{
1 if ` = k

0 else

⇐⇒ {u`}`∈[n] ⊂ Cn is an orthonormal set

⇐⇒ U is unitary.

Hence, U is unitary if and only if U∗U = In.

(1) =⇒ (4): Let U ∈ Cn×n be unitary. Then C(U) = Cn (see Exercise 2.2.31). Since
Cn = span{ej}j∈[n] (i.e., C(In) = Cn) Lemma 2.2.34 tells us that UU∗ = InI

∗
n = In.

(4) ⇐⇒ (3): This is the same as (1) ⇐⇒ (2) with U replaced by U∗.

(3) =⇒ (2): This is the same as (1) =⇒ (4) with U replaced by U∗.

An additional consequence of Theorem 2.2.35 is that a matrix U ∈ Cn×n is unitary
if and only if U∗ = U−1. Given this, we can see that we have already met an important
family of unitary matrices – the permutation matrices (recall Exercise 2.2.41).

Exercise 2.2.51. Let U, V ∈ Cn×n both be unitary. Show that both UV ∈ Cn×n and
V U ∈ Cn×n are then also unitary.

Exercise 2.2.52. Let U ∈ Cn×n be unitary. Prove that ‖Ux‖2 = ‖x‖2 for all x ∈ Cn.
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Exercise 2.2.53. Let B = {bj}j∈[r] ⊂ Cn be an orthonormal basis of L = span(B).

Complete B to be an orthonormal basis B̃ = {bj}j∈[r] ∪ {u`}n−1
`=r ⊂ C

n of all of Cn using
Theorem 2.2.16. Let Q ∈ Cn×r be the orthonormal matrix with Q:,j = bj for all j ∈ [r] and
U ∈ Cn×(n−r) be the orthonormal matrix with U:,k = ur+k for all k ∈ [n− r]. Prove that
the orthogonal projection onto L ⊥, PL⊥ : Cn → L ⊥, has the following properties.

1. PL⊥ = UU∗ (Hint: Recall Exercise 2.2.45.).

2. Show that PL (x) + PL⊥(x) = x = Inx holds for all x ∈ Cn. Conclude that
PL⊥ = In − PL .

3. Show that UU∗ = In −QQ∗ ∈ Cn×n.

Lemma 2.2.36. Let L and T be linear subspaces of Cn such that L ⊥ = T . Then,

T ⊥ = L also holds (i.e.,
(
L ⊥)⊥ = L ).

Proof. We must show that both L ⊂ T ⊥ and that T ⊥ ⊂ L hold.
L ⊂ T ⊥: Let x ∈ L . Then 〈x,y〉 = 0 for all y ∈ L ⊥ = T by definition of L ⊥.

Hence, x ∈ T ⊥.
T ⊥ ⊂ L : Let x ∈ T ⊥. By the definition of T ⊥, 〈x,y〉 = 0 for all y ∈ T = L ⊥.

Hence, PL⊥(x) = 0. Now we can see that x = PL (x) + PL⊥(x) = PL (x) (using, e.g., part
(2) of Exercise 2.2.53). Thus, x ∈ L .

Now that we have achieved a good understanding of orthogonal projections and or-
thonormal matrices we are prepared to discuss the least-squares approach to solving systems
of linear equations.

Least-Squares Theory for (Approximately) Solving Systems of Linear Equations

Let A ∈ Cm×n, b ∈ Cm, and suppose that we want to solve the equation Ax = b for
x ∈ Cn. The least-squares approach aims to do this by minimizing f(x) := ‖b−Ax‖22 as a
function of x ∈ Cn. To see why this makes sense, observe that b ∈ C(A) ⇐⇒ ∃y ∈ Cn

such that b = Ay in which case f(x) = ‖b−Ax‖22 will attain its absolute minimum at
f(y) = 0. Furthermore, anytime f(x) = 0 it must in fact be the case that Ax = b. Hence,
if Ax = b has solutions we can indeed find one by minimizing f down to 0.

If, on the other hand, b 6∈ C(A) thenAx = b won’t have any solutions and infx∈Cn f(x) =
infx∈Cn ‖b−Ax‖22 > 0. Nonetheless, there is absolutely nothing stopping us from still mini-
mizing f in hopes of getting “close” to a solution anyways. Observe that by Theorem 2.2.31

‖b−Ax‖22 =
∥∥PC(A)(b−Ax)

∥∥2

2
+
∥∥b−Ax− PC(A)(b−Ax)

∥∥2

2

=
∥∥PC(A)(b)−Ax

∥∥2

2
+
∥∥b−Ax− PC(A)(b) +Ax

∥∥2

2

=
∥∥PC(A)(b)−Ax

∥∥2

2
+
∥∥b− PC(A)(b)

∥∥2

2
.
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Algorithm 11 Algorithm for (approximately) solving Ax = b

1: Input: A ∈ Cm×n, b ∈ Cm.
2: Output: x ∈ Cn minimizing f(x) = ‖b−Ax‖22.
3: Compute a QR decomposition of A, so that A = QR.
4: Solve Rx = Q∗b using back substitution.
5: Return x.

Above we can see that the first term
∥∥PC(A)(b)−Ax

∥∥2

2
can be minimized to 0 since

PC(A)(b) ∈ C(A), and also that
∥∥b− PC(A)(b)

∥∥2

2
does not depend on x at all. Hence,

inf
x∈Cn

f(x) = inf
x∈Cn

‖b−Ax‖22 =
∥∥b− PC(A)(b)

∥∥2

2

with the minimum attained when x satisfies Ax = PC(A)(b).
The end result of this analysis is that instead of solving Ax = b we might as well,

whenever possible, instead solve Ax = PC(A)(b) which we know always has a solution.
Furthermore, we can use a QR decomposition of A to solve Ax = PC(A)(b) efficiently. Let
A = QR be a QR decomposition of A. We have that

Ax = PC(A)(b) ⇐⇒ QRx = PC(Q)(b) ⇐⇒ QRx = QQ∗b

⇐⇒ Rx = Q∗b.

Furthermore, Rx = Q∗b can be solved efficiently by back substitution since R is upper
triangular. Algorithm 11 outlines how to find the least-squares solution of Ax = b using a
QR decomposition of A.

If A ∈ Cm×n is small enough to fit into computer memory and/or accuracy is of principal
concern, then one can safely default to directly computing a minimizer of f(x) = ‖b−Ax‖22
using Algorithm 11. If, on the other hand, an approximate least-squares solution suffices
and/or A is too large or inaccessible to allow for easy use of Algorithm 11, then one can
instead use optimization methods to minimize f(x) = 1

2‖b−Ax‖22 iteratively. In fact, this
least-squares problem is important enough that we will discuss it several more times.

Finally, we note that when the rank of A ∈ Cm×n is less than n there will be an entire
n− rank(A) dimensional affine subspace of equally good (approximate) solutions to Ax = b.
That is, A(x + n) = Ax = b will hold for all n in the “null space” of A. We will take this
as initial motivation to review facts about the null space of a matrix next.

2.2.7 The Four Fundamental Linear Subspaces of a Matrix, and The
Spectral Theorem for Hermitian Matrices

Let A ∈ Cm×n. The four fundamental linear subspaces of A are:

1. the column space of A, C(A) = span {A:,j | j ∈ [n]} ⊂ Cm,
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2. the null space of A, or kernel of A, N (A) = {x ∈ Cn | Ax = 0} ⊂ Cn,

3. the column space of A∗, or row space of A, C(A∗) = span
{
A∗:,j | j ∈ [m]

}
⊂ Cn,

and

4. the null space of A∗, or kernel of A∗, N (A∗) = {y ∈ Cm | A∗y = 0} ⊂ Cm.

Exercise 2.2.54. Let A ∈ Cm×n. Show that the null space of A is a linear subspace of Cn.

Reviewing facts about each of these linear subspaces, we recall that r := rank(A) will
always equal the dimension of C(A) by definition. In fact, it also turns out that A∗ ∈ Cn×m

will also always have the same rank as A ∈ Cm×n.

Theorem 2.2.37. Let A ∈ Cm×n. It’s always the case that r = rank(A) = rank(A∗).

Proof. We will use a QR decomposition of A, A = QR, with Q ∈ Cm×r and R ∈ Cr×n.
Recall that rank(Q) = rank(A) = r. Additionally, rank(A∗) = dim(C(A∗)) = dim(C(R∗Q∗)).
Since the columns of Q are orthonormal, so we can extend them to an orthonormal basis B
of all of Cm which takes the form

B = {Q:,0, . . . , Q:,r−1,qr, . . . ,qm−1} ⊂ Cm.

Now observe that

C(A∗) = {A∗y | y ∈ Cm} = {R∗Q∗y | y ∈ Cm}

=

R∗Q∗
∑
j∈[r]

αjQ:,j +

m−1∑
`=r

β`q`

 ∣∣∣ {αj}j∈[r] ∪ {β`}m−1
`=r ⊂ C


=

R∗
∑
j∈[r]

αjej

 ∣∣∣ {αj}j∈[r] ⊂ C


= C(R∗).

By the Exchange Lemma (Lemma 2.2.6) it follows that the rank of A∗, which is the size
of any basis of C(A∗), must be less than the number of columns of R∗, which is r = rank(A).
Thus, rank(A∗) ≤ rank(A). Repeating the argument above with A and A∗ interchanged
similarly shows that rank(A) ≤ rank(A∗). Combining these two results we learn that
rank(A) = rank(A∗) must hold.

Note that the proof of Theorem 2.2.37 above also shows that dim(C(R∗)) = dim(C(A∗)) =
rank(A) = r. Thus, rank(R∗) equals the number of columns of R∗. Similarly, R is also rank
r which equals the number of rows of R. Generally, we will say that any m × n matrix
whose rank matches min{m,n} is full rank. Hence, we can see from the argument above
that the matrices Q and R resulting from the QR decomposition will always be full rank.
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Algorithm 12 Algorithm for computing an orthonormal basis of N (A)

1: Input: A rank r matrix A ∈ Cm×n.
2: Output: An orthonormal basis of A’s null space N (A) ⊂ Cn.
3: Compute a QR decomposition of A∗, so that A∗ = QR. Note that C(A∗) = C(Q).
4: Complete B = {Q:,j}j∈[r] to be an orthonormal basis B̃ = B ∪ S of all of Cn. The set

S will be an orthonormal basis of C(Q)⊥ = C(A∗)⊥ = N (A).
5: Return S.

Lemma 2.2.38. Let A ∈ Cm×n. Then N (A) = C(A∗)⊥ ⊂ Cn and C(A∗) = N (A)⊥ ⊂ Cn.

Proof. By Lemma 2.2.36 it suffices to show that N (A) = C(A∗)⊥. Let x ∈ N (A) and
consider any given z ∈ C(A∗). By definition, Ax = 0 and z = A∗y for some y ∈ Cm. Hence,
we can see that

〈z,x〉 = 〈A∗y,x〉 = 〈y, Ax〉 = 〈y,0〉 = 0.

Thus, N (A) ⊂ C(A∗)⊥. To see that C(A∗)⊥ ⊂ N (A) also holds, we note that if 〈z,x〉 = 0
for all z ∈ C(A∗), then 〈A∗y,x〉 = 0 for all y ∈ Cm. This in turn implies that 〈y, Ax〉 = 0
for all y ∈ Cm which means that 〈Ax, Ax〉 = ‖Ax‖22 = 0.

Using Lemma 2.2.38 we can further see that the dimension of N (A) is n − r since
Cn = C(A∗) + C(A∗)⊥ = C(A∗) +N (A). Hence, an orthonormal basis of C(A∗), which will
consist of r vectors, can be completed into a larger orthonormal basis of all of Cn by adding
n− r new orthonormal vectors that span N (A). By encoding this argument as an algorithm
we can also create a method for computing an orthonormal basis of the null space of any
matrix A ∈ Cm×n. We can begin by computing an orthonormal basis B of C(A∗) by, e.g.,
running Algorithm 8 on the columns of A∗. We can then complete B to an orthonormal
basis B̃ = B ∪ S of all of Cn using Algorithm 10. The set S will be an orthonormal basis
of N (A) of size n− rank(A). See Algorithm 12 for pseudocode.

Exercise 2.2.55. Let A ∈ Cm×n have rank r. Show that N (A∗) = C(A)⊥ ⊂ Cm and
C(A) = N (A∗)⊥ ⊂ Cm. Then, argue that dim(N (A∗)) = m− r.

The next lemma will be important soon in Section 2.3. We will prove it here since it
depends crucially on our recent revelations regarding null spaces.

Lemma 2.2.39. Let A ∈ Cm×n. Then C(A∗A) = C(A∗).

Proof. First we note that

C(A∗A) = {A∗Ay | y ∈ Cn} = {A∗z | z ∈ C(A)} =
{
A∗PC(A)x | x ∈ Cm

}
.
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Now we can re-express C(A∗) using that C(A)⊥ = N (A∗) ⊂ Cm to see that

C(A∗) =
{
A∗
(
PC(A)x + PC(A)⊥x

) ∣∣ x ∈ Cm
}

=
{
A∗PC(A)x +A∗PN (A∗)x

∣∣ x ∈ Cm
}

=
{
A∗PC(A)x

∣∣ x ∈ Cm
}

= C(A∗A).

Exercise 2.2.56. Let A ∈ Cm×n. Prove that C(AA∗) = C(A).

As a consequence of the above, we can see that

rank(A∗A) = rank(A∗) = rank(A) = rank(AA∗).

We will now briefly concentrate on a very special type of square matrix which will serve
as our doorway to the almighty singular value decomposition in Section 2.3.

Definition 2.2.40. A matrix A ∈ Cn×n is called Hermitian if A = A∗.

Exercise 2.2.57. Let A ∈ Cm×n. Show that both AA∗ ∈ Cm×m and A∗A ∈ Cn×n are
Hermitian.

Exercise 2.2.58. Let A ∈ Cn×n be Hermitian. Show that all entries on A’s diagonal are
real numbers.

Exercise 2.2.59. Let A ∈ Cn×n be Hermitian. Show that N (A) = C(A)⊥ ⊂ Cn and
C(A) = N (A)⊥ ⊂ Cn.

The eigenvalues and eigenvectors of Hermitian matrices have a lot of special properties
that we will need later. We will discuss these properties next.

Definition 2.2.41. An eigenvalue-eigenvector pair, or eigenpair, of a matrix A ∈
Cn×n is a pair (λ,v) ∈ C×Cn \ {0} such that v 6= 0 satisfies Av = λv.

Lemma 2.2.42. Let A ∈ Cn×n be Hermitian. Then all eigenvalues of A are real numbers.

Proof. Let (λ,v) be an eigenpair of A. If λ = 0 ∈ R we are done. Thus, suppose that
λ 6= 0. Then we have that

‖v‖22 = 〈v,v〉 =

〈
1

λ
Av,v

〉
=
(
1/λ

)
〈v, A∗v〉 =

(
1/λ

)
〈v, Av〉 =

(
1/λ

)
〈v, λv〉

=
(
λ/λ

)
‖v‖22.

Since v is nonzero we know ‖v‖2 6= 0 so that λ = λ must hold. Hence, λ ∈ R.
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Note that every fixed eigenvalue λ ∈ C of A ∈ Cn×n has an infinite number of associated
eigenvectors. In fact, one can see that the set of all eigenvectors corresponding to λ (after
adding in the zero vector) is closed under both addition and scalar multiplication so that it
forms a linear subspace of Cn. And, this subspace of Cn is exactly equal to the nullspace
of A− λIn ∈ Cn×n,

N (A− λIn) =
{
v ∈ Cn

∣∣ (λ,v) is an eigenpair of A
}
∪ {0}.

For this reason we will refer to N (A − λIn) as the eigenspace associated with λ.
Furthermore, we will let an orthonormal basis of this linear subspace be denoted by
Bλ ⊂ Cn for each eigenvalue λ.

Example 2.2.43. Let U ∈ Cn×n be unitary. Then UU∗ = In so that UU∗ has only
one nontrivial eigenspace N (UU∗ − In) = Cn associated with its single eigenvalue λ = 1.
Furthermore, its orthonormal basis B1 will be an orthonormal basis of all of Cn.

Exercise 2.2.60. Prove that every matrix A ∈ Cn×n with rank < n has at least one
nontrivial eigenspace. What is it?

Exercise 2.2.61. Prove that A ∈ Cn×n has exactly one eigenvalue if and only if it’s a
scalar multiple of the identity matrix In.

Another important property of Hermitian matrices is that all of their distinct eigenspaces
must be orthogonal to one another. This fact is proven in the next lemma.

Lemma 2.2.44. Let (λ,v) and (µ,u) be two eigenpairs of a Hermitian matrix A ∈ Cn×n

with λ 6= µ. Then 〈v,u〉 = 0. As a consequence, N (A− λIn) ⊥ N (A− µIn).

Proof. Since λ, µ ∈ R are distinct, at least one is nonzero. Without loss of generality let λ
be nonzero. Then, µ 6= λ =⇒ µ

λ 6= 1 =⇒ 1− µ
λ 6= 0. Since λ ∈ R \ {0} we can also see

that

〈v,u〉 =
1

λ
〈Av,u〉 =

1

λ
〈v, A∗u〉 =

1

λ
〈v, Au〉 =

1

λ
〈v, µu〉 =

µ

λ
〈v,u〉.

Thus, (
1− µ

λ

)
〈v,u〉 = 0.

Hence, it must be the case that 〈v,u〉 = 0 since 1− µ
λ 6= 0.

Let A ∈ Cn×n be a Hermitian matrix whose eigenvalues are λ0, . . . , λm−1 ∈ R.
Lemma 2.2.44 implies that the eigenspaces of A will all be orthogonal to one another.
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As a result, if we let Bλj be an orthonormal basis for each eigenspace N (A− λjIn) of A,
then

B :=
⋃
j∈[m]

Bλj ⊂ C
n (2.15)

will be an orthonormal set. In fact, it will also always be the case that B is an orthonormal
basis for all of Cn (we will not prove this here – see, e.g., [27, Chapter 2] or [23, Chapter
14] for corroborating evidence).

Fact 2.2.45. If A ∈ Cn×n is Hermitian then there exists an orthonormal basis of all of Cn

consisting of eigenvectors of A. In particular, the set B in (2.15) will be an orthonormal
basis of Cn.

Let A ∈ Cn×n be Hermitian and B = {bj}j∈[n] ⊂ Cn be an orthonormal basis of Cn

consisting of eigenvectors of A as defined in (2.15). Form a unitary matrix U ∈ Cn×n that
contains the elements of B as its columns (i.e., so that U:,j = bj for all j ∈ [n]). By the
definition of eigenpairs we can see that

AU = A

 | | |
b0 b1 · · · bn−1

| | |

 =

 | | |
Ab0 Ab1 · · · Abn−1

| | |


=

 | | |
λ0b0 λ1b1 · · · λn−1bn−1

| | |

 =

 | | |
b0 b1 · · · bn−1

| | |

 diag(λ0, . . . , λn−1)

= Udiag(λ0, . . . , λn−1).

where λj ∈ R refers to the eigenvalue corresponding to bj ∈ B. Finally, recalling that U is
unitary we can see that multiplying both sides of the equation just above on the right by
U∗ yields

A = AUU∗ = Udiag(λ0, . . . , λn−1)U∗.

This computation together with Lemma 2.2.42, Lemma 2.2.44, and Fact 2.2.45 prove the
following theorem (see also, e.g., Theorem 2.5.6 in [27]).

Theorem 2.2.46 (The Full Spectral Decomposition of a Hermitian Matrix). Let A ∈ Cn×n

be Hermitian. Then there exist λ0, . . . , λn−1 ∈ R and a unitary matrix U ∈ Cn×n such that

A = Udiag(λ0, . . . , λn−1)U∗.

Exercise 2.2.62. Let A ∈ Cm×n. Show that all the eigenvalues of the Hermitian matrices
A∗A ∈ Cn×n and AA∗ ∈ Cm×m are nonnegative real numbers.
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Theorem 2.2.46 is great, but we’d also like a version that allows us to store low-rank
matrices in a compressed form. Let’s think about how to develop such a variant – it’ll also
be good practice for Section 2.3.

Recall from our definition of atomic permutation matrices P (j, k) ∈ Cn×n (see Example
2.2.21 and the surrounding text) that P (j, k) swaps the jth and kth rows of A ∈ Cn×n when
multiplied against it on the left, and swaps the jth and kth columns of A ∈ Cn×n when
multiplied against it on the right. Furthermore, every atomic permutation matrix P (j, k) ∈
Cn×n is unitary, as are all products of atomic permutation matrices (see Exercise 2.2.41
and Theorem 2.2.35). Having refamiliarised ourselves with atomic permutation matrices,
note that if P (j, k) is applied to both sides of a diagonal matrix simultaneously it will swap
its jth and kth diagonal entries. That is,

P (j, k) diag(λ0, . . . , λj−1, λj , λj+1, . . . , λk−1, λk, λk+1, . . . , λn−1) P (j, k)

= diag(λ0, . . . , λj−1, λk, λj+1, . . . , λk−1, λj , λk+1, . . . , λn−1).

Example 2.2.47. Let P (0, 2) =

0 0 1
0 1 0
1 0 0

 ∈ C3×3. We can see that

P (0, 2) diag(a, b, c) P (0, 2) =

0 0 1
0 1 0
1 0 0

a 0 0
0 b 0
0 0 c

0 0 1
0 1 0
1 0 0


=

0 0 c
0 b 0
a 0 0

0 0 1
0 1 0
1 0 0

 =

c 0 0
0 b 0
0 0 a


= diag(c, b, a).

Using these facts about atomic permutation matrices together with Theorem 2.2.46, we
can see that there exists a permutation matrix P =

∏
`∈[q] P (j`, k`) consisting of a product

of q ∈ N atomic permutation matrices such that

A = U diag(λ0, . . . , λn−1) U∗ = U(PP ∗) diag(λ0, . . . , λn−1) (PP ∗)U∗

= (UP )(P diag(λ0, . . . , λn−1) P )(P ∗U∗)

= (UP ) diag(λ̃0, . . . , λ̃n−1) (UP )∗,

where λ̃0, . . . , λ̃n−1 is a permutation of λ0, . . . , λn−1 ∈ R satisfying

|λ̃0| ≥ |λ̃1| ≥ · · · ≥ |λ̃n−1|.

Let Ũ = UP , and note that Ũ is still a unitary matrix (see, e.g., Exercise 2.2.51).
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Continuing, now consider the case where A is not full rank so that |λ̃n−1| = 0. In
this case we can further compress our spectral decomposition of A using block matrix
representations. To begin, let’s re-express Ũ in block form by

Ũ =
(
V Ũ:,n−1

)
∈ Cn×n

where V ∈ Cn×(n−1) is the orthonormal matrix formed by the first n − 1 columns of Ũ .
Further, let’s represent diag(λ̃0, . . . , λ̃n−1) in block form as well by

diag(λ̃0, . . . , λ̃n−1) =

(
D 0
0∗ 0

)
∈ Rn×n

where D = diag(λ̃0, . . . , λ̃n−2) ∈ R(n−1)×(n−1) and 0 is a suitably tall vector of zeroes.
Then, we have that

A =
(
V Ũ:,n−1

)(D 0
0∗ 0

)( V ∗(
Ũ:,n−1

)∗) =
(
V Ũ:,n−1

)(DV ∗
0∗

)
= V DV ∗.

Note that V ∈ Cn×(n−1) above is no longer unitary since it isn’t square, but it is still an
orthonormal matrix, and D is still a diagonal matrix of real numbers. And, of course, we
can repeat this process again if λ̃n−2 = 0 too, and so on, until we run out of 0 eigenvalues.
When will that happen? Well, denote the rank of our Hermitian A ∈ Cn×n by r < n. The
eigenspace associated with the 0 eigenvalue of A is exactly the null space of A so that the
orthonormal set B0 in (2.15) will have |B0| = dim (N (A)) = n − r. Hence, we carry out
this process n − r total times for all of λ̃n−1 = λ̃n−2 = · · · = λ̃r = 0. Formalizing this
discussion gives us the following result.

Corollary 2.2.48 (The Compact Spectral Decomposition of a Hermitian Matrix). Let
A ∈ Cn×n be Hermitian with rank r < n. Then, there exists an orthonormal matrix
U ∈ Cn×r, and λ0, . . . , λr−1 ∈ R satisfying

|λ0| ≥ |λ1| ≥ · · · |λr−1| > 0,

such that

A = U diag(λ0, . . . , λr−1) U∗.

We end our review of basic linear algebra here by noting that Theorem 2.2.46 and
Corollary 2.2.48 are really fantastic! They decompose every Hermitian matrix into a product
of extremely well behaved (e.g., easily invertible in the full rank case) matrices. Given
how much we have used the QR decomposition in this chapter, we hope that the reader
can now instinctively anticipate the potential utility of yet another decomposition that
in many ways is even nicer (let’s be honest – the R in the QR decomposition is just not
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as nice as the diagonal/unitary combination Theorem 2.2.46 effectively replaces it with).
Theorem 2.2.46 and Corollary 2.2.48 do have one major flaw, however. They only apply
to one very special type of square matrix! In the next section we will remove this flaw by
developing a generalization of these Hermitian matrix decompositions that applies to all
(even rectangular) matrices.

2.3 One Factorization to Rule Them All: The Singular Value
Decomposition

The Singular Value Decomposition (SVD) is arguably the most useful fact of Linear Algebra,
which is itself arguably the most useful and ubiquitous of mathematical subjects (with
respect to computation in particular). The SVD’s utility in data analysis is underscored by
the fact that it has been (re)discovered at least three times in different scientific communities
[49]. In this section we will review the SVD of a given matrix A ∈ Cm×n. Many sections
of the book hereafter will use the SVD repeatedly and often – it is well worth refreshing
yourself here, and familiarizing yourself with our notation, before moving on.

Finally, to re-emphasize our statement about linear algebra over the real versus complex
numbers from the beginning of Chapter 2, we remind the reader that replacing the
symbol “C” everywhere it appears in this section with an “R” will not affect
the correctness of the results herein in any way whatsoever. In fact, the only
cosmetic (and frankly, totally unnecessary) changes that might result by restricting ourselves
to R ⊂ C below would be on the order of, e.g., renaming real-valued Hermitian matrices
“symmetric matrices”, calling the conjugate-transpose of a real-valued matrix just its
“transpose”, etc..

We will now begin studying the SVD by proving a relatively simple lemma that establishes
some notation as well as a large number of potential matrix factorizations which include
the SVD as a special case.

Lemma 2.3.1. Let A ∈ Cm×n and {w0, · · · ,wn−1} ⊂ Cn be an orthonormal basis for Cn.
Define sj := ‖Awj‖2 (reordering the wj’s as needed so that s0 ≥ s1 ≥ · · · ≥ sn−1), and let

hj :=

{
0 if sj = 0

1
sj
Awj ∈ Cm if sj 6= 0

. (2.16)

Finally, let W ∈ Cn×n be the unitary matrix with W:,j = wj for all j ∈ [n] and H ∈ Cm×n

be the matrix with H:,j = hj for all j ∈ [n]. Then, we have

A = H diag(s0, . . . , sn−1) W ∗

where s0 ≥ s1 ≥ · · · ≥ sn−1 ∈ [0,∞).
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Proof. We have that

AW = A

 | | |
w0 w1 · · · wn−1

| | |

 =

 | | |
Aw0 Aw1 · · · Awn−1

| | |


=

 | | |
s0h0 s1h1 · · · sn−1hn−1

| | |

 =

 | | |
h0 h1 · · · hn−1

| | |


 s0 · · · 0

...
. . .

...
0 · · · sn−1


= H diag(s0, . . . , sn−1).

Thus, A = AWW ∗ = H diag(s0, . . . , sn−1) W ∗.

Lemma 2.3.1 already yields a large family of decompositions for any given A ∈ Cm×n

with several of the structural properties that will ultimately be provided by the singular value
decomposition. The next lemma tells us how to choose the orthonormal basis {wj}j∈[n]

of Cn in order to ensure that the hj vectors defined in (2.16) can be used to form a
unitary matrix. As a happy coincidence, our choice of {wj}j∈[n] ⊂ Cn will also contain
an orthonormal basis for the null space of A as subset of its columns, and guarantee the
uniqueness of the ordered sj values from Lemma 2.3.1.

As we shall see, choosing {wj}j∈[n] ⊂ Cn in Lemma 2.3.1 to be an orthonormal
basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n is the “correct” choice (at least,
if our goal is to try to orthogonalize H as much as possible). And, it’s important to
note, this choice is always possible by Fact 2.2.45 since A∗A will always be Hermitian no
matter what A ∈ Cm×n itself looks like. Toward seeing how nicely this works out, let’s
quickly recall some facts about the four fundamental subspaces of both A and A∗A from
Section 2.2.7. First, if wj ∈ Cn is an eigenvector of A∗A then Awj = 0 can only hold
if wj ∈ N (A) = C(A∗)⊥ = C(A∗A)⊥ = N (A∗A) (see, e.g., Lemmas 2.2.38 and 2.2.39).
Second, A is rank r if and only if A∗A is rank r (see Theorem 2.2.37 and Lemma 2.2.39).
Thus, if A is rank r there will be exactly r orthonormal eigenvectors of A∗A associated
with nonzero eigenvalues, and they will span C(A∗A) = C(A∗).

Exercise 2.3.1. Let A ∈ Cm×n be rank r and {wj}j∈[n] ⊂ Cn be an orthonormal basis
of Cn consisting of eigenvectors of A∗A ∈ Cn×n. Prove that exactly r of the orthonormal
eigenvectors of A∗A in {wj}j∈[n] will be associated with nonzero eigenvalues. Suppose,
w.l.g., that these r orthonormal eigenvectors of A∗A are {wj}j∈[r]. Show that they are an
orthonormal basis of C(A∗).

Exercise 2.3.2. Let A ∈ Cm×n be rank r and {wj}j∈[n] ⊂ Cn be an orthonormal basis of
Cn consisting of eigenvectors of A∗A ∈ Cn×n. Prove that Awj = 0 will hold if and only if
wj has eigenvalue 0 as an eigenvector of A∗A. Conclude that Awj = 0 will hold for exactly
n− r of the orthonormal eigenvectors of A∗A in {wj}j∈[n]. Suppose, w.l.g., that these n− r
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orthonormal eigenvectors of A∗A are {wj}n−1
j=r . Argue that they are an orthonormal basis

of N (A).

Let A ∈ Cm×n be rank r. The next lemma shows that choosing {wj}j∈[n] ⊂ Cn in
Lemma 2.3.1 to be an orthonormal basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n

will result in exactly r nonzero and orthonormal hj vectors in (2.16).

Lemma 2.3.2. Let A ∈ Cm×n be rank r. Choose {wj}j∈[n] ⊂ Cn in Lemma 2.3.1 to be an
orthonormal basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n. Then the hj vectors
defined in (2.16) will be such that {hj}j∈[r] ⊂ Cm form an orthonormal basis of C(A), and
hj = 0 for all j = r, . . . , n− 1.

Proof. Exactly r of the hj vectors defined in (2.16) will be nonzero by Exercise 2.3.2.
Furthermore, these nonzero hj vectors will be {hj}j∈[r] due to the ordering imposed on
the sj = ‖Awj‖2 values. Finally, each hj ∈ C(A) will have ‖hj‖2 = 1 for all j ∈ [r] by the
definition of the hj vectors in (2.16). Thus, to finish the proof it suffices by Exercise 2.2.32
to prove that {hj}j∈[r] is orthogonal.

Let λ` be the eigenvalue of A∗A associated with an eigenvector w` for all 0 ≤ ` < r.
Considering the inner product of any two nonzero hj vectors from (2.16) we have that

〈hj ,h`〉 =
1

sjs`
〈Awj , Aw`〉 =

1

sjs`
(Awj)

∗Aw` =
1

sjs`
w∗j (A∗Aw`) =

λ`
sjs`

w∗jw` = 0

whenever j 6= ` due to the orthonormality of {wj}j∈[n]. Hence, {hj}j∈[r] is an orthonormal
basis of C(A).

Exercise 2.3.3. Let A ∈ Cm×n be rank r. Suppose that some choice of the orthonormal
basis {wj}j∈[n] of Cn in Lemma 2.3.1 results in exactly r orthonormal hj vectors in (2.16).
Prove that every wj must then be an eigenvector of A∗A ∈ Cn×n.

Lemma 2.3.2 combined with Exercise 2.3.3 imply that there is essentially only one way
to apply Lemma 2.3.1 so that its H matrix ends up having exactly r = rank(A) nonzero
and orthonormal columns {hj}j∈[r]. We simply must choose {wj}j∈[n] ⊂ Cn to be an
orthonormal basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n. Making that choice, we
then have that {hj}j∈[r] will be an orthonormal basis of C(A) ⊂ Cm. We can, therefore,

complete {hj}j∈[r] to be larger orthonormal basis B = {hj}j∈[r] ∪ {u`}m−1
`=r of all of Cm,

where {u`}m−1
`=r will then be an orthonormal basis of C(A)⊥ = N (A∗) by construction.

Let U ∈ Cm×m be the unitary matrix with its columns given by

U:,j =

{
hj if j ∈ [r]
uj otherwise

.
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In addition, let V ∈ Cn×n be the unitary matrix whose columns are our well-chosen
{wj}j∈[n] basis so that V:,j = wj for all j ∈ [n]. For our A ∈ Cm×n we will then have that

AV =

 | | |
Aw0 Aw1 · · · Awn−1

| | |


=

 | | | | | |
s0h0 s1h1 · · · sr−1hr−1 0 · · · 0
| | | | | |

 ∈ Cm×n (2.17)

=

 | | | | | |
h0 h1 · · · hr−1 ur · · · um−1

| | | | | |


︸ ︷︷ ︸

∈Cm×m

(
diag(s0, . . . , sr−1) 0 · · · 0
0 0 · · · 0 0 0 · · · 0

)
︸ ︷︷ ︸

∈Cm×n

= UΣ,

where Σ ∈ [0,∞)m×n is a real-valued diagonal matrix whose entries are given by

Σi,j =

{
sj if i = j < r
0 otherwise

.

Multiplying (2.17) through on the right by V ∗ we finally see that

A = AV V ∗ = UΣV ∗.

Example 2.3.3. To help the reader digest the abstract computation in (2.17) we will

perform a specific example of it here. Let A =

(
1 −1 1
0 2 2

)
so that A∗A =

 1 −1 1
−1 5 3
1 3 5

.

One can then check that 
 0

1√
2

1√
2

 ,


1√
3
−1√

3
1√
3

 ,


−2√

6
−1√

6
1√
6


 ⊂ R3

is an orthonormal set of eigenvectors of A∗A (do check this!). Applying A to each of these
vectors we obtain

A

 0
1√
2

1√
2

 = 2
√

2

(
0
1

)
, A


1√
3
−1√

3
1√
3

 =
√

3

(
1
0

)
, and A


−2√

6
−1√

6
1√
6

 =

(
0
0

)
.

Thus, in the terminology of Lemma 2.3.1, we have s0 = 2
√

2, s1 =
√

3, s2 = 0, and

h0 =

(
0
1

)
, h1 =

(
1
0

)
, h2 =

(
0
0

)
.
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Forming the unitary matrices U ∈ R2×2 and V ∈ R3×3 used in (2.17) in this case and
carrying out the computation to its conclusion we learn that

A =

(
1 −1 1
0 2 2

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

U

(
2
√

2 0 0

0
√

3 0

)
︸ ︷︷ ︸

Σ

 0 1√
2

1√
2

1√
3
−1√

3
1√
3

−2√
6
−1√

6
1√
6


︸ ︷︷ ︸

V ∗

.

Exercise 2.3.4. Repeat the calculation in Example 2.3.3 for the matrix A =

 1 1
1 1
−1 1

.

Formalizing the discussion above allows us to prove the following theorem establishing
the existence of the SVD for any matrix A ∈ Cm×n.

Theorem 2.3.4 (The Full Singular Value Decomposition). Every rank r matrix A ∈ Cm×n

can be decomposed into A = UΣV ∗ where

1. U ∈ Cm×m and V ∈ Cn×n are both unitary, and

2. Σ ∈ [0,∞)m×n is a unique diagonal matrix with entries

Σi,j =

{
σj(A) if i = j
0 otherwise

satisfying σ0(A) ≥ σ1(A) ≥ · · · ≥ σr−1(A) > 0 = σr(A) = · · · = σmin{m,n}−1(A).

Here the jth-largest diagonal entry of the diagonal matrix Σ, σj(A) ∈ [0,∞), is called the
jth singular value of A. Similarly, given a valid SVD of A, A = UΣV ∗, the vectors
uj = U:,j ∈ Cm and vj = V:,j ∈ Cn are called the jth left and right (respectively)
singular vectors of (the SVD of) A.7

Exercise 2.3.5. Let A ∈ Cm×n have the full SVD A = UΣV ∗. Set r = rank(A). Show
that

A =
∑
j∈[r]

σj(A)ujv
∗
j (2.18)

where σj(A) is the jth singular value of A, and uj = U:,j ∈ Cm, vj = V:,j ∈ Cn are the ,
jth left/right singular vectors of the SVD of A. (Hint: Consider using Exercise 2.2.50.)

One can now prove the following corollary from Theorem 2.3.4 via an argument analogous
to the one used to derive Corollary 2.2.48 from Theorem 2.2.46 (or, alternatively, by using
(2.18) from Exercise 2.3.5 to build the new factorization more directly).

7These slightly awkward names for uj = U:,j ∈ Cm and vj = V:,j ∈ Cn are due to the fact that these
vectors are not generally unique for a given matrix A. Note that there will be many unitary U and V matrix
pairs that work as part of a valid SVD of A, especially when there are repeated singular values.
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Corollary 2.3.5 (The Compact Singular Value Decomposition). Every rank r matrix
A ∈ Cm×n can be decomposed into A = UΣV ∗ where

1. U ∈ Cm×r and V ∈ Cn×r are both orthonormal matrices, and

2. Σ = diag (σ0(A), . . . , σr−1(A)) ∈ [0,∞)r×r is a unique diagonal matrix containing the
r nonzero singular values of A ordered so that σ0(A) ≥ σ1(A) ≥ · · · ≥ σr−1(A) > 0.

Exercise 2.3.6. Prove Corollary 2.3.5.

However one proves Theorem 2.3.4 and Corollary 2.3.5, the uniqueness of the singular
values of a matrix A ∈ Cm×n ultimately follows from the fact that they must always be the
square roots of the eigenvalues of A∗A ∈ Cn×n (and AA∗ ∈ Cm×m). For this reason (in
addition to several others), we will now briefly review the properties that any valid SVD of
a matrix A must share with the spectral decompositions of both A∗A and AA∗.

2.3.1 The Relationship Between any Valid SVD of A and the Spectral
Decompositions of A∗A and AA∗

Let A = UΣV ∗ be a valid full SVD of a rank r matrix A ∈ Cm×n (i.e., so that U ∈ Cm×m

and V ∈ Cn×n are both unitary, and Σ ∈ [0,∞)m×n is a diagonal matrix satisfying
Σ0,0 ≥ · · · ≥ Σr−1,r−1 > Σr,r = · · · = Σq−1,q−1 = 0, where q = min{m,n}). Notice that
then

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗U∗UΣV ∗ = V (Σ∗Σ)V ∗,

where D = Σ∗Σ ∈ [0,∞)n×n is a diagonal matrix with D0,0 = Σ2
0,0 ≥ · · · ≥ Dr−1,r−1 =

Σ2
r−1,r−1 > Dr,r = · · · = Dn−1,n−1 = 0. As a consequence, we can see that every column

vj = V:,j of V will be an eigenvector of A∗A with eigenvalue Dj,j since

A∗Avj = V (Σ∗Σ)V ∗vj = V (Σ∗Σ)ej = V Dj,jej = Dj,jvj .

Thus, Dj,j must be the jth largest eigenvalue of A∗A ∈ Cn×n. Given that the eigenvalues of
A∗A are both unique (with potential repetitions since they are the zeros of the characteristic
polynomial of A∗A – see, e.g., [23, Chapter 10]), and always nonnegative real numbers (see
Exercise 2.2.62), this further implies that each Σj,j =

√
Dj,j is also uniquely determined

by A. Hence, we’ll call the value that Σj,j must always take in any valid full SVD of A
“σj(A)”, and will later discuss it even in the absence of a particular SVD of A.

Exercise 2.3.7. Let A = UΣV ∗ be a valid full SVD of a rank r matrix A ∈ Cm×n. Show
that Σj,j must always equal the square-root of the jth largest eigenvalue of AA∗ ∈ Cm×m.
Conclude that the nonzero eigenvalues of AA∗ ∈ Cm×m must always match the nonzero
eigenvalues of A∗A ∈ Cn×n.
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The following result can be proven by carefully considering the discussion so far.

Theorem 2.3.6. Let A = UΣV ∗ be a valid full SVD of a rank r matrix A ∈ Cm×n. The
following statements must hold:

1. The r nonzero singular values of A are exactly the square roots of the positive eigen-
values of A∗A ∈ Cn×n and AA∗ ∈ Cm×m.

2. The first r columns of U ∈ Cm×m are an orthonormal basis for the column space of
A, C(A) ⊂ Cm.

3. The last m− r columns of U ∈ Cm×m form an orthonormal basis for the null space
of A∗, N (A∗) ⊂ Cm.

4. The first r columns of V ∈ Cn×n form an orthonormal basis for the column space of
A∗, C(A∗) ⊂ Cn.

5. The last n− r columns of V ∈ Cn×n form an orthonormal basis for the null space of
A, N (A) ⊂ Cn.

6. If m = n and A is Hermitian, then A will have λ as an eigenvalue if and only if there
exists a j ∈ [n] such that

• |λ| is the jth singular value of A (i.e., σj = |λ|),

• the jth column of V , vj ∈ Cn, is an eigenvector of A associated with λ, and

• the jth column of U = sign(λ)vj.

Exercise 2.3.8. Prove Theorem 2.3.6.

Exercise 2.3.9. Let U ∈ Cm×m and V ∈ Cn×n both be unitary, A ∈ Cm×n, and q :=
min{m,n}. Show that σj(UA) = σj(A) = σj(AV ) holds for all j ∈ [q].

Exercise 2.3.10. Let α, β ∈ Z \ {0}. The α
β -power of a full rank matrix A ∈ Cn×n is

a matrix B ∈ Cn×n with the property that Bβ = Aα (e.g., when β = 2 and α = 1 then
B is called the matrix square root of A). Prove that there always exists a unitary matrix
W ∈ Cn×n such that any desired α

β -power of AW exists. When can W simply be the

identity? How can one compute such a B and W for any given A ∈ Cn×n?

As Theorem 2.3.6 hopefully makes clear, a SVD of A conveniently encodes just about
any standard information you might want to know about A. It is a commonly computed
decomposition as a result. Numerically, a SVD of a small to moderately sized matrix
A ∈ Cm×n can be efficiently computed using a variety of standard methods (depending
on how, e.g., m compares in size to n). We refer the interested reader to numerical linear
algebra texts such as [51, Lecture 31] or [17, Chapter 5] for details. For an extremely large
matrix A ∈ Cm×n that might not be (able to be) stored on a single machine, however, one
might have to utilize a distributed/incremental SVD algorithm instead (see, e.g., [8, 9, 31]).
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2.3.2 The SVD and the Moore–Penrose Inverse of a Matrix

Note that every matrix A ∈ Cm×n is a linear bijection from C(A∗) onto C(A). Hence,
A : C(A∗)→ C(A) always has an inverse, denoted by A† : C(A)→ C(A∗), that’s called the
Moore–Penrose (or, pseudo)inverse of A. Furthermore, a factorization of A† ∈ Cn×m

can be computed easily using a compact SVD of A.

Let A = UΣV ∗ be a compact SVD of a rank r matrix A ∈ Cm×n so that U ∈ Cm×r

and V ∈ Cn×r are orthonormal matrices, and Σ = diag (σ0(A), . . . , σr−1(A)) ∈ [0,∞)r×r is
invertible (due to σ0(A) ≥ · · · ≥ σr−1(A) > 0). One can now see that

A† = V Σ−1U∗ (2.19)

must hold. To understand why, recall that the orthogonal projections PC(A) and PC(A∗) act
as the identities on C(A) and C(A∗), respectively (see Theorem 2.2.31). And, e.g.,

A†A = (V Σ−1U∗)(UΣV ∗) = V Σ−1IrΣV
∗ = V V ∗ = PC(A∗)

by (2.14) and part (4) of Theorem 2.3.6. Hence, A† : C(A)→ C(A∗) from (2.19) is indeed
the left inverse of A : C(A∗)→ C(A). A similar calculation shows that AA† = PC(A) also
holds.

Exercise 2.3.11. Let A = UΣV ∗ be a compact SVD of a rank r matrix A ∈ Cm×n. Show
that A† from (2.19) satisfies AA† = PC(A).

Exercise 2.3.12. Suppose that A ∈ Cn×n is full rank (so that rank(A) = n). Show that
A† = A−1 ∈ Cn×n in this case.

The exercise directly above demonstrates that A† is a strict generalization of the “usual”
matrix inverse A−1. As a result, in some sense we always should (and really always effectively
do) work with A−1 := A† when thinking about inverting a matrix of any size.

Exercise 2.3.13. Suppose that A ∈ Cn×n is full rank (so that rank(A) = n). Show that
σ0

(
A−1

)
= 1

σn−1(A) . More generally, show that σj
(
A−1

)
= 1

σn−1−j(A) for all j ∈ [n].

2.3.3 Singular Values, Matrix Norms, and Some Singular Value Inequali-
ties

If we have not yet convinced you that the SVD is potentially interesting and useful, we
will try again here by showing that two of the most commonly used matrix norms from
Section 2.2.1 are closely related to the singular values of a given matrix.
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The Frobenius Norm

Given A ∈ Cm×n recall that ‖A‖F =
√∑

`,j |A`,j |
2. Let A = UΣV ∗ be a full SVD of A,

and set q := min{m,n}. Computing the squared Frobenius norm of A via its SVD we can
see that

‖A‖2F = ‖UΣV ∗‖2F =
∑
j∈[n]

‖ (UΣV ∗):,j ‖
2
2 =

∑
j∈[n]

‖U (ΣV ∗):,j ‖
2
2

=
∑
j∈[n]

‖ (ΣV ∗):,j ‖
2
2 = ‖ΣV ∗‖2F

by Exercise 2.2.52 since U is unitary. Continuing, we can further see that since ‖A‖F = ‖A∗‖F
holds for all A ∈ Cm×n we also have that

‖A‖2F = ‖V Σ∗‖2F =
∑
j∈[m]

‖V (Σ∗):,j ‖
2
2 =

∑
j∈[m]

‖Σ∗:,j‖22 =
∑
j∈[q]

(σj(A))2. (2.20)

We will see that (2.20) has several important implications in later sections.

Exercise 2.3.14. Let U ∈ Cm×m and V ∈ Cn×n both be unitary. Show that ‖UA‖F =
‖A‖F = ‖AV ‖F holds for all A ∈ Cm×n.

The (`2, `2)-Operator Norm

Given A ∈ Cm×n recall that ‖A‖2→2 = max
x∈Cn s.t. ‖x‖2=1

‖Ax‖2. Let A = UΣV ∗ be a full

SVD of A, and set q := min{m,n}. Computing the (`2, `2)-operator norm of A via its SVD
we can see that

‖A‖2→2 = max
x∈Cn s.t. ‖x‖2=1

‖UΣV ∗x‖2 = max
x∈Cn s.t. ‖x‖2=1

‖ΣV ∗x‖2

by Exercise 2.2.52 since U is unitary. Furthermore, since V is also unitary its columns
form an orthonormal basis of Cn so that every x ∈ Cn with ‖x‖2 = 1 can be written as
x =

∑n
j=1 αjV:,j where ‖α‖2 = ‖x‖2 = 1 (see Theorem 2.2.11). Thus, continuing we can

see that

‖A‖2→2 = max
α∈Cn s.t. ‖α‖2=1

∥∥∥∥∥∥ΣV ∗

 n∑
j=1

αjV:,j

∥∥∥∥∥∥
2

= max
α∈Cn s.t. ‖α‖2=1

∥∥∥∥∥∥Σ

 n∑
j=1

αjej

∥∥∥∥∥∥
2

= max
α∈Cn s.t. ‖α‖2=1

‖Σα‖2 = max
α∈Cn s.t. ‖α‖2=1

√∑
j∈[q]

|αj |2(σj(A))2.
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Recalling that σ0(A) ≥ σ1(A) ≥ · · · ≥ σq−1(A) we can now see that this last expression is
always maximized when |α0| = 1. Hence,

‖A‖2→2 = σ0(A). (2.21)

We will see that (2.21) also has several important implications in later sections.

Exercise 2.3.15. Let U ∈ Cm×m and V ∈ Cn×n both be unitary. Show that ‖UA‖2→2 =
‖A‖2→2 = ‖AV ‖2→2 holds for all A ∈ Cm×n.

Exercise 2.3.16. Let A ∈ Cm×n and set q := min{m,n}. Prove that ‖A‖2→2 ≤ ‖A‖F ≤√
q‖A‖2→2 always holds. For what type of matrices will ‖A‖2→2 = ‖A‖F hold? For what

type of matrices will ‖A‖F =
√
q‖A‖2→2 hold?

Some Singular Value Inequalities

Now that we have seen a few reasons why we might want to compute a singular value
decomposition of a matrix (e.g., to compute its Moore–Penrose inverse, or its (`2, `2)-
operator norm), it’s worth considering how robust a matrix SVD actually is to small errors.
Imagine, for example, that we want to compute the singular values of a matrix A ∈ Cm×n on
a digital computer. We will encounter potential problems immediately since, unfortunately,
we probably can’t even store A exactly on our computer! Instead, we will actually store
A + E, where E ∈ Cm×n contains all the round-off errors that result form representing
each entry of A with a finite number of binary digits (i.e., bits). Given that we can (at
best) then compute the singular values of A+E instead of A, it’d be good to know how
close the singular values of A + E are to the true singular values of A we actually want.
If, e.g., E has a small Frobenius norm (and, therefore, small singular values by (2.20)) we
want to make sure that σj(A+E) ≈ σj(A) holds for all relevant j. We will now state some
very useful singular value inequalities which effectively show that singular values are indeed
robust to small perturbations in this way (both additive and multiplicative).

Theorem 2.3.7 (See Theorem 3.3.16 in [26]). Let A,B ∈ Cm×n and q = min{m,n}. Then

(a) σj+k (A+B) ≤ σj (A) + σk (B), and

(b) σj+k (AB∗) ≤ σj (A)σk (B)

for all j, k ∈ [q] such that j + k ∈ [q]. In particular,

(c) |σj (A+B)− σj (A)| ≤ σ0 (B) ∀j ∈ [q], and

(d) σj(AB
∗) ≤ σj (A)σ0 (B) ∀j ∈ [q].

Exercise 2.3.17. Let B ∈ Cm×n and q = min{m,n}. Prove that σj(−B) = σj(B) =
σj(B

∗) holds for all j ∈ [q].
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Exercise 2.3.18. Use parts (a) and (b) of Theorem 2.3.7 to prove parts (c) and (d).

Looking at Theorem 2.3.7 (c) one can see that if B = E has a small largest singular
value, σ0 (E), then we will indeed have σj(A + E) ≈ σj(A) for all j ∈ [q]. Furthermore,
one can also use these inequalities to see, e.g., that small perturbations to the entries of
A won’t influence how it behaves as a linear function too much either. This means that
matrices can be applied as linear functions on digital computers without distorting their
outputs too extremely.

Example 2.3.8. Suppose that A ∈ Cm×n is stored on a digital computer as Ã = A+ E,
where E ∈ Cm×n is, e.g., a round-off error matrix with |Ei,j | ≤ ε for all i, j. How much
can Ãx differ from Ax on a worst-case input vector x ∈ Cn?

To answer this question we will upper bound
∥∥∥Ax− Ãx

∥∥∥
2
. Considering this error we

can see that ∥∥∥Ax− Ãx
∥∥∥

2
= ‖x‖2

∥∥∥∥(A− Ã)
x

‖x‖2

∥∥∥∥
2

= ‖x‖2

∥∥∥∥E ( x

‖x‖2

)∥∥∥∥
2

≤ ‖x‖2‖E‖2→2 = ‖x‖2σ0(E).

If we want an upper bound in terms of ε we can now use the fact that ‖E‖2→2 ≤ ‖E‖F
always holds (see Exercise 2.3.16) to get that∥∥∥Ax− Ãx

∥∥∥
2
≤ ‖x‖2‖E‖F ≤ ε‖x‖2

√
mn.

Thus, the error is will always be small in `2-norm as long as ε is small compared to
‖x‖2

√
mn.

The following two singular value inequalities will be useful in later chapters.

Lemma 2.3.9 (A Slight Generalization of Theorem 2.3.7 Part (d)). Let A ∈ Cm×n and
B ∈ Cn×p. Then,

σj (AB) ≤ min {σj (A)σ0 (B) , σj (B)σ0 (A)} ∀j ∈ [min{n,m, p}].

Proof. Suppose, without loss of generality, that m ≤ p (else, we may instead apply the
argument below to σj ((AB)∗) = σj (B∗A∗) using that σj (AB) = σj ((AB)∗)). Since m ≤ p

we can project all of Cm into Cp with Q =

(
Im

· · ·0 · · ·

)
∈ Cp×m. Further, we may note that

σj (QA) = σj (A) and σj (QAB) = σj (AB) ∀j ∈ [min{m,n}] = [min{n,m, p}].

Applying part (d) of Theorem 2.3.7 we can now see that both

σj (AB) = σj (QAB) ≤ σj (QA)σ0 (B∗) = σj (A)σ0 (B)
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and

σj (AB) = σj (QAB) = σj (B∗ (QA)∗) ≤ σj (B∗)σ0 (QA) = σj (B)σ0 (A)

hold. The result follows.

Lemma 2.3.10. Let A ∈ Cm×n and B ∈ Cn×p be such that

1.) B has a full SVD B = UΣV ∗, and

2.) AU has rank r = n with a compact SVD AU = QΣ̃P ∗.

Then,

σj (AB) ≥ σr (AU)σj (B) ∀j ∈ [r].

Proof. Let j ∈ [r]. Noting that P is unitary since r = n, we can see that

σj (B) = σj (ΣV ∗) = σj

(
P Σ̃−1Σ̃P ∗ΣV ∗

)
≤ σ0

(
P Σ̃−1

)
· σj

(
Σ̃P ∗ΣV ∗

)
by Lemma 2.3.9. Furthermore, σ0

(
P Σ̃−1

)
= σ0

(
Σ̃−1

)
= 1

σr(Σ̃)
= 1

σr(AU) . Hence,

σj (B) ≤
σj

(
Σ̃P ∗ΣV ∗

)
σr (AU)

=⇒ σj

(
Σ̃P ∗ΣV ∗

)
≥ σr (AU)σj (B) . (2.22)

Finally, since m ≥ r = n we can see that Q∗Q = In so that

σj

(
Σ̃P ∗ΣV ∗

)
= σj

(
Q∗QΣ̃P ∗ΣV ∗

)
= σj (Q∗AUΣV ∗) = σj (Q∗AB)

≤ σj (AB)σ0 (Q∗) = σj (AB) (2.23)

by Lemma 2.3.9. Combing (2.22) and (2.23) now finishes the proof.

Though perturbation bounds for singular values such as those in Theorem 2.3.7 are
both more commonly used and far more robust, it’s also worth knowing about the existence
of similarly useful perturbation theory for singular vectors/subspaces as well. We urge the
interested reader to peruse, e.g., [47, 48] to get a good overview of these results.

2.3.4 Optimal Low-Rank Approximation

Recalling Section 1.2.3, suppose that we have trained a deep FNN resulting in a large
number of huge weight matrices, Wj ∈ Rdj×dj−1 , where both dj and dj−1 are “big” for
most j ∈ [L]. Our goal is to compress these huge weight matrices as much as possible
so that our FNN is easier to store. Simultaneously, we want to accurately preserve each
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weight matrix as a linear function so that our overall FNN still does what we need it
to do after compression. Motivated by, e.g., Section 2.2.5 we can aim to accomplish our
goal by approximating each huge weight matrix Wj by a new low-rank matrix W̃j that
we can then store in an optimally compressed form. At the same time, Example 2.3.8
implies that it would also be helpful to, e.g., produce W̃j in a way that reduces the value

of
∥∥∥Wj − W̃j

∥∥∥
2→2

= σ0

(
Wj − W̃j

)
as much as possible since doing so will help to keep

Wjx ≈ W̃jx for all x ∈ Rdj−1 .

These considerations collectively suggest the following two step low-rank compression
approach for our FNN weight matrices:

1. Approximate each of W0, . . . ,WL using low-rank matrices W̃0, . . . , W̃L so that, e.g.,∥∥∥Wj − W̃j

∥∥∥
2→2

is small for all j ∈ [L], and then

2. store W̃0, . . . , W̃L in a compressed format.

We have already discussed step 2 above in Section 2.2.5, so we will focus on step 1 here. As
we shall see, the SVD is once again extremely useful in this setting, and ultimately allows
us to accomplish step 1 in an optimal way.

Let A ∈ Cm×n be an arbitrary (e.g., full rank) matrix, and suppose that we want to
approximate A with a rank s matrix As ∈ Cm×n that, e.g., minimizes ‖A−As‖2→2 over
all possible choices of rank s matrices in Cm×n so that

‖A−As‖2→2 = inf
rank s B∈Cm×n

‖A−B‖2→2.

To find As ∈ Cm×n, let A = UΣV ∗ be a full SVD of A and recall that we can then always
write

A =
∑
j∈[q]

σj(A)ujv
∗
j ,

where q = min{m,n}, uj = U:,j , and vj = V:,j (see Exercise 2.3.5). We claim that

As :=
∑
j∈[s]

σj(A)ujv
∗
j (2.24)

is then an optimal rank s approximation to A with respect to both the Frobenius and the
(`2, `2)-operator norms.

Exercise 2.3.19. Let A ∈ Cm×n, q = min{m,n}, and As ∈ Cm×n be as in (2.24). Show
that σj (A−As) = σj+s (A) for all j ∈ [q−s], and that σj (A−As) = 0 for all q−s ≤ j < q.
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Optimality of As in the Frobenius Norm

Observe that for the Frobenius norm we have

‖A−As‖2F =

∥∥∥∥∥∥
q∑
j=s

σj(A)ujv
∗
j

∥∥∥∥∥∥
2

F

=

q−1∑
j=s

σ2
j (A) (2.25)

by (2.20) and Exercise 2.3.19. The next theorem shows that this approximation error is
minimal.

Theorem 2.3.11. Let A,B ∈ Cm×n, q = min{m,n}, and As ∈ Cm×n be as in (2.24).
Furthermore, suppose that be B is rank s. Then

‖A−B‖F ≥ ‖A−As‖F.

That is, As is a best rank s approximation to A with respect to Frobenius norm error.

Proof. Note that σs(B) = 0 by Theorem 2.3.4 since B is rank s. Thus, Theorem 2.3.7
implies that

σj+s(A) = σj+s ((A−B) +B) ≤ σj(A−B) + σs(B) = σj(A−B)

for all j ∈ [q − s]. As a result, (2.20) and (2.25) now reveal that

‖A−B‖2F =
∑
j∈[q]

σ2
j (A−B) =

∑
j∈[q−s]

σ2
j (A−B) +

∑
j≥q−s

σ2
j (A−B)

≥
∑

j∈[q−s]

σ2
j+s(A) = ‖A−As‖2F.

Hence, As achieves the smallest possible Frobenius norm approximation error achievable by
any rank s matrix.

Optimality of As in the (`2, `2)-Operator Norm

Observe that for the (`2, `2)-operator norm we have

‖A−As‖2→2 =

∥∥∥∥∥∥
q∑
j=s

σj(A)ujv
∗
j

∥∥∥∥∥∥
2→2

= σs(A) (2.26)

by (2.21) and Exercise 2.3.19. The next theorem shows that this approximation error is
also minimal.
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Theorem 2.3.12. Let A,B ∈ Cm×n, q = min{m,n}, and As ∈ Cm×n be as in (2.24).
Furthermore, suppose that be B is rank s. Then

‖A−B‖2→2 ≥ ‖A−As‖2→2.

That is, As is a best rank s approximation to A with respect to (`2, `2)-operator norm error.

Proof. Since B is rank s we can write it in terms of a QR decomposition B = QR, where
Q ∈ Cm×s and R ∈ Cs×n. Similarly, let A = UΣV ∗ be a full SVD of A. Since V is unitary,
L = span{V:,0, . . . , V:,s} ⊂ Cn has dimension s+ 1. Also, we know that C(R∗)⊥ = N (R)
has dimension n− s by (the discussion around) Lemma 2.2.38. Hence, it must be the case
that

span{V:,0, . . . , V:,s} ∩ N (R)

is a linear subspace of Cn of dimension at least 1 by Exercise 2.2.24. Thus, there exists
n ∈ span{V:,0, . . . , V:,s} ∩ N (R) with ‖n‖2 = 1.

Using the fact that n ∈ N (R) ⊂ N (B), and writing n as
∑

j∈[s+1] αjV:,j for some
α0, . . . , αs ∈ C with ‖α‖2 = 1 (recall Theorem 2.2.11), we can now see that

‖A−B‖2→2 ≥ ‖(A−B)n‖2 = ‖An‖2 =

∥∥∥∥∥∥UΣV ∗

 ∑
j∈[s+1]

αjV:,j

∥∥∥∥∥∥
2

=

√ ∑
j∈[s+1]

|αj |2σ2
j (A).

Recalling that ‖α‖2 = 1, we can now see that the expression above is minimized when
αj = 0 for all j < s so that αs = 1. Therefore,

‖A−B‖2→2 ≥ σs(A).

We are now finished by (2.26).

2.4 Discrete Convolution and Fourier Transform Matrices

We begin this section by defining a general class of matrices which are important in many
applications including, e.g., as the weight matrices used in a special type of neural network
layer known as a “convolutional” neural network layer (recall Definition 1.2.4). As will
be clear soon, one advantage of this type of matrix is that it’s defined with many fewer
parameters than a generic matrix requires.
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Definition 2.4.1 (Toeplitz Matrix). The Toeplitz matrix A ∈ Cm×n generated by the
vector a ∈ Cm+n−1 is the Cm×n matrix with entries given by

Aj,k := a(m−1)+k−j

for all j ∈ [m], k ∈ [n]. We will also denote this matrix by A = Toepm,n(a). More generally,
we will say that a matrix A ∈ Cm×n is Toeplitz if there exists a vector a ∈ Cm+n−1 such
that A = Toepm,n(a). We will also define Toepn(a) := Toepn,n(a) in the case of square
matrices.

Example 2.4.2. The Toeplitz matrix A ∈ C3×4 generated by a ∈ C6 is

Toep3,4(a) =

a2 a3 a4 a5

a1 a2 a3 a4

a0 a1 a2 a3

 .

The Toeplitz matrix A ∈ C4×3 generated by a ∈ C6 is

Toep4,3(a) =


a3 a4 a5

a2 a3 a4

a1 a2 a3

a0 a1 a2

 .

Note that the entries of a appear along the bottom row, and then up the rightmost row, of
the Toeplitz matrix it generates in a “backwards-L” shape (displayed in blue above). The
rest of the Toeplitz matrix is then determined by its being constant along all of its diagonals.

Exercise 2.4.1. Show that A ∈ Cm×n is Toeplitz if and only if Aj,k = Aj+1,k+1 holds for
all j ∈ [m− 1] and k ∈ [n− 1].

Exercise 2.4.2. Show that A is Toeplitz if and only if A∗ is Toeplitz.

Exercise 2.4.3. Given a ∈ Cn let Reverse(a) ∈ Cn be the vector with entries given by

(Reverse(a))j = an−1−j .

Show that if A ∈ Cm×n is the Toeplitz matrix generated by a ∈ Cm+n−1, then A∗ is the
Toeplitz matrix generated by Reverse(a).

Definition 2.4.3 (Convolutional Layer of Neurons). A Convolutional Layer of Neurons
` : RN → Rd is a layer of neurons (recall Definition 1.2.4), σ (Wx + b), where the weight
matrix W ∈ Rd×N is Toeplitz.

We can now see that anm×n Toeplitz matrix is entirely defined using onlym+n−1 < mn
parameters. This can have potential benefits during, e.g., NN training. Of more immediate
interest in this section, however, is that these matrices can also have runtime advantages as
linear functions when coupled with Discrete Fourier Transform techniques. This will be
discussed in Sections 2.4.2 and 2.4.3. Before we can understand how these computational
advantages appear, however, we first have to discuss a special type of square Toeplitz
matrices known as “circulant matrices”.



103

2.4.1 Circulant and Toeplitz Matrices

As we will see later in Section 2.4.2, the following special class of square Toeplitz matrices is
crucial to realizing fast matrix-vector multiplication algorithms for more arbitrary Toeplitz
matrices.

Definition 2.4.4 (Circulant Matrix). The circulant matrix generated by a vector
v ∈ Cn is the matrix circ(v) ∈ Cn×n defined by

(circ(v))j,k = v(j−k) mod n.

We will say that a matrix A ∈ Cn×n is circulant if there exists a vector v ∈ Cn such
that A = circ(v). Herein “j mod n” is defined for all j ∈ Z and n ∈ N to be the single
element contained in the set {j + kn | k ∈ Z} ∩ [n] (or, equivalently, it is the unique value
r ∈ [n] = {0, 1, . . . , n− 1} such that ∃k ∈ Z satisfying j = r + kn).

Example 2.4.5. The circulant matrix A ∈ C4×4 generated by v ∈ C4 is

circ(v) =


v0 v3 v2 v1

v1 v0 v3 v2

v2 v1 v0 v3

v3 v2 v1 v0

 .

Note that this matrix is also Toeplitz due to the fact that it’s constant along its diagonals
(recall Exercise 2.4.1).

Exercise 2.4.4. Show that every circulant matrix is also Toeplitz.

Exercise 2.4.5. Let A ∈ C2n×2n be circulant. Show that Aj,k = Aj+n,k+n for all j, k ∈ [n].
More generally, show that Aj,k = A(j±n) mod 2n,(k±n) mod 2n holds for all j, k ∈ [2n].

Not only is every circulant matrix a Toeplitz matrix, but any square Toeplitz matrix
can be embedded into a larger circulant matrix. Hence, e.g., any algorithm which efficiently
multiplies circulant matrices against vectors can also be used to efficiently multiply square
Toeplitz matrices against vectors.

Let a ∈ C2n−1 and consider the square Toeplitz matrix generated by a, Toepn(a) ∈ Cn×n,
with entries given by

(Toepn(a))j,k = a(n−1)−(j−k). (2.27)

Now let c ∈ C2n be defined by cT = (an−1, an−2, . . . , a0, 0, a2n−2, . . . , an) so that

c` =


an−1−` 0 ≤ ` ≤ n− 1

0 ` = n

a3n−1−` n+ 1 ≤ ` ≤ 2n− 1

(2.28)
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for all ` ∈ [2n]. Then, the circulant matrix circ(c) ∈ C2n×2n will always take the block form

circ(c) =

(
Toepn(a) A

A Toepn(a)

)
∈ C2n×2n, (2.29)

where A ∈ Cn×n.

Example 2.4.6. Let a ∈ C3. The 2× 2 Toeplitz matrix generated by a is

Toep2(a) =

(
a1 a2

a0 a1

)
.

If we form the vector c ∈ C4 defined by cT = (a1, a0, 0, a2) then

circ(c) =


a1 a2 0 a0

a0 a1 a2 0
0 a0 a1 a2

a2 0 a0 a1

 =

(
Toep2(a) A

A Toep2(a)

)
∈ C4×4.

The following lemma guarantees the upper-left n×n block of circ(c) ∈ C2n×2n is indeed
always Toepn(a) ∈ Cn×n as claimed above in (2.29).

Lemma 2.4.7. Let a ∈ C2n−1. Build c ∈ C2n from a entry-wise via (2.28). Then,
(circ(c))j,k = (Toepn(a))j,k for all j, k ∈ [n].

Proof. We can see that −(n− 1) ≤ j − k ≤ (n− 1) since j, k ∈ [n]. Furthermore,

(j − k) mod 2n =

{
j − k 0 ≤ j − k ≤ n− 1

2n+ (j − k) −(n− 1) ≤ j − k < 0
.

Hence, if 0 ≤ j − k ≤ n− 1 we have that

(circ(c))j,k = c(j−k) mod n = cj−k = an−1−(j−k),

and if −(n− 1) ≤ j − k < 0 we have that

(circ(c))j,k = c(j−k) mod n = c2n+(j−k) = a3n−1−(2n+(j−k)) = an−1−(j−k).

Thus, (circ(c))j,k = (ToepN (a))j,k = a(n−1)−(j−k) for all j, k ∈ [n] by (2.27).

Exercise 2.4.6. Use Lemma 2.4.7 together with Exercise 2.4.5 to show that (2.29) holds
for all n ∈ N.
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Computationally, observe that via (2.29) we have for any v ∈ Cn that

circ(c)

(
v
0

)
=

(
Toepn(a) A

A Toepn(a)

)(
v
0

)
=

(
Toepn(a)v

Av

)
. (2.30)

Thus, we can always recover Toepn(a)v from circ(c)

(
v
0

)
by taking its first n entries. Hence,

as previously mentioned, any algorithm which efficiently multiplies circulant matrices against
arbitrary vectors can also be used to efficiently multiply square Toeplitz matrices against
arbitrary vectors. We will use this fact to our advantage later in Section 2.4.3.

2.4.2 Discrete Fourier Transforms and Circular Convolutions

In this section we will discuss a particular orthonormal basis of Cn, known as the discrete
Fourier basis, which is important for a large number of computational reasons involving
convolutions. As we shall see, its many remarkable properties are in fact due to the periodic
nature of the unit magnitude complex numbers {eiθ

∣∣ θ ∈ [0, 2π]} ⊂ C. In particular, given
n ∈ N the unit magnitude nth root of unity

fn := e
−2πi
n ∈ C

will be the atomic building block of the basis, and its properties are therefore crucial.

Exercise 2.4.7. Show that (fn)kn = fknn = 1 for all k ∈ Z.

Exercise 2.4.8. Show that (fn)k = fkn 6= 1 for all nonzero k ∈ [n].

Exercise 2.4.9. Show that (fn)ωj = fωjn = f
(ω mod n)(j mod n)
n = f

(ωj mod n)
n for all

j, ω ∈ Z.8

Exercise 2.4.10. Suppose that p, n ∈ N are such that n
p ∈ N (so that p divides n). Show

that (fn)pj = fpjn = f
(j mod n

p
)

n
p

holds for all j ∈ Z.

Let F ∈ Cn×n be the n× n matrix whose entries are given by

Fω,j :=
fω·jn√
n

for all ω, j ∈ [n]. The matrix F is called the Discrete Fourier Transform (DFT) matrix
of size n. Importantly, the columns of F ∗ form an orthonormal basis of Cn (i.e., one can
show that F is a unitary matrix – see Exercise 2.4.11). This basis is called the discrete
Fourier basis of Cn.

8Let j ∈ Z. Recall that “j mod n” denotes the unique integer r ∈ [n] satisfying j = r + k · n for some
k ∈ Z.
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Example 2.4.8. Recall that 1 ∈ Cn denotes the vector of all ones. We have that

F1 =
1√
n


∑n−1

j=0 f
0·j
n∑n−1

j=0 f
1·j
n

...∑n−1
j=0 f

(n−1)·j
n

 .

Considering the kth entry of F1 ∈ Cn for all k 6= 0 we can see that

(F1)k =
1√
n

n−1∑
j=0

fk·jn =
1√
n

(
1− fknn
1− fkn

)
=

1√
n

(
1− 1

1− fkn

)
= 0

by Exercises 2.4.7 and 2.4.8. On the other hand, for k = 0 we have that

(F1)0 =
1√
n

n−1∑
j=0

f0·j
n =

1√
n

n−1∑
j=0

1 =
n√
n

=
√
n.

Hence, F1 =
√
n e0.

Exercise 2.4.11. Prove that the DFT matrix, F , is unitary. (HINT: Recall Theo-
rem 2.2.35.)

Exercise 2.4.12. Prove that ‖Fv‖22 = ‖v‖22 holds for all v ∈ Cn. This equality is sometimes
referred to as “Parseval’s identity” in the context of the discrete Fourier basis.

The Discrete Fourier Transform (DFT) of a vector v ∈ Cn is simply

v̂ := Fv (2.31)

with entries given by v̂ω = 1√
n

∑n−1
j=0 vjf

ω·j
n for all ω ∈ [n] = {0, . . . , n− 1} ⊂ N. Similarly,

the Inverse Discrete Fourier Transform (IDFT) of a vector v ∈ Cn is

v̂-1 := F−1v = F ∗v.

As we shall see, the DFT walks hand in hand with our next definition.

Exercise 2.4.13. Suppose p, n ∈ N are such that n/p ∈ N (i.e., p divides n). Given
u ∈ Cp, let v ∈ Cn be a longer vector with entries given by

vj =

{
upj/n if j ≡ 0 mod (n/p)

0 else
,

and let w ∈ Cn be another longer vector with entries given by wj = ujmod p. Compute the
n-length DFTs v̂, ŵ ∈ Cn in terms of the p-length DFT of u.
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Exercise 2.4.14. Let a, b, c ∈ [n] be such that a is invertible modulo n.9 Furthermore,
suppose that u,v ∈ Cn satisfy

vj = e
2πicj
n uaj+b mod n = f−cjn uaj+b mod n

for all j ∈ [n]. Write v̂ω in terms of one or more entries of û for a given ω ∈ [n]. How
does a affect the entries of v̂ when c = b = 0? How does b affect the entries of v̂ when a = 1
and c = 0? How does c affect the entries of v̂ when a = 1 and b = 0?

The discrete (circular) convolution of two vectors u,v ∈ Cn, denoted by u?v ∈ Cn,
is defined entrywise via

(u ? v)k :=

n−1∑
j=0

uj · v(k−j) mod n =

n−1∑
j=0

uj mod n · v(k−j) mod n

for all k ∈ [n]. Note that, in fact, u ? v = circ(v)u for all u,v ∈ Cn.

Example 2.4.9. Let u,v ∈ C4. Then,

u ? v =


∑3

j=0 uj v−j mod n∑3
j=0 uj v1−j mod n∑3
j=0 uj v2−j mod n∑3
j=0 uj v3−j mod n

 =


v0 v3 v2 v1

v1 v0 v3 v2

v2 v1 v0 v3

v3 v2 v1 v0



u0

u1

u2

u3

 = circ(v)u.

The discrete convolution has the following useful relationship with the discrete Fourier
transform.

Theorem 2.4.10. Let u,v ∈ Cn. Then

(û ? v)ω =
√
n ûωv̂ω (2.32)

holds for all ω ∈ [n].

Proof: To obtain (2.32) we compute

(û ? v)ω =
1√
n

n−1∑
k=0

(u ? v)k f
ω·k
n =

1√
n

n−1∑
k=0

n−1∑
j=0

uj · v(k−j) mod n

 fω·kn .

Exchanging the final double sum we obtain that

(û ? v)ω =
1√
n

n−1∑
j=0

uj f
ω·j
n

(
n−1∑
k=0

v(k−j) mod n f
ω·(k−j)
n

)
=
√
n ûωv̂ω.

9A value a ∈ [n] is invertible modulo n if there exists an h ∈ [n] such that a h ≡ 1 mod n. Any
a ∈ [n] that is relatively prime to n will be invertible modulo n by the Fermat-Euler Theorem (see, e.g., [41,
Theorem 2.8]).
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Here we have used the fact that f `·nn = 1 for all ` ∈ Z so that f
ω·(k−j)
n = f

ω·((k−j) mod n)
n

always holds (see, e.g, Exercise 2.4.9). �

Exercise 2.4.15. Show that circ(u)v = v?u = u?v = circ(v)u holds for all u,v ∈ Cn.

Theorem 2.4.10 tells us that the DFT of the convolution of two vectors is, up to
rescaling by

√
n, equal to the entrywise product of the DFTs of the two vectors. Using this

relationship we can compute the discrete convolution of u and v using their DFTs. Let
u � v ∈ Cn denote the entrywise (or Hadamard) product of the two vectors u,v ∈ Cn.
That is, let

(u� v)j := ujvj

for all j ∈ [n]. Theorem 2.4.10 now directly implies that

u ? v =
√
n ̂̂u� v̂

-1

=
√
n F ∗ (Fu� Fv) . (2.33)

Note that the last expression of (2.33) could be computed quickly if we could find a way to
quickly calculate both Fu and F ∗u for any given u. This is in fact possible as we shall see
in Section 2.4.3.

The following additional fact relating IDFT matrices to circulant matrices is closely
related to Theorem 2.4.10: Every column of the IDFT matrix F ∗ is an eigenvector of every
circulant matrix. As a result, the n× n IDFT matrix F ∗ simultaneously diagonalizes this
entire class of n× n matrices.

Theorem 2.4.11. Let v ∈ Cn. Every column of F ∗ ∈ Cn×n is an eigenvector of circ(v).

Proof. Let u = F ∗ej ∈ Cn be the jth column of F ∗. By (2.33),

circ(v)u = u ? v =
√
n F ∗(Fu� Fv) =

√
n F ∗((FF ∗ej)� Fv)

=
√
n F ∗(ej � v̂) =

√
n F ∗(v̂jej) =

√
n v̂ju

Thus, the jth column of F ∗ is an eigenvector of circ(v) with eigenvalue
√
n v̂j .

Exercise 2.4.16. Let v ∈ Cn. Show that circ(v) ∈ Cn×n is invertible if and only if v̂ω 6= 0
for all ω ∈ [n].

Exercise 2.4.17. Order the Fourier coefficients of v ∈ Cn by magnitude so that

|v̂ω0 | ≥ |v̂ω2 | ≥ · · · ≥ |v̂ωn−1 |.

Prove that the jth singular value of circ(v) ∈ Cn×n satisfies σj (circ(v)) =
√
n |v̂ωj |.
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One important consequence of the proof above is that the DFT gives us an easy way to
compute the eigenvalues of all circulant matrices. Of even more consequence, though, is that
(2.33) can also be used in many other applications where convolutions naturally appear. We
have already seen, e.g., that the Toeplitz weight matrices of convolutional layers of neurons
can be embedded into circulant matrices (recall definition 2.4.3 and (2.29)). Hence, (2.33)
can potentially help evaluate convolutional layers of neurons more quickly via (2.30). In
addition, convolutions also appear in numerous other important applications, two of which
we will briefly discuss next.

Example 2.4.12 (Deblurring). Consider the following “deblurring” problem: given u ? v ∈
Cn (the blurry signal) and knowledge of the blur kernel v ∈ Cn (e.g., a Gaussian blur
kernel), recover the unblurred signal u ∈ Cn. Such problems are common in imaging
applications where a blurred image can indeed be thought of as a crisp/unblurred imaged
convolved with a blur kernel. The question then becomes how one can try to “undo the blur”
in order to get u ∈ Cn back from its blurry version u ? v ∈ Cn.

Somewhat amazingly, this is easy to do efficiently if we have both the blurry signal
u ? v ∈ Cn and knowledge of how the original image was likely blurred (i.e., we also know
v ∈ Cn). In that case one can compute

ûω =
û ? vω
v̂ω

for all ω ∈ [n], and then set u = F ∗û. This of course assumes that the Fourier coefficients
v̂ω 6= 0 for all ω ∈ [n]. If there are zero Fourier coefficients, then one can instead note
that we are equivalently simply trying to solve the linear system circ(v)u = u ? v for
u ∈ Cn. In such a case we can instead always find an approximate solution by returning,

e.g., the least-squares estimate ũ = circ(v)†(u ? v) = PC(circ(v)∗)u (recall Section 2.3.2).

Furthermore, an SVD of circ(v), and therefore circ(v)†, can be constructed efficiently using
Theorem 2.4.11.

Example 2.4.13 (Polynomial Multiplication). Convolutions also appear naturally as
part of polynomial multiplication. Let q(x) =

∑n−1
j=0 qjx

j and r(x) =
∑n−1

j=0 rjx
j be two

polynomials. Then t(x) = q(x) ·r(x) is a polynomial of degree ≤ 2n−2 that can be expressed
as t(x) =

∑2n−2
j=0 tjx

j. Writing the coefficients of q and r as vectors q, r ∈ Cn, respectively,

and the coefficients of t as a vector t ∈ C2n−1, we have that

t =

(
q
0

)
?

(
r
0

)
.

For example, when n = 3 we have that

t(x) = (q2x
2 + q1x+ q0)(r2x

2 + r1x+ r0)

= q2r2︸︷︷︸
t4

x4 + (q2r1 + q1r2)︸ ︷︷ ︸
t3

x3 + (q2r0 + q1r1 + q0r2)︸ ︷︷ ︸
t2

x2 + (q1r0 + q0r1)︸ ︷︷ ︸
t1

x+ q0r0︸︷︷︸
t0

.
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In vector form this corresponds to
t0
t1
t2
t3
t4

 =


q0 0 0 q2 q1

q1 q0 0 0 q2

q2 q1 q0 0 0
0 q2 q1 q0 0
0 0 q2 q1 q0



r0

r1

r2

0
0

 = circ

((
q
0

))
r0

r1

r2

0
0

 =


q0

q1

q2

0
0

 ?


r0

r1

r2

0
0

 .

Hence, if we can compute (I)DFTs quickly then we can also multiply polynomials quickly
via (2.33).

Exercise 2.4.18. Consider the “finite difference” matrix D2 ∈ Rn×n whose entries are
given by

(D2)i,j =


−2 if i = j
1 if (i− j) ≡ 1 mod n
1 if (i− j) ≡ n− 1 mod n
0 otherwise

. (2.34)

This is an example of a circulant matrix. Show that FD2 = EF , where E ∈ Rn×n is a
diagonal matrix with entries given by

(E)i,j =

{
2 cos(2πj/n)− 2 if i = j
0 if i 6= j

. (2.35)

Exercise 2.4.19. Let D2r ∈ Rn×n be defined by D2r := Dr
2. Use the previous exercise to

show that FD2r = ErF for all r ∈ Z+.

As we will discuss in the next section, there is indeed a fast algorithm for computing
both Fu and F ∗u for all u ∈ Cn. As a result, there are fast (i.e., computationally efficient)
algorithms based on (2.33) for rapidly computing the convolutions involved in all of the
applications mentioned in this section. Before explaining how any of these fast algorithms
work, however, let’s first briefly discuss what we actually mean when we say an algorithm
is “fast”.

Big-O Notation and the Basic Art of Runtime Analysis

Throughout this text we will approach runtime discussions/analysis by counting six general
types of atomic computational operations which we will assume any reasonable computer
can do in a constant amount of time. These six types of constant-cost operations are:

1. Assigning a complex value to/reading a complex value from a variable or vector entry
(e.g., setting xj = y ∈ C).

2. Adding/subtracting two machine numbers (e.g., adding any two real or complex
numbers to a fixed precision).
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3. Multiplying/dividing two machine numbers (e.g., multiplying any two real or complex
numbers to a fixed precision).

4. Comparing two machine numbers (e.g., deciding whether one real number is larger/smaller/
equal to another real number).

5. Evaluating basic logical expressions and conditional statements (e.g., deciding if
“(boolean value A) AND/OR (boolean value B)” is True or False).

6. Evaluating simple functions f : R → R to a fixed precision. Herein, this class of
“simple functions” includes (i) functions with rapidly convergent Maclaurin (i.e., 0-
centered Taylor) series expansions such as the exponential, sine, and cosine functions,
(ii) related complex-valued functions like eiθ = cos(θ)+i sin(θ), and (iii) other rapidly
approximable functions such as f(t) = tα for a given (e.g., non-integer) α ∈ R.

Looking at the “constant-cost” operations above the invested reader’s eyebrows should
be at least slightly raised. The sixth type of operation (evaluating simple functions) seems
particularly fishy, doesn’t it?10 Even the second type of operation (i.e., simple addition)
being “constant-cost” should inculcate suspicion in anyone who was expected to add 6 digit
numbers to one another by hand in elementary school. I urge anyone who is not skeptical
to grab a piece of of chalk and investigate the claim that adding two 300 digit numbers
together is the same “constant-cost” operation as adding 9 to 8.11 That said, let me urge
you to allow the escape clause “to a fixed precision”, as well as the related term “machine
numbers”, to save you from your skepticism, at least enough to believe that there is indeed
some value to such simple types of operation counts.

Generally speaking, a digital computer can only guarantee the calculation of a fixed
number of the leading digits of any real number one aims to compute/store. This is simply
a fact of life. All of our algorithms here (or any others you see that are analyzed in a
similar way) only guarantee you numerical answers up to some precision, or number of
digits of accuracy – if that number of digits is not enough to be meaningful, then the
algorithms are computing garbage. If, however, the answer you are after can be expressed
accurately enough to satisfy you by its most significant, e.g., ∼ 16 decimal digits, then
the type of accounting we do here will be completely adequate for you. Even if you want
many more digits of accuracy, though, a computer algorithm that needs to use only a few
higher-precision operations will still be much faster to execute that one that uses many
more higher-precision operations. As a result, even if our operation counts don’t truly

10We urge the interested reader to consult, e.g,. [34, Chapters 1 and 3] to learn why this sixth type of
constant-cost operation is indeed not too fishy after all. . . .

11Really even adding two numbers should not be considered “constant-time” if you are doing serious
computations involving, e.g., large number (and, therefore, extended precision) arithmetic. More precisely,
the complexity of addition should depend on the the number of digits in each sum that you want to be able
to correctly compute. Of course, this type of more complicated accounting then only gets more involved as
you consider the other types of operations above.



112

represent an algorithm’s runtime complexity with 100% accuracy in all cases (they don’t),
they do at least correlate well enough to be informative.12

Example 2.4.14 (Matrix-vector Multiplication). As an illustrative example, let’s consider
the runtime complexity of computing the matrix-vector product Ax ∈ Cm for an arbitrary
matrix A ∈ Cm×n and vector x ∈ Cn. Noting that each entry of y = Ax ∈ Cm is computed
by

yj = (Ax)j =
∑
k∈[n]

Aj,kxk,

we can can see that calculating yj ∈ C requires 4n operations (we must read the 2n Aj,k/xk
values into memory and then perform n multiplications, n− 1 additions, and finally one
assignment of the correct value to yj). Given that we must compute yj for all j ∈ [m] in
order to calculate y = Ax we can now conclude that computing y will require at most 4nm
constant-cost operations.13

In the example above the constant 4 we ended up with matters much less in general
than the parameters m and n which will be significantly larger than 4 for big matrices
A. As a result, it’s standard practice to simplify operation counts by ignoring all such
constants via big-O notation.

Definition 2.4.15 (Big-O Notation). Let f, g : (0, 1)n× (1,∞)m → [0,∞) be two functions
of n+m ≥ 1 variables for nonnegative n,m ∈ Z. We say that f is O(g) if there exists a
constant C ∈ [1,∞) and values (δ0, . . . , δn−1)× (y0, . . . , ym−1) ∈ (0, 1)n× (1,∞)m such that

f(ε0, . . . , εn−1, x0, . . . , xm−1) ≤ Cg(ε0, . . . , εn−1, x0, . . . , xm−1)

whenever εj < δj and xk > yk hold for all j ∈ [n] and k ∈ [m].

We can now see that computing Ax can always be done using O(mn) operations.

Exercise 2.4.20. Let g : (0, 1)× [1,∞)2 → [0,∞) be given by g(ε, x, y) = x log y
ε . Which of

these functions f : (0, 1)× [1,∞)2 → [0,∞) are O(g)?

(a) f(ε, x, y) = 300x log y
ε + 50

(b) f(ε, x, y) = 500x0.34 + 600/ε+ 106 log y

(c) f(ε, x, y) = 0.2 x
ε2

+ log y

12We urge the interested reader to consult, e.g, [34, Chapter 2] and [15, Chapters 2 and 3] to learn more
about numerical precision, machine numbers, and algorithmic runtime analysis. To begin understanding
how one might make complexity analysis more rigorous one can also consult, e.g., [42].

13Here we say that computing y will require at most 4nm constant cost operations because we have
demonstrated a way to compute y using this number of operations. However, there might be better ways to
do it that use fewer operations by, e.g., avoiding rereading xk multiple times for every different yj calculation.
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(d) f(ε, x, y) = 20
√
x log(100+ln(y))√

ε

Exercise 2.4.21. Let A ∈ Cm×n and B ∈ Cn×p. Show that computing AB ∈ Cm×p can
be done using O(mnp) operations.14

2.4.3 The Fast Fourier Transform (FFT)

As seen above, computing the DFT of a vector v ∈ Cn requires the computation of
Fv. Computing Fv directly via a generic matrix-vector multiply as per Example 2.4.14
uses O(n2) operations. In this section we will discuss the Fast Fourier Transform (FFT)
algorithm which can compute the DFT of a vector using only O(n log n) operations. Though
this reduction in computational complexity might seem slight at first glance, this speedup
has had such far reaching impacts that the FFT has been lauded as one of the ten most
important algorithmic developments of the twentieth century as a result [12].15

The FFT was first published and analyzed as a computer algorithm by Cooley and
Tukey in 1965 [14], despite similar techniques being utilized much earlier (e.g., by Gauss
and many others [25]). Cooley and Tukey’s algorithm is particularly efficient for vector
dimensions, n, whose prime factorizations contain only small prime factors. Later variants
of the FFT [5, 45] allowed the FFT to also be utilized effectively for vector sizes whose
prime factorizations contain larger primes. This section has primarily followed [14, 5, 45].
For more information on Fourier methods and algorithms we recommend that the interested
reader consult the relevant chapters of [44], [34], [15], or [7]. For a fast FFT implementation
we recommend FFTW [22]. In what follows we will outline the recursive construction of
the FFT algorithm via sum splitting techniques.

Let u ∈ Cn, and suppose that its dimension, n, has the prime factorization

n = p1 · p2 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm are n’s prime factors.

Choose ω ∈ [n]. Recalling the definition of the DFT we have that

ûω =
1√
n

n−1∑
j=0

uj f
ω·j
n . (2.36)

By splitting the sum (2.36) for ûω into p1 smaller subsums, one for each possible residue
modulo p1, we can see that

ûω =
1√
n

p1−1∑
k=0

fω·kn

 n
p1
−1∑

j=0

uk+p1·j f
ω·p1·j
n

 . (2.37)

14There are in fact faster (though not terribly practical) matrix multiplication algorithms out there for
arbitrary matrices! We direct the interested reader to, e.g., [15, Chapter 28],[50, 32, 53].

15The QR decomposition discussed in Section 2.2.4 also made the list of the top 10 most important
algorithm developments by the way!
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Let’s now rewrite the internal sum of (2.37) in order to realize some progress.
Given k ∈ [p1], define u(k,p1) ∈ Cn/p1 to be the vector whose entries are the entries of u

having indexes that are congruent to k modulo p1,(
u(k,p1)

)
j

:= uk+j·p1 (2.38)

for all j ∈ [n/p1].16 Our equation (2.37) for ûω now becomes

ûω =
1
√
p1

p1−1∑
k=0

fω·kn

 1√
n/p1

n
p1
−1∑

j=0

(
u(k,p1)

)
j
fp1·ω·jn

 (2.39)

=
1
√
p1

p1−1∑
k=0

fω·kn

 1√
n/p1

n
p1
−1∑

j=0

(
u(k,p1)

)
j
f

(
ω mod n

p1

)
·j

n
p1


=

1
√
p1

p1−1∑
k=0

fω·kn

(
û(k,p1)

)
ω mod n

p1

. (2.40)

For the sake of clarity we emphasize that the vector û(k,p1) ∈ Cn/p1 in (2.40) is exactly

Fu(k,p1), where F ∈ C
n
p1
× n
p1 is now the DFT matrix of size n/p1. We strongly recommend

that you verify the equality of (2.39) – (2.40) for yourself before reading further.
At this point it’s useful to ask ourselves what we’ve managed to accomplish by reformu-

lating (2.36) into (2.40). Mainly, we can now compute û ∈ Cn with fewer operations than

before by computing it in two steps. First, we compute û(k,p1) ∈ C
n
p1 for all k ∈ [p1]. Next,

we use the vectors û(0,p1), . . . , ̂u(p1−1,p1) computed in the first step in order to compute
each entry of û via (2.40). The first step can be accomplished with p1 matrix-vector
multiplications, each of which can be computed using O(n2/p2

1) operations (recall that

û(k,p1) = Fu(k,p1), where F is the DFT matrix of size n/p1). Hence, the first step can be
completed using O(n2/p1) total operations. Step two only requires O(p1n) total operations
in order to finish calculating û, O(p1)-operations for each entry ûω. Putting it all together,
we can see that (2.40) allows us compute û ∈ Cn using a grand total of O(p1n + n2/p1)
operations, as opposed to computing it directly via (2.31) using ∼ n2 operations.

Although the computational gain obtained from (2.40) is modest when p1 � n, it is
important to note that the sum-splitting technique used to obtain it can now be employed

again in order to compute each û(k,p1), k ∈ [0, p1), more quickly. That is, we may split

up the sum for (û(k,p1))ω into p2 additional sums, etc.. Repeatedly sum-splitting in this
fashion leads to the recursive Fast Fourier Transform (FFT) shown in Algorithm 13.
Analogous sum-splitting leads to the Inverse Fast Fourier Transform (IFFT) which

16Note that we used an integer divisor of n, i.e. p1, exactly to ensure that n
p1
∈ N.
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Algorithm 13 Fast Fourier Transform (FFT)

1: Input: u ∈ Cn, Dimension n, and n’s prime factorization p1 ≤ · · · ≤ pm
2: Output: û ∈ Cn

3: if n = 1 then
4: Return u
5: end if
6: for k from 0 to p1 − 1 do

7: û(k,p1) ← FFT
(
u(k,p1), np1 , p2 ≤ p3 ≤ · · · ≤ pm

)
8: end for
9: for ω from 0 to n− 1 do

10: ûω ← 1√
p1

(∑p1−1
k=0 fkωn

(
û(k,p1)

)
ω mod n

p1

)
11: end for
12: Return û

can be obtained from Algorithm 13 by replacing line 10’s fkωn by f−kωn and replacing each
û by a û-1.

We are now ready to analyze the computational complexity of the FFT. Let Tn be the
total number of operations used by Algorithm 13 to compute û ∈ Cn. In order to determine
an equation for Tn we note that lines 6 – 8 of Algorithm 13 require p1 ·T n

p1
operations while

lines 9 – 11 use O(p1n) operations. Therefore we have

Tn = O(p1n) + p1 · T n
p1
.

However, Algorithm 13 is recursively invoked again to compute û(0,p1), . . . , ̂u(p1−1,p1) by
sum-splitting in line 7. Taking this into account we can see that

T n
p1

= O
(
p2
n

p1

)
+ p2 · T n

p1p2
.

We now have that

Tn = O(p1n) + p1 ·
(
O
(
p2n

p1

)
+ p2 · T n

p1p2

)
= O (n(p1 + p2)) + p1p2 · T n

p1p2
.

Repeating this recursive sum-splitting j ≤ m times shows us that

Tn = O

(
n ·

j∑
`=1

p`

)
+

j∏
`=1

p` · T n
p1···pj

.

Using that T1 = O(1) (see Algorithm 13’s lines 3 – 5) we have

Tn = O

(
n ·

m∑
`=1

p`

)
+O(n) = O(m · pm · n). (2.41)
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Note that m ≤ log2 n while pm is n’s largest prime factor. We have proven the following
theorem in the course of the prior discussion.

Theorem 2.4.16. Let u ∈ Cn and suppose that n ∈ N has the prime factorization
n = p1 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm are the prime factors of n ordered from smallest
to largest. Then, we may compute û = Fu using O (n ·

∑m
`=1 p`) operations.

Theorem 2.4.16 tells us that the FFT can significantly speed up computation of the DFT.
For example, if n is a power of 2 we’ll have m = log2 n and pm = 2 leaving Algorithm 13
with an O(n lnn) operation count. This is a clear improvement over the ∼ n2 operations
required to in order to compute (2.31) directly. However, if n has large prime factors the
improvement is less impressive. In the worst case, when n is itself a prime number, we have
m = 1 and p1 = n. This leaves Algorithm 13 with a O(n2) runtime which, in practice, is
even slower than the direct method (2.31).

The inability of Algorithm 13 to efficiently handle vectors with sizes containing large
prime factors isn’t a setback when one may dictate, with little or no repercussions, the
dimension of the vectors they work with. A popular choice is to simply force n to be a
power of 2. However, sometimes one simply needs to compute the DFT of a vector whose
size contains (or may contain) large prime factors. In the next subsection we discuss how
to do this efficiently.

Exercise 2.4.22 (Computational Exercise). Implement both the FFT and the IFFT for
vectors of size 2n, n ∈ N. Produce a plot showing that each is indeed faster than the
corresponding naive method for directly computing the (I)DFT of an arbitrary vector.

2.4.4 The FFT for Vectors of Arbitrary Size

As discussed in the previous subsection, Algorithm 13 may not be a very efficient means of
computing û ∈ Cn when n contains large prime factors. One way of addressing this issue is
to rewrite û as a discrete convolution of two vectors of a slightly larger dimension, ñ > n,
that does contain only small prime factors. This discrete convolution can then be computed
quickly using Algorithm 13 which will be efficient for vectors of dimension ñ.

Let ω ∈ [n]. We may rewrite ûω as

ûω = f
ω2

2
n f

−ω
2

2
n · ûω =

f
ω2

2
n√
n
·
n−1∑
j=0

uj f
ω·j−ω

2

2
n =

f
ω2

2
n√
n
·
n−1∑
j=0

uj f
j2

2
n f

−(ω−j)2
2

n (2.42)

Note that the last sum in (2.42) resembles a convolution. In order to make the resemblance
more concrete we will define two new vectors.

Let ñ = 2dlog2 ne+1 ≥ 2n and define ũ ∈ Cñ by

ũj :=

{
uj · f

j2

2
n if 0 ≤ j < n

0 if n ≤ j < ñ
,
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and v ∈ Cñ by

vh :=


f
−h2
2

n if 0 ≤ h < n
0 if n ≤ h ≤ ñ− n

f
−(h−ñ)2

2
n if ñ− n < h < ñ

.

Computing a weighted convolution of ũ,v ∈ Cñ we can see that

f
ω2

2
n√
n
· (ũ ? v)ω =

f
ω2

2
n√
n

ñ−1∑
j=0

ũj · v(ω−j) mod ñ

=
f
ω2

2
n√
n

 ω∑
j=0

ũj · vω−j +
n−1∑
j=ω+1

ũj · v(ω−j)+ñ


=

f
ω2

2
n√
n

n−1∑
j=0

uj · f
j2

2
n f

−(ω−j)2
2

n .

Comparing to (2.42) now reveals that

ûω =
f
ω2

2
n√
n
· (ũ ? v)ω ∀ω ∈ [n]. (2.43)

Note that the convolution in (2.43) can be computed efficiently by the FFT and IFFT
using (2.33) since ñ is a power of two. Furthermore, ñ ≤ 4n by definition. Hence, we have
established the following theorem.

Theorem 2.4.17. Let u ∈ Cn. Then, both û, û−1 ∈ Cn can be calculated using O(n lnn)
operations.

Exercise 2.4.23. Finish the proof of Theorem 2.4.17 by arguing that û−1 ∈ Cn, like
û ∈ Cn, can also always be calculated using O(n lnn) operations. What changes need to be
made to (2.42) – (2.43)?

Theorem 2.4.17 generalizes Theorem 2.4.16 to handle all values of n efficiently. We are
now in the position to declare that the DFT of any vector in Cn can be calculated using
only O(n lnn) operations! We are now prepared to prove that any (square) Toeplitz matrix
has a fast matrix-vector multiplication algorithm.

2.4.5 Fast Matrix Multiplication for Toeplitz Matrices

Let a ∈ C2n−1 and consider the n× n Toeplitz matrix generated by a, Toepn(a) ∈ Cn×n.
Given v ∈ Cn, we want to compute Toepn(a)v ∈ Cn using as few operations as possible.
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Algorithm 14 Fast Toeplitz Matrix Multiplication

1: Input: a ∈ C2n−1, v ∈ Cn

2: Output: Toepn(a)v ∈ Cn

3: c← (an−1, an−2, . . . , a0, 0, a2n−2, . . . , an)T ∈ C2n

4: Compute ĉ ∈ C2n using the FFT

5: Compute

(̂
v
0

)
∈ C2n using the FFT

6: b̂←
√

2n ĉ�
(̂

v
0

)
∈ C2n

7: Compute b ∈ C2n using the IFFT
8: Return (b0, b1, . . . , bn−1)T ∈ Cn

Recalling Lemma 2.4.7 we can begin by embedding Toepn(a) into a 2n×2n circulant matrix.
Specifically, we have seen that the vector c = (an−1, an−2, . . . , a0, 0, a2n−2, . . . , an)T ∈ C2n

satisfies (circ(c))j,k = (Toepn) (a)j,k for all j, k ∈ [n]. This then further implies that

(Toepn(a)v)j =

(
circ(c)

(
v
0

))
j

for all j ∈ [n] by (2.30). Hence, we can compute Toepn(a)v

by computing the convolution c?

(
v
0

)
. Finally, we further seen in (2.33) that this convolution

can be computed efficiently via

c ?

(
v
0

)
=
√

2n F ∗

(
ĉ�

(̂
v
0

))
.

See Algorithm 14 for streamlined pseudocode.

Considering the runtime of Algorithm 14, we can see that forming both

(
v
0

)
, c ∈ C2n

can be accomplished in O(n) time. In addition, the (entrywise) Hadamard product of
any two vectors in C2n, as well as selecting the first n entries of any vector b ∈ C2n, can
also always be accomplished in O(n) time. Finally, each (I)FFT can be computed using
O(n log n) operations by Theorem 2.4.17. Hence, Algorithm 14 will always utilize a total
of O(n log n) operations in order to compute Toepn(a)v ∈ Cn. This is significantly faster
than direct O(n2)-time matrix-vector multiplication when n is large.

Fast Matrix Multiplication for Rectangular Toeplitz Matrices

Note that Algorithm 14 only applies to square Toeplitz matrices. A very natural next
question then becomes what we can do if we instead need to quickly multiply a large non-
square (rectangular) Toeplitz matrix, Toepm,n(a) ∈ Cm×n, against a vector v ∈ Cn? One
simple strategy for handling such problems involves re-expressing the rectangular Toeplitz
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matrix in a block-matrix form, where each resulting block is a smaller square Toeplitz
submatrix. The large rectangular matrix Toepm,n(a) ∈ Cm×n can then be multiplied
against a given v ∈ Cn by combining the results of its smaller square Toeplitz submatrices
multiplied against (appropriate pieces of) v, each of which can now be computed efficiently
using, e.g., Algorithm 14.17

Example 2.4.18. Let a ∈ C6 and v ∈ C2. Suppose that we want to compute Toep5,2(a)v ∈
C5. Instead of computing the result directly we can instead, e.g., decompose Toep5,2(a)
into two 2× 2 and two 1× 1 Toeplitz submatrices, and then compute Toep5,2(a)v using the
resulting block-matrix form via

Toep5,2(a)v =


a4 a5

a3 a4

a2 a3

a1 a2

a0 a1

v =



(
a4 a5

a3 a4

)
(
a2 a3

a1 a2

)
(
a0

) (
a1

)


v =



(
a4 a5

a3 a4

)
v

(
a2 a3

a1 a2

)
v

(
a0

)
v0 +

(
a1

)
v1


.

Note that the fact that Toep5,2(a) has constant diagonals ensures that all of its square
submatrices above are also Toeplitz.

Exercise 2.4.24. Suppose that we are given Toepm,n(a) ∈ Cm×n and integers 1 ≤ p ≤
min{m,n}, h ∈ [m − p + 1], and ` ∈ [n − p + 1]. Let A ∈ Cp×p be such that Aj,k :=(
Toepm,n(a)

)
h+j,`+k

for all j, k ∈ [p]. Show that A is Toeplitz.

Exercise 2.4.25. Let p, n ∈ N, Toeppn,n(a) ∈ Cpn×n, and v ∈ Cn. Show that Toeppn,n(a)v ∈
Cpn can be computed in O(pn log n) operations.

Exercise 2.4.26. Let q(x) =
∑n−1

j=0 qjx
j and r(x) =

∑n−1
j=0 rjx

j be two polynomials of degree
at most n− 1. Let t(x) = q(x) · r(x) be their product. We know that t(x) is a polynomial of
degree at most 2n− 2 which can be written as t(x) =

∑2n−2
j=0 tjx

j. Write psuedocode for an
algorithm that will compute the coefficients tj of t(x) in O(n lnn) total operations.

Exercise 2.4.27. Let g : [0, 1] → R be a twice continuously differentiable and periodic
function. Any such g will have a Fourier series expansion of the form

g(x) =
∑
ω∈Z

cωe
2πiωx ∀x ∈ [0, 1],

where the Fourier series coefficients cω ∈ C satisfy (i) cω = c−ω for all ω ∈ Z, and (ii)∑
ω∈Z |cω| < ∞. Let u ∈ Rn be a vector whose entries are given by uj = g(j/n) for all

17Of course, the best way to decompose a given m× n Toeplitz matrix into square Toeplitz submatrices
depends on how m and n compare with one another.
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j ∈ [n]. Show that the vector Fu ∈ Cn has entries

(Fu)j =
√
n

∑
ω≡j mod n

cω.

Rapidly Evaluating Convolutional Layers of Neurons

In addition to having fewer parameters than general layers of neurons, we can now see
that convolutional layers of neurons (recall Definition 2.4.3) also have other computational
advantages. Consider, e.g., a convolutional layer of neurons ` : RN → RN defined by
`(x) := σ (Wx + b) with Toeplitz weight matrix W = ToepN (w) ∈ RN×N . Evaluating
`(x) as part of a neural network forward-evaluation requires us to: (i) Compute Wx, (ii)
add b to Wx to compute Wx + b, and then (iii) compute σ (Wx + b) by applying the
activation function σ : R → R to each entry of Wx + b. Assuming that σ is a simple
function, both steps (ii) and (iii) can always be accomplished in O(N) operations. The
first step (i) therefore always dominates the layer’s evaluation cost.

Focussing on step (i) above, we can see that it can be accomplished for W = ToepN (w)
in O(N logN)-operations via Algorithm 14. Hence, evaluating `(x) can also be accomplished
in O(N logN) total operations in this case. In contrast, a general layer of neurons must
generally rely on direct O(N2)-time matrix-vector multiplication to complete step (i). Thus,
convolutional layers of neurons require fewer operations to evaluate than general layers of
neurons – yet another advantage of their Toeplitz structure!
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IGNORE – STUFF FOR POSSIBLE(?) FUTURE INCLUSION:
(1) adding in a subsection about symmetric positive definite/semi-definite matrices. . . .

– Example in complexity section showing that n/ε+m/δ + 100n+ 2 is O
(

max{m,n}
min{ε,δ}

)
.

– Trace and it’s properties

– possitive (semi) def matrices and equivalent defs

Definition 2.4.19 (Frobenius Norm). The Froebenius norm of A ∈ Cn×N is

‖A‖F =

√∑
`,j

|A`,j |2 =
√

Trace(A∗A)

‖A‖F =
√

Trace(A∗A)

=
√

Trace(V Σ∗U∗UΣV ∗)

=
√

Trace(V Σ∗ΣV ∗)

=
√

Trace(V ∗V Σ∗Σ)

=
√

Trace(Σ∗Σ)

=

√√√√√min(n,N)∑
j=1

(σj(A))2

where we have used the cyclic property of the trace. Thus the ‖A‖F is equivalent to the
`2-norm of a vector formed by the singular values of A

– Trace and some properties of trace, Frob. norm innner product

– `p-norms and Holder inequality
———————————————–

ADD BELOW INTO SVD SECION

DATA FITTING:

• Given P = {~x1, · · · , ~xN} ⊆ RD.



122

• Our fitness measure for an affine subspace H is Rτ (H,P ) = (
∑

~xj∈P d(~xj , H)τ )1/τ for

some τ ∈ R+. Here d(·, ·) is Hausdorff distance.

• Assume that P has mean 1
N

∑N
j=1 ~xj = ~0

• For τ = 2 we get a least squares approximation to P .

• Review τ = 2 : This can be solved exactly in O(NDmin{N,D})-time

Goal : Minimize (R2(H,P ))2 =
∑N

~x∈P d(~xj , H)2 over all n < D dimensional subspace
H.

• Let XP = (~x1, · · · , ~xN ) ∈ RD×N

• Represent an n-dimensional H(subspace) by a projection matrix ΠH ∈ RD×D(rank
n) that projects onto H.

(R2(H,P ))2 =
∑
~xj∈P

d(~xj , H)2

=
∑
~xj∈P

‖~xj −ΠH~xj‖22

= ‖XP −ΠHXP ‖2F (Recall ‖A‖2F =
∑∑

|aij |2)

= ‖(I −ΠH)XP ‖2F

• We want to minimize this ‖ · ‖F over all H. Recall that
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‖A‖F =
√
trace(ATA)

=
√
trace(V Σ2V T ))

=
√
trace(Σ2) (when A = UΣV T , the SV D ofA)

=

√√√√ N∑
j=1

σj(A)2

So we want to minimize
∑min(N,D)

j=1 σj((I −ΠH)XP )2 over all H.

• If H is n-dimensional, (I −ΠH) is (D − n)-dimensional projection.

• Let XP = UΣV T (SVD of XP ).

• We should let I − ΠH project onto the subspace spanned by D − n columns of U
associated with σD, · · · , σn+1.

To minimize R2(P,H) over H, we want to

1. calculate SVD of XP , XP = UΣV T .

2. set ΠH = UnU
T
n where Un =

(
~u1 · · · ~un ~0 · · ·~0

)
; U =

(
~u1 · · · ~uD

)
.
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Chapter 3

A Review of Introductory
Probability with Applications to
Big Data

Probability is fundamental to large scale data analysis and algorithm development for a
least two reasons. First, some problems are simply too time consuming to solve exactly in
general, even when potential solutions are relatively simple to check for correctness (e.g.,
so-called NP-hard problems such as the Traveling Salesman Problem fall into this category).
For this type of extremely hard problem one can often “guess” a near-best solution, however,
with the help of a little randomness. Though an extremely important and interesting area
of study, such randomized approximation techniques are not going to be the focus of our
applications in this chapter.

In this chapter we instead focus on the “Big Data Regime” where even trivial compu-
tations are too difficult to carry out exactly due to the scale of the data involved. This
has certainly become an increasingly common scenario over the past several decades as
the proliferation of cell phones, laptops, and intelligent devices of all kinds communicating
with one another across the internet with increasing rapidity have resulted in an exploding
torrent of data – too much to even store in many cases. In this setting the problems one
seeks to solve are often extremely easy conceptually, but still practically impossible to solve
exactly due to the shear size of the data involved. For example, one might “simply” want
to compute the average of 101000 numbers – an utterly trivial task if it weren’t for the fact
that even looking at each of the numbers once to sum them up would take more than a
lifetime. In such situations probability can come to the rescue by, e.g., guiding approaches
for subsampling the data in a way that preserves the quantities (e.g., the average) that you
want to approximate.

More recently, the availability of huge amounts of training data has resulted in the
machine learning and artificial intelligence revolution. In this brave new world probabilistic
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methods are used to not only help collect, process, and store the initial training data from
which learning occurs, but also to, e.g., help train neural networks based on the stored
training data after its been harvested. As a result, it is truly impossible to understand how
modern machine learning methods work without having a solid grasp on probability.

Now equipped with the motivation to do the work of understanding some probability,
we will begin with a review of the principal actors and definitions. As we do, exercises will
appear below. To learn the material best we strongly encourage you to do the exercises
using only this reference, your brain, a pen/pencil/piece of chalk, and a piece of paper or
chalkboard. Using anything electronic to help you is a demerit. How few demerits can
you get while completing all the exercises? The fewer, the better your understanding will
be. That said, looking up answers and supplementary information is sometimes necessary,
and totally OK – but resist it at all costs until you have been stuck for awhile. Real
understanding results from confusion and struggle – if the chapter’s exercises seem too
easy, it’s likely because you are either not really learning anything new, or because you
are looking up too many solutions (or both). If the chapter seems too hard, find the
first exercise you can’t do, review all the definitions involved in its statement, and seek
additional references/assistance to help you understand those definitions as needed. Some
recommended probability references are provided in Section 3.9.

3.1 Probability Densities and Random Vectors

We will begin by defining random vectors (and real numbers). Both are entirely determined
by a given probability density herein. Probability densities, in turn, will always be defined
in one of three ways below: They will either be determined by a probability density function,
a finite sum of Dirac detlas, or a weighted sum of both. Each of these options is reviewed
next.

Definition 3.1.1. A Probability Density Function (PDF) is a non-negative1 function
p : Rn → [0,∞) for which ∫

Rn

p(x) dx = 1.

A random vector X ∈ Rn with probability density function p represents a value in
Rn. It takes on a particular value in any given set S ⊆ Rn with probability

P [X ∈ S] := PX [S] :=

∫
S
p(x) dx ∈ [0, 1].2

1We will also generally assume that PDFs are always (at least) piecewise continuous unless otherwise
noted.

2Here PX is an example of a probability measure. We only work with Lebesgue measurable sets S ⊆ Rn
and functions p for which such integrals are well defined throughout the book. We do not, however, assume
the reader has had a course in measure theory – as a result, if this footnote doesn’t make sense to you, don’t
worry! It can be very safely ignored.
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Finally, if n = 1 then X may also be called a random variable, or a random number.

We will now present some fundamental examples of random vectors defined by PDFs.
The most important of these are normal (or Gaussian) random vectors.

Example 3.1.2 (Uniform Random Vectors on (a, b)n). A uniform random vector
X ∈ Rn on (a, b)n has the probability density function

p(x) =

{
1

(b−a)n if x ∈ [a, b]n

0 otherwise

for given real numbers a < b. A uniform random vector X ∈ Rn on (a, b)n is denoted by
X ∼ Unif((a, b)n).

Example 3.1.3 (Normal Random Numbers). A normal random variable X ∈ R has
the probability density function

p(x) =
1

σ
√

2π
e
−
(
x−µ√

2σ

)2
(3.1)

for a choice of parameters µ ∈ R and σ ∈ (0,∞). A normal random number is denoted by
X ∼ N(µ, σ), and also sometimes referred to as a Gaussian random variable.

Example 3.1.4 (Standard Normal Random Vector with Mean µ ∈ Rn). A standard
normal random vector X ∈ Rn with mean µ ∈ Rn has the probability density function

p(x) =
1

(2π)n/2
e
− ‖x−µ‖22

2 . (3.2)

A standard normal random vector with mean µ ∈ Rn is denoted by X ∼ N(µ, In).

Exercise 3.1.1. Check that (3.2) is indeed a probability density function.
Hint: We suggest that you first recall/show that (3.1) is PDF. Having established that fact
it should then be much easier to show that (3.2) is also a PDF.

One of the easiest ways to obtain new random variables is by taking functions of random
variables one already has access to. Let f : Rn → Rm and suppose that X ∈ Rn is a
random vector with PDF pX . Then f(X) ∈ Rm will also be a random vector satisfying

Pf(X)[S] = P[f(X) ∈ S] = P
[
X ∈ f−1(S)

]
= PX

[
f−1(S)

]
=

∫
f−1(S)

pX(x) dx, (3.3)

where f−1(S) := {y ∈ Rn | f(y) ∈ S} ⊆ Rn is the set of inputs that f maps into S ⊆ Rm.
The following examples illustrate how this observation can be used productively in practice.
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Example 3.1.5 (Standard Folded Normal). The standard folded normal random number
is |X| where X ∼ N(0, 1). Its PDF can be found in the following way for any interval
(a, b) ⊂ [0,∞). We have that

P|X| [(a, b)] = PX [(a, b) ∪ (−b,−a)] =
1√
2π

∫ b

a
e
−x

2

2 dx+
1√
2π

∫ −a
−b

e
−x

2

2 dx

=
2√
2π

∫ b

a
e
−x

2

2 dx =

√
2

π

∫ b

a
e
−x

2

2 dx.

The result of this calculation combined with the fact that f(x) = |x| maps R onto the
nonnegative reals is that we may now assert that a standard folded normal random number
admits the PDF

p(x) =


√

2
πe
−x

2

2 if x > 0

0 otherwise
.

Example 3.1.6 (The Box-Muller Transform [6]). The Box-Muller transform is method
for transforming uniformly distributed random vectors X ∈ R2 into standard normal random
vectors. This transform is particularly useful when one wants to work with Gaussian random
variables in a low-level programming language that only offers access to uniformly random
number generators. Let X ∼ Unif((0, 1)2) and consider the function f : (0, 1)2 → R2

defined by (u, v) = f ((x, y)) =
(√
−2 ln(x) cos(2πy),

√
−2 ln(x) sin(2πy)

)
. We claim

that f(X) ∼ N(0, I2). To show this, we begin by noting that f is an invertible function with

(x, y) = f−1((u, v)) =

(
e
−(u2+v2)/2,

1

2π

{
cot−1(u/v) if v > 0

π + cot−1(u/v) otherwise

)
.

As a result, after changing variables3 we have that for any (a, b)× (c, d) ⊂ R2

Pf(X) [(a, b)× (c, d)] = PX

[
f−1 ((a, b)× (c, d))

]
=

∫
f−1((a,b)×(c,d))

dx dy

=

∫ b

a

∫ d

c

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
=

∫ b

a

∫ d

c

∣∣∣∣(−ue−(u2+v2)/2
)( 1

2π

u

v2 + u2

)
−
(
−ve−(u2+v2)/2

)( 1

2π

−v
v2 + u2

)∣∣∣∣ du dv
=

1

2π

∫ b

a

∫ d

c
e
−(u2+v2)/2 du dv.

Looking back at (3.2) we can now see that f(X) will indeed be a standard mean 0 normal
random vector ∈ R2 as claimed.

3For an introductory review of the change of variables theorem and its related notation we suggest looking
at, e.g., [38, Section 6.2].
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Exercise 3.1.2. A chi-squared random number is X2 where X ∼ N(0, 1). Show that a

chi-squared random number admits the PDF p(x) =

{√
1

2πxe
−x/2 if x > 0

0 otherwise
.

Exercise 3.1.3. Suppose that X ∼ N(µ, σ) for fixed constants µ ∈ R and σ ∈ (0,∞).

(a) Show that the random number (X − µ) ∼ N(0, σ).

(b) Show that the random number X
σ ∼ N(µ/σ, 1).

(c) Show that the random number X−µ
σ ∼ N(0, 1).

One practical weakness of random vectors X ∈ Rn that admit PDFs in our setting
is that they will generally never take on any particular fixed value in Rn (or even any
element from a fixed finite set of values)! This is somewhat awkward in the setting of digital
computers where every random variable must, in practice, ultimately take on one of only a
finite set of possible floating point values. As a result, we are interested in making sure
that the probability framework we use in this book allows us to easily incorporate discrete
random variables which always do take on one of a predictable set of finite values.

To be more precise, suppose thatX ∈ Rn is a random vector with a PDF p : Rn → [0,∞),
and fix a particular c ∈ Rn. The probability that X actually takes on the value c is

P [X = c] := lim
ε→0+

PX [B(c, ε)] = lim
ε→0+

∫
B(c,ε)

p(x) dx ≥ 0

where B(c, ε) := {x | ‖x− c‖2 < ε} ⊂ Rn denotes the open Euclidean (i.e., `2-norm) ball
of radius ε > 0 centered at c ∈ Rn. If p is bounded on a closed ball of any positive radius
around c (so that there exists a constant γ > 0 with sup

x∈B(c,γ)
p(x) ≤ M ∈ (0,∞)), we

can immediately see that

P [X = c] = lim
ε→0+

∫
B(c,ε)

p(x) dx ≤ M lim
ε→0+

∫
B(c,ε)

dx = M lim
ε→0+

Vol (B(c, ε)) = 0.

As a result, random variables with bounded PDFs (which are all that we will consider
herein) will take on any value c you might be interested in with probability zero. To not
have this be the case, we will need a different kind of probability density.

3.1.1 Discrete Random Variables and Dirac Densities

The following notation will allow us to easily treat both continuous and discrete random
variables together within the same framework. This extremely useful notation will be
motivated by the notion of a dirac delta function, δ : Rn → {0,∞}, intuitively “defined” as
follows

δ(x) =

{
∞ if x = 0

0 if x 6= 0
, satisfying

∫
Rn

δ(x) dx = 1.
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Given its eventual utility, let’s take a moment now to perform some thought experiments
about what other properties our strange δ function should have given its “definition” above.
We urge you to stop and participate in the following experiments as they are performed, as
our next important definition can seem quite odd without the intuition they provide.

First, since δ is zero everywhere except at the origin, it should be the case that∫
S δ(x) dx = 0 should hold for all S ⊂ Rn not containing 0, correct? Given this, it also

seems reasonable that we should have
∫
S δ(x) dx = 1 hold for all S ⊂ Rn that do contain 0

(since the integral over the complement of S will contribute nothing to the integral of δ
over all of Rn in this case). As such, we seem inevitably lead to the conclusion that we will
also have ∫

S
δ(x) dx =

{
1 if 0 ∈ S
0 if 0 /∈ S

.

be true for all S ⊂ Rn. Furthermore, if δ : Rn → {0,∞} can be treated like any other
function, it seems reasonable that we should be able to, e.g., shift it by any constant we
want, c ∈ Rn, and still have the regular rules of integration tell us that

∫
Rn

δ(x− c) dx = 1
holds. This shifted function δ(x− c) is now zero everywhere except at x = c, moreover, so
it seems natural to therefore assert that we should definitely also have∫

S
δ(x− c) dx =

{
1 if c ∈ S
0 if c /∈ S

hold even when c 6= 0. If you haven’t seen Dirac delta notation before, we strongly urge
you to stop here and carefully think this last paragraph through!

Continuing our thought experiment concerning our rather strange δ function, we can
further assert that linearity of integration should also mean that, e.g.,∫

S
2δ(x) dx = 2

∫
S
δ(x) dx =

{
2 if 0 ∈ S
0 if 0 /∈ S

.

Moreover, the fact that 2 is a constant here doesn’t seem to matter much after recalling
that δ itself is only nonzero at the origin! Really, any function that is 2 at the origin should
“look like” the constant function 2 to our very strange δ function, right? Taking this intuitive
thought to its natural limit, we conclude that perhaps it makes sense for∫

S
f(x)δ(x) dx =

{
f(0) if 0 ∈ S
0 if 0 /∈ S

to hold for any “reasonable” function f : Rn → R. And here, perhaps you will agree, we
should maybe stop our experiment given that it seems to be getting increasingly fanciful.
Nonetheless, one can in fact formalize these thought experiments with some care, and then
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use them to good effect.4 Taking this fact as given, we will define the following notation
which can be safely and consistently used for calculations throughout the remainder of this
text.

Definition 3.1.7. Let f : Rn → Rm be continuous, S ⊆ Rn, and c ∈ Rn. Dirac delta, δ,
notation will be used herein to evaluate formal integrals according to the rule

δc,S [f ] :=

∫
S
f(x)δ(x− c) dx :=

{
f(c) if c ∈ S
0 if c /∈ S

.

Exercise 3.1.4. The formal Dirac delta notation defined above is motivated by the notion
of a generalized function, or distribution.5 This exercise will help you understand a little
better one way that δ can be defined as an object that one can “integrate functions against”
using limits. Let χj : Rn → R be defined by

χj(x) :=

{
jn if x ∈

(
−1
2j ,

1
2j

)n
0 otherwise

for all j ∈ N. Choose any continuous f : Rn → Rm, closed S ⊂ Rn, and c ∈ Rn you like.
Show that

(a) limj→∞
∫
S f(x)χj(x− c) dx = 0 if c ∈ Sc, and that

(b) limj→∞
∫
S f(x)χj(x− c) dx = f(c) if c ∈ the interior of S.

As a consequence of parts (a) and (b) above, conclude that δc,S [f ] in Definition 3.1.7 is
given by limj→∞

∫
S f(x)χj(x− c) dx for all continuous f : Rn → Rm and closed S ⊂ Rn

as long as c /∈ the boundary of S. Finally, to remove the restriction that c /∈ the boundary
of S, argue that one may, e.g., represent δc,S [f ] by the double limit

(c) limε→0

(
limj→∞

∫
S+B(0,ε) f(x)χj(x− c) dx

)
for any continuous f : Rn → Rm, closed S ⊂ Rn, and c ∈ Rn. Here we note that
S +B(0, ε) := {x + y | x ∈ S and y ∈ B(0, ε)} ⊂ Rn is an open set ∀ε > 0.

4One certainly needs to be careful, however. The main issue with our informal “definition” of δ was,
of course, that it is “∞ at the origin”. The “size of ∞” was then somewhat constrained by the integral
condition

∫
Rn δ(x) dx = 1. But, ∞ is a tricky concept that needs extreme care when it’s used. For example,

ideas about what, e.g., δ2 (or other functions composed with δ) might be are best left alone, especially
herein, and most likely don’t make any real sense at all. In fact, δ itself only really makes sense inside of an
integral – any other time you see one, it’s really just there to indicate a rule about how integrals should be
evaluated. To get a better idea of how integrals involving δ can be defined as limits of integrals involving
well defined functions, we direct you to the optional Exercise 3.1.4.

5If you are interested in learning more about the mathematical background of classical Dirac deltas and
distributions, we recommend reading, e.g., [19, Chapter 9]. For our purposes herein, however, the formal
definition provided by Definition 3.1.7 will suffice.
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Using Dirac notation we can now also define discrete random variables in terms of their
Dirac densities.

Definition 3.1.8. A discrete random variable X ∈ Rn is determined by a finite set
of discrete probabilities {p1, . . . , pN} ⊂ (0, 1] satisfying

∑N
j=1 pj = 1, and always takes on

a value in a finite set {c1, . . . , cN} ⊂ Rn. More generally, it will take on some value in a
given set S ⊆ Rn with probability

P [X ∈ S] := PX [S] :=

∫
S

N∑
j=1

pjδ(x− cj) dx =
N∑
j=1

pj

∫
S
δ(x− cj) dx ∈ [0, 1].6

Finally, if n = 1 then X be may also be called a discrete random number.

From above we see that the probability density of a discrete random vector X ∈ Rn

which takes on a set of values {c1, . . . , cN} ⊂ Rn each with probability {p1, . . . , pN} ⊂ (0, 1],
respectively, can formally be denoted by the sum p(x) =

∑N
j=1 pjδ(x− cj). Choosing one

of the vectors cj from above, we can further see that

P [X = cj ] = lim
ε→0+

PX [B(cj , ε)] = lim
ε→0+

∫
B(cj ,ε)

N∑
j=1

pjδ(x− cj) dx = pj > 0.

As a result, it is also common to write the probability density of a discrete random variable
over a set of values {c1, . . . , cN} ⊂ Rn as

p(x) =

N∑
j=1

P [X = cj ] δ(x− cj).

Example 3.1.9 (A Fair Coin Flip Model). Let X be the value of a fair coin flip where a
heads represents a value of one, and a tails represents zero. The probability density of X is
given by

p(x) = P [X = 0] δ(x− 0) +P [X = 1] δ(x− 1) =
1

2
δ(x) +

1

2
δ(x− 1).

Example 3.1.10 (Rademacher Random Variables). We will say that X ∈ R is a Rademacher
random number if its probability density is given by

p(x) =
1

2
δ(x− 1) +

1

2
δ(x+ 1).

That is, it takes on the values ±1 each with probability 1/2.

6In this framework each pj ∈ R (as well as the number 1 when δ is not being explicitly multiplied by
anything) is interpreted as a constant function.
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Exercise 3.1.5. Write the probability density for the result of a fair six-sided die roll.

Exercise 3.1.6. Let X ∈ Rn be a discrete random vector that takes on values in {c1, . . . , cN}.
Show that PX [S] = PX [S ∩ {c1, . . . , cN}] =

∑
cj∈S P [X = cj ] holds for all S ⊆ Rn,

where empty sums are defined to be 0.

As a couple final remarks about Diracs, it is occasionally convenient to use a Dirac as
a way to consider a fixed constant c ∈ Rn to be a “random” quantity with probability
density p(x) = δ(x − c). A bit more generally, we will say that random vector X ∈ Rn

is uniformly distributed on a nonempty finite set C = {c1, . . . , cN} ⊂ Rn if it’s a discrete
random variable which takes each value in C with probability 1

|C| . Note that if C is a
singleton set, we are again effectively considering a non-random constant that takes on the
value c1 with probability 1.

3.1.2 General Densities

Going forward, we will consider the probability density of every random vector X ∈ Rn

discussed hereafter to always be of the form

pX(x) = λp(x) + (1− λ)
N∑
j=1

pjδ(x− cj) (3.4)

where λ ∈ [0, 1], p : Rn → [0,∞) is a PDF, N ∈ Z+, {pj}Nj=1 ⊂ (0, 1] with
∑

j pj = 1,

and {c1, . . . , cN} ⊂ Rn. As above, we then define PX [S] :=
∫
S pX(x) dx for all S ⊂ Rn.

Finally, we also note that we always consider PX [∅] =
∫
∅ pX(x) dx := 0 for all densities

pX .

Exercise 3.1.7. Verify that any probability density pX as defined in (3.4) always satisfies∫
Rn

pX(x) dx = 1.

Example 3.1.11 (A Sparse Random Variable). Suppose we want the density of a random
number X ∈ R which is 0 with probability 1/2, and distributed like a Gaussian with
probability 1/2. Its density is

p(x) =
1

2
δ(x) +

1

2σ
√

2π
e
−
(
x−µ√

2σ

)2
.

Note that we expect such a random number to be 0 half the time, and therefore a sequence
of its realizations should be somewhat sparse. In contrast, a standard Gaussian random
variable will never be exactly 0 (i.e., a standard normal will be 0 with probability 0).

Exercise 3.1.8. Write down a probability density for a random number that is distributed
like a Rademacher with probability q ∈ (0, 1), and distributed like a normal random variable
with probability 1− q.
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We are now in the position to verify our first general probability inequality. Though
simple, it is probably the most commonly used probability inequality in existence.

Theorem 3.1.12 (Union Bound). Let N ∈ Z+, Sj ⊆ Rn for j ∈ [N ], and X ∈ Rn be a
random variable with probability density p. Then,

PX

 ⋃
j∈[N ]

Sj

 ≤ ∑
j∈[N ]

PX [Sj ].

Furthermore, equality holds when the Sj are all mutually disjoint.

Proof. We proceed by induction. The base case is trivially true since P[S0] ≤ P[S0]. The
induction hypothesis is thus that

PX

k−1⋃
j=0

Sj

 ≤ k−1∑
j=0

PX [Sj ]

holds. Note that for any two sets A,B ⊆ Rn, P[A ∪ B] = P[A] + P[B] − P[A ∩ B] (see
Exercise 3.1.9). Thus,

PX

 k⋃
j=0

Sj

 = PX

k−1⋃
j=0

Sj

+PX [Sk]−PX

Sk ∩
k−1⋃
j=0

Sj

 .
Since all probabilities are non-negative, we have by our induction hypothesis that

PX

 k⋃
j=0

Sj

 ≤ PX

k−1⋃
j=0

Sj

+PX [Sk] ≤
k−1∑
j=0

PX [Sj ] +PX [Sk] =
k∑
j=0

PX [Sj ]

also holds. Furthermore, we can also see that equality will hold if Sk ∩
(⋃k−1

j=0 Sj
)

= ∅ holds

for all k ∈ [N ] \ {0}.

Exercise 3.1.9. Let A,B ⊆ Rn. Verify that any random vector X ∈ Rn with a probability
density pX as defined in (3.4) will satisfy PX [A ∪ B] = PX [A] +PX [B]−PX [A ∩ B].7

7If this exercise seems a little “mushy” to you it’s likely because you have good mathematical instincts!
In fact, a better way to formalize the proof of exercises like this is to use measure theory. If the mush
bothers you, we urge you to use it as a motivation to learn about Lebesgue measure/integration (we suggest,
e.g., the latest edition of Royden’s classic book [46] in that case). In the meantime, you can simply convince
yourself that something extremely odd would have to be going on for this to not hold and then except it as
an axiom.
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3.2 Expectations, Moments, and Some Related Inequalities

In many applications the probability density of a random vector X ∈ Rn of interest is simply
too complicated to be of much practical value, if one is even lucky enough to know it at
all. In such situations one instead often attempts to learn something about the probability
density of X by instead (approximately) computing some of its so-called “moments”. We
shall see several examples of this later in the chapter. For the time being, however, it will
benefit to us to first define what moments are, as well as to see what they can tell us about
the probability that a given random variable will take on certain values. We will begin by
first defining the expectation of a random vector.

Definition 3.2.1 (Expectation). Let X ∈ Rn be a random vector with probability density
pX . The expectation, or mean, or expected value of a function f : Rn → Rq of X,
f(X) ∈ Rq, is the quantity

E[f(X)] :=

∫
Rn

f(y) pX(y) dy ∈ Rq.8

When the function above is the identity, f(x) = x, the resulting quantity E[X] =
∫
Rn

y pX(y) dy ∈
Rn is simply called the expectation of X.

Exercise 3.2.1. Carefully write out the following expectation calculations to demonstrate
your understanding of Definition 3.2.1.9

(a) Let X ∼ Unif((a, b)) be a uniform random variable on (a, b) ⊂ R (recall Exam-
ple 3.1.2). Show that E[X] = (a+ b)/2.

(b) Let X ∼ Unif((a, b)n) be a uniform random vector on (a, b)n ⊂ Rn. Show that
E[X] = ((a+ b)/2, (a+ b)/2, . . . , (a+ b)/2) ∈ Rn.

(c) Let X ∼ N(µ, σ) be a normal random variable (recall Example 3.1.3). Show that
E[X] = µ.

(d) Let X ∈ Rn be a standard normal random vector X ∈ Rn with mean µ ∈ Rn (recall
Example 3.1.4). Show that E[X] = µ.

(e) Let X be the value of a fair coin flip as in Example 3.1.9. Compute E[X].

(f) Let X ∈ R is a Rademacher random number (recall Example 3.1.10). Compute E[X].

(g) Let X ∈ R be defined as in Example 3.1.11. Compute E[X].

8Note that in general E[f(X)] is the integral of a vector-valued function. Recall that if f(y) =
(f1(y), . . . , fq(y)) ∈ Rq, then

∫
Rn f(y) pX(y) dy :=

(∫
Rn f1(y) pX(y) dy, . . . ,

∫
Rn fq(y) pX(y) dy

)
∈ Rq.

9This is a fundamental definition: we strongly recommend that you carefully do every part of this exercise
to cement your understanding!
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Exercise 3.2.2. Let X ∈ [0,∞) be a non-negative random variable. Show that E[X] =∫∞
0 P[X > t] dt.

HINT: Consider selectively using that y =
∫∞

0 1[0,y)(t) dt, where 1[0,y)(t) =

{
1 if 0 ≤ t < y

0 else
,

when computing E[X] =
∫∞

0 y pX(y) dy.

Having now equipped ourselves with the expectation of a function of a random variable,
we are now able to define moments, absolute moments, and Lp-norms of random variables.

Definition 3.2.2 (Moments, Absolute Moments, and Lp-Norms of Random Variables). Let
p ∈ [1,∞), and X ∈ R be a random variable with probability density pX . Then,

• The pth moment of X is E[Xp] =
∫
R
yp pX(y) dy.

• The pth absolute moment of X is E[|X|p] =
∫
R
|y|p pX(y) dy.

• The Lp norm of X is ‖X‖Lp := (E[|X|p])1/p = p

√∫
R
|y|p pX(y) dy.

Exercise 3.2.3. Let X be a random variable and p ∈ [1,∞). Use the result of Excercise 3.2.2
together with a change of variable to show that

E[|X|p] =

∫ ∞
0

ptp−1
P[|X| > t] dt.

Can E[|X|p] be finite if there exist constants c, c′ > 0 such that P[|X| > t] ≥ ct−p ∀t ≥ c′?

The following fundamental inequality will allow us to use (absolute) moments of an
arbitrary random variable X in order to learn things about its potentially unknown
probability measure PX . This will be of critical importance in later applications where we
initially know nothing about a random variable’s probability density or measure beyond
being able to estimate several of its moments. What can X’s moments tell use about PX in
such cases? The mighty Markov inequality will soon begin to answer this question for us.

Theorem 3.2.3 (Markov’s inequality). Let f : Rn → [0,∞) be continuous, a > 0, and
X ∈ Rn be a random vector. Then,

Pf(X) [[a,∞]] = P [f(X) ≥ a] ≤ E [f(X)]

a
.10

Proof. As usual, let pX denote the probability density of X. We have that

E [f(X)] =

∫
Rn

f(y) pX(y) dy ≥
∫
{y|f(y) ≥ a}︸ ︷︷ ︸
f−1([a,∞))⊆Rn

f(y) p(y) dy

10Note that we have left open the possibility that f grows so quickly that E [f(X)] is undefined (i.e.,
infinite). In that case we consider this statement to be vacuously true.
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since f is non-negative valued. Furthermore, by the definition of f−1 ([a,∞)) in combination
with (3.3) we can continue to see that

E [f(X)] ≥
∫
f−1([a,∞))

f(y) pX(y) dy ≥
∫
f−1([a,∞))

a pX(y) dy

= a

∫
f−1([a,∞))

pX(y)dy = a Pf(X) [[a,∞)] .

Dividing the inequality above through by a > 0 now yields the desired result.

Using the Markov inequality we can quantify the following claim: A positive random
variable is unlikely to ever be more than a few times larger than its expectation. To see
why, consider a positive random number X ∈ (0,∞), and a function that does not change
the value of X, f(X) = |X|. Now choose b > 0 and apply Theorem 3.2.3 with the constant
a = b E[X]. Doing so, we obtain that

P [X ≥ b E[X]] ≤ �
��E[X]

b��
�

E[X]
=

1

b
.

Setting, e.g., b = 3 now tells us that any nonnegative random variable X will be less than
3 times its expectation with probability at least two thirds. As a result, if we can simply
estimate the expectation of X we can already bound the probability that X is too large
from above.

Exercise 3.2.4. Let X ∼ Unif((0, 12)). Use Markov’s inequality to bound the probability
P[X ≥ 8] from above. Then, compute P[|X| ≥ 8] exactly. How loose (or tight) is the upper
bound provided by Markov’s inequality in this case?

With the Markov inequality at our disposal we will now be able to prove many additional
results that bound the behavior of PX in terms of moment information about X. In
particular, we will make frequent use of the following Chebyshev inequality (Theorem 3.2.5)
which utilizes additional moment information about a random variable in the form of its
so-called “variance”.

Definition 3.2.4 (Variance). Let X ∈ R be a random variable. Then, the variance of X

is Var [X] := E

[
(X −E [X])2

]
.

Note that since E[X] is always just a constant, we have for any random number X ∈ R
that

0 ≤ Var [X] = E

[
(X −E [X])2

]
=

∫
R

(y −E [X])2 pX(y) dy

=

∫
R

y2 pX(y) dy −
∫
R

2yE [X] pX(y) dy +

∫
R

(E [X])2 pX(y) dy (3.5)

= E[X2]− 2(E [X])2 + (E [X])2 = E[X2]− (E [X])2 .
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As a consequence, we can see that knowing both the expectation and the variance of X is
equivalent to knowing both the first and second moments of X.

Exercise 3.2.5. Let a ∈ R and X be a random variable. Show that Var [aX] = a2 Var [X].

Exercise 3.2.6. Compute the variance of each random variable below.

(a) Let X ∼ Unif((a, b)) be a uniform random variable on (a, b) ⊂ R (recall Exam-
ple 3.1.2). Compute Var [X].

(b) Let X ∼ N(µ, σ) be a normal random variable (recall Example 3.1.3). Show that
Var [X] = σ2.

(c) Let X be the value of a fair coin flip as in Example 3.1.9. Compute Var [X].

(d) Let X ∈ R is a Rademacher random number (recall Example 3.1.10). Compute
Var [X].

(e) Let X ∈ R be defined as in Example 3.1.11. Compute Var [X].

Theorem 3.2.5 (Chebyshev’s Inequality). Let X ∈ R be a random variable with finite
µ := E[X] and σ :=

√
Var [X] > 0. Then for all k > 0,

P [|X − µ| ≥ kσ] ≤ 1

k2
.

Proof. We will apply the Markov inequality to the positive random variable f(X) = |X − µ|2
with a = k2σ2. Doing so we obtain that

P [|X − µ| ≥ kσ] = P
[
|X − µ|2 ≥ k2σ2

]
≤
E

[
|X − µ|2

]
k2σ2

=
E

[
(X − µ)2

]
k2σ2

=
Var [X]

k2σ2
=

1

k2
.

In statistical discussions one occasionally hears surprised statements like “Wow! That’s
four standard deviations above the mean!”. With the help of Chebyshev’s inequality we can
begin to understand why a random variable X being multiple standard deviations above its
mean is uncommon enough to be surprising. First, it’s helpful to know that the standard
deviation of X is defined to be

√
Var [X] (i.e., that quantity σ in Theorem 3.2.5 above).

Equipped with this knowledge, we can now see that Chebyshev’s inequality tells us that
the probability of X being more than 4 times its standard deviation from its mean µ is
at most 1/16 (i.e., at least 15 of 16 realizations of any random variable will be within 4
standard deviations of it’s mean µ). Thus, observing a realization of a random variable
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being four standard deviations above the mean is indeed pretty surprising – we’d expect it
to happen at most 1/16th of the time (probably even less in fact, given that Chebyshev’s
inequality is not tight in general).

Exercise 3.2.7. Let X ∼ N(0, 1). Use Chebyshev’s inequality to bound the probability
P[|X| ≥ 2] from above. Then, use your favorite mathematics software to compute P[|X| ≥ 2]
exactly (or, more correctly, up to machine precision). How loose (or tight) is the upper
bound provided by Chebyshev’s inequality in this case?

As a final observation, it is interesting to note that (3.5) further shows that E[X2] ≥
(E [X])2 holds for all random variables X. In fact, this is a special case of a much more
general result that can be proven using Jensen’s inequality.

Theorem 3.2.6 (Jensen’s Inequality). Let X be a random variable, and f : R→ R be a
continuous convex function (e.g., where f ′′ exists at all but a finite number of points, and
satisfies f ′′(x) ≥ 0 for all x where it exists).11 Then,

f(E[X]) ≤ E[f(X)].

Exercise 3.2.8. Use Jensen’s inequality to prove that ‖X‖Lp ≤ ‖X‖Lq holds for all
1 ≤ p ≤ q <∞.

Exercise 3.2.9 (Challenge Problem). Use Jensen’s inequality together with the fact that
‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp holds for all random variables X,Y and values p ∈ [1,∞)
(known as Minkowski’s inequality) to prove that ‖X −E[X]‖Lp ≤ 2‖X‖Lp holds for all
p ∈ [1,∞).

Note the challenge problem just above includes an inequality that involves two different
random variables at the same time. This is the first time we have encountered such a
situation in this chapter, and it merits study for many reasons. In particular, in later
sections we will repeat random computations multiple times in the hope that multiple
somewhat inaccurate random approximations of a quantity we care about can be combined
to provide a much higher quality final approximation. In order to understand how well such
aggregated random approximations of multiple random variables will work, however, we
first need to understand how to properly think about collections of random variables. We
will begin this process in our next section.

11Examples of such functions include f(x) = |x| which has both f ′(x) = sign(x) :=

{
−1 if x < 0

1 if x > 0
, and

f ′′(x) = 0, for all x 6= 0.
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3.3 Collections of Random Vectors: Joint Densities, Marginals,
and Independence

Anytime we are interested in the probability that a collection of random vectors X1 ∈
Rn1 , · · · , Xm ∈ Rnm takes on a collective set of outcomes, we need to consider their joint
probability density.

Definition 3.3.1 (Joint Probability Densities). Let X1 ∈ Rn1 , . . . , Xm ∈ Rnm be a collec-
tion of random vectors/variables. The joint probability density of X1 ∈ Rn1 , . . . , Xm ∈
Rnm is a probability density of the form (3.4) with

p(X1,...,Xm)(x) = λp(x) + (1− λ)
N∑
j=1

pjδ(x− cj)

where λ ∈ [0, 1], p : Rn1 × · · · ×Rnm → [0,∞) is a PDF, N ∈ Z+, {pj}Nj=1 ⊂ (0, 1] with∑
j pj = 1, and {c1, . . . , cN} ⊂ Rn1 × · · · ×Rnm . The probability that (X1, X2, · · · , Xm) ∈

S ⊆ Rn1 × · · · ×Rnm is then given by

P(X1,...,Xm)[S] :=

∫
S
p(X1,...,Xm)(y) dy ∈ [0, 1] ∀S ⊆ R

∑
j nj .

Example 3.3.2 (The General Multivariate Gaussian, or Normal, Distribution). Let µ ∈
Rn, and Σ ∈ Rn×n be a positive semi-definite matrix. We say that a random vector
X = (X1, . . . , Xn) has a multivariable Gaussian, or normal, distribution with mean µ and
covariance matrix Σ, denoted by X ∼ N(µ,Σ), if its probability density is given by

pX(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Here |Σ| denotes the determinant of Σ. We further note that pX = p(X1,...,Xn) is also an
example of a joint probability density of its n random entries X1, . . . , Xn ∈ R.

Note that we already effectively discussed joint probability densities in Section 3.1. In
particular, as pointed out in Example 3.3.2 above, the probability density of a random
vector X ∈ Rn as per (3.4) is nothing more than the joint probability density of its n
individual random entries. (You should check this!) The concept of a marginal probability
density is slightly more involved, however, requiring additional formalism concerning Dirac
deltas (recall Definition 3.1.7). For any x ∈ Rn we will allow ourselves to represent δ(x) as
δ(x) =

∏n
i=1 δ(xi).

12 Doing so we can see that if, e.g., c ∈ S1 × · · · × Sn ⊆ Rn we may use

12Note here that only Dirac deltas evaluated at different variables are multiplied by one another here.
Products of the type δ(x)δ(x) involving the same variable are nonsensical.
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Fubini’s theorem13 to consistently write for any continuous f : Rn → Rm that∫
S1×···×Sn

f(x)δ(x− c) dx =

∫
S2×···×Sn

f(c1, x2, . . . , xn)
n∏
i=2

δ(xi − ci) dx2 · · · dxn

= · · · =
∫
Sn
f(c1, . . . , cn−1, xn)δ(xn − cn) dxn = f(c)

as required. With this formalism in hand we may now define marginal probability densities.

Definition 3.3.3 (Marginal Probability Densities). The probability density of any individual
Xj ∈ Rnj is given by the marginal probability density of p(X1,...,Xm) for Xj defined as

pXj (z) :=

∫
Rn1

· · ·
∫
R
nj−1

∫
R
nj+1

· · ·
∫
Rnm

p(X1,...,Xm)(y1, . . . ,yj−1, z,yj+1, . . . ,ym)
∏
i 6=j

dyi.

In effect, one obtains pXj by integrating p(X1,...,Xm) over all but its jth variable.

Exercise 3.3.1. Suppose that X ∼ N(µ,Σ) where Σ ∈ Rn×n is a diagonal matrix with
positive entries on its diagonal (recall Example 3.3.2). Show that the marginal probability
density of the jth entry of X, Xj ∈ R, is that of a Gaussian random number Xj ∼
N(µj ,

√
Σj,j) (see Example 3.1.3).

Exercise 3.3.2. If X ∼ Unif((a, b)n), show that Xj ∼ Unif((a, b)).

Exercise 3.3.3. Show that a marginal probability density pX1 defined as per Definition 3.3.3
with j = 1 is still a probability density of the form (3.4) (i.e., show that pX1(x) = λ̃p̃(x) +

(1 − λ̃)
∑Ñ

j=1 p̃jδ(x − c̃j) for some PDF p̃, λ̃ ∈ [0, 1], etc.. How does each of p̃, λ̃, etc.
depend on the p, λ, etc. that make up p(X1,...,Xm)?).

Exercise 3.3.4. Once you understand Definition 3.3.3 well enough, we claim that it’s not
difficult to see that you can use the same idea to define joint marginal densities for any
subset you like of m random vectors X1, X2, · · · , Xm using their joint probability density
p(X1,...,Xm). To test your understanding, use the idea behind Definition 3.3.3 to write down
a formula for the joint marginal probability density p(X1,X2) of X1 ∈ Rn1 and X2 ∈ Rn2 in
terms of the joint probability density p(X1,...,X4) of X1 ∈ Rn1 , . . . , X4 ∈ Rn4.

Now that we have the tools of joint and marginal probability distributions at our
disposal, we can revisit our previous definition of expectation (see Definition 3.2.1). In
particular, we have the following apparent generalization.

13You should consult, e.g., [38] for a refresher on Fubini’s theorem if you don’t remember what it says!
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Definition 3.3.4 (The Expectation of Functions of Several Random Variables). Let
X1 ∈ Rn1 , . . . , Xm ∈ Rnm be random vectors with joint probability density p(X1,...,Xm). The
expectation, or mean, or expected value of a function f : Rn1 × · · · ×Rnm → Rq of
X1, . . . , Xm, f(X1, . . . , Xm) ∈ Rq, is the quantity

E[f(X1, · · · , Xm)] =

∫
R

∑m
j=1

nj
f(y1, . . . ,ym) p(X1,...,Xm)(y1, . . . ,ym) dy1 · · · dym.

Exercise 3.3.5. Let f(X1, . . . , Xm) = Xj simply pick out the jth random input vec-
tor Xj ∈ Rnj . Show that E[f(X1, · · · , Xm)] =

∫
R
nj yj pXj (yj) dyj, where pXj is the

marginal probability density of p(X1,...,Xm) for Xj. As a consequence, we note that E[Xj ] :=∫
R
nj yj pXj (yj) dyj is defined with respect its marginal probability density pXj in the context

of multiple random variables.

Looking at Definition 3.3.4 we can see that it is effectively nothing but a slightly
rephrased version of Definition 3.2.1! More specifically, we can see that the two definitions are
indeed identical after substituting X = (X1, . . . , Xm), n =

∑m
j=1 nj , and y = (y1, · · · ,ym)

into Definition 3.2.1. In addition, these same substitutions also show that, e.g., Markov’s
Inequality (Theorem 3.2.3) still holds for functions f of several random variables X1, . . . , Xm

into [0,∞). (You should check this!) The critically thinking reader at this point should be
asking themselves why we have bothered to write down Definition 3.3.4 at all if its just
a reformulation of Definition 3.2.1. To help answer their question, we will now prove the
most important theorem there is about the expectation of sums of random variables using
this section’s updated notation.

Theorem 3.3.5 (Linearity of Expectation). Let α1, α2 ∈ R, and X1, X2 ∈ Rn be random
vectors. Then,

E[α1X1 + α2X2] = α1E[X1] + α2E[X2].

Proof. Let p(X1,X2) be the joint probability density of X1 and X2. We have that

E[α1X1 + α2X2] =

∫
Rn

∫
Rn

(α1y1 + α2y2)p(X1,X2)(y1,y2) dy1dy2

=

∫
Rn

α1y1

(∫
Rn

p(X1,X2)(y1,y2) dy2

)
dy1

+

∫
Rn

α2y2

(∫
Rn

p(X1,X2)(y1,y2)dy1

)
dy2

= α1

∫
Rn

y1 pX1(y1) dy1 + α2

∫
Rn

y2 pX2(y2) dy2

= α1E[X1] + α2E[X2].

Here we use Fubini’s Theorem to change the order of integration so that we can recover the
marginal densities of X1 and X2.
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Exercise 3.3.6. Generalize the proof of Theorem 3.3.5 to show that E[
∑m

j=1 αjXj ] =∑m
j=1 αjE[Xj ] also holds for all m > 2.

As Theorem 3.3.5 and the exercise just above demonstrate, linearity of expectation will
hold for any random vectors X1, . . . , Xm ∈ Rn we consider herein. Of course, one might
also expect that random vectors with more restricted types of joint probability distributions
could also host many more remarkable properties. The next subsection will explore exactly
this phenomena for the special class of random vectors whose joint probability distributions
arise from independence assumptions.

3.3.1 Independent Random Variables

We are now ready to define the remarkably popular notion of independence.

Definition 3.3.6 (Independence). Let X1 ∈ Rn1 , . . . , Xm ∈ Rnm be random vectors with
joint probability density p(X1,...,Xm). Denote the marginal probability density of p(X1,...,Xm)

for each Xj by pXj . We say that X1, . . . , Xm are mutually independent, or just inde-
pendent, if

p(X1,...,Xm)(y) = p(X1,...,Xm)(y1, . . . ,ym) =
m∏
j=1

pXj (yj) ∀y ∈ Rn1 × · · · ×Rnm .

Example 3.3.7 (Independent Coin Flips). Let X1, X2 ∈ {0, 1} be two random variables
with joint probability density

p(X1,X2)(y) =
1

4
δ(y − (0, 0)) +

1

4
δ(y − (0, 1)) +

1

4
δ(y − (1, 0)) +

1

4
δ(y − (1, 1))

=
1

4
δ(y1)δ(y2) +

1

4
δ(y1)δ(y2 − 1) +

1

4
δ(y1 − 1)δ(y2) +

1

4
δ(y1 − 1)δ(y2 − 1).

Here (X1, X2) represent the result of two coin flips (e.g., where a 0 represents “Heads”, and
a 1 represents “Tails”). The two marginal probability densities for X1 and X2 are then

pX1(y1) =

∫
R

p(X1,X2)(y1, y2) dy2 =
1

2
δ(y1) +

1

2
δ(y1 − 1), and

pX2(y2) =

∫
R

p(X1,X2)(y1, y2) dy1 =
1

2
δ(y2) +

1

2
δ(y2 − 1).

We can now see that X1 and X2 are independent since

p(X1,X2)(y) = pX1(y1)pX2(y2).

Intuitively, these two random variables are independent because the outcome of one tells
you nothing about the potential outcome of the other (i.e., X2’s potential outcomes don’t
depend on whether X1 is 0 or 1. It behaves the same no matter what X1 does.)
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Example 3.3.8 (Dependent Coin Flips). Let X1, X2 ∈ {0, 1} be two random variables with
joint probability density

p(X1,X2)(y) =
1

3
δ(y − (0, 0)) +

1

3
δ(y − (0, 1)) +

1

3
δ(y − (1, 0))

=
1

3
δ(y1)δ(y2) +

1

3
δ(y1)δ(y2 − 1) +

1

3
δ(y1 − 1)δ(y2)

again represent two coin flips. The two marginal densities for X1 and X2 are then

pX1(y1) =

∫
R

p(X1,X2)(y1, y2) dy2 =
2

3
δ(y1) +

1

3
δ(y1 − 1), and

pX2(y2) =

∫
R

p(X1,X2)(y1, y2) dy1 =
2

3
δ(y2) +

1

3
δ(y2 − 1).

We can now see that X1 and X2 are not independent (i.e., dependent) since

p(X1,X2)(y) 6= pX1(y1)pX2(y2)

=
4

9
δ(y1)δ(y2) +

2

9
δ(y1)δ(y2 − 1) +

2

9
δ(y1 − 1)δ(y2) +

1

9
δ(y1 − 1)δ(y2 − 1).

Intuitively, we can also see that these coin flips must depend on one another due to the fact
they can’t both be 1 at the same time (i.e., if one of these coins is 1 then we know the other
one can’t be – their possible outcomes depend on one another).

Exercise 3.3.7. Suppose that X ∼ N(µ,Σ) where Σ ∈ Rn×n is a diagonal matrix with
positive entries on its diagonal (recall Example 3.3.2 and Exercise 3.3.1). Show that the
entries of X, Xj, are mutually independent.

Exercise 3.3.8. Let X ∼ Unif((a, b)n). Show that the entries of X, Xj, are mutually
independent (recall Exercise 3.3.2).

Independence is commonly used to implicitly define the joint probability density of a
collection of random vectors whose marginal distributions are given explicitly. For example,
two independent random variables X ∈ R and Y ∈ R will often be discussed having only
specified the densities of X and Y individually. In this case the joint probability density of
X and Y together, p(X,Y ), is given by

p(X,Y )(x
′, y′) = pX(x′)pY (y′),

where pX is the density of X, and pY is the density of Y .

Example 3.3.9 (Joint Density of Independent Uniform Random Variables). Let X ∼
Unif((1, 2)) and Y ∼ Unif((−1, 0)) be independent uniform random numbers. Their joint
probability density function is

p(X,Y )(x
′, y′) =

{
1 if (x′, y′) ∈ (1, 2)× (−1, 0)

0 otherwise
.
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Exercise 3.3.9. Let Xj ∼ N(µj , σj) for j ∈ {1, . . . , n} be independent Gaussian random
numbers. Show that their joint density is

p(X1,...,Xn)(y1, . . . , yn) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
,

where Σ ∈ Rn×n is a diagonal matrix with Σj,j = σ2
j . As a consequence, conclude that

(X1, . . . , Xn) ∼ N(µ,Σ).

Exercise 3.3.10. Let f : R → S ⊆ R be a continuous bijection, and suppose that
X ∈ R and Y ∈ R are independent random variables. Show that f(X) and f(Y ) are also
independent random variables.
HINT: It suffices to show that P[(f(X), f(Y )) ∈ (a, b)×(c, d)] = P[f(X) ∈ (a, b)]·P[f(Y ) ∈
(c, d)] holds for all open intervals (a, b) ⊂ R and (c, d) ⊂ R.

To make implicit joint density definitions even easier we will also often use the following
terminology.

Definition 3.3.10 (Identically Distributed). Two random variables X1, X2 ∈ Rn are
identically distributed if their corresponding densities p1 and p2 satisfy p1 = p2 (i.e., if they
both have the same density).

Finally, if two random variables are “independent and identically distributed” we will
often abbreviate this phrase and instead say they are “i.i.d.”.

Example 3.3.11 (Joint Density of Independent Fair Coin Tosses). Let X1, . . . , Xn ∈ R be
n i.i.d. fair coin tosses. To write down their joint density, we begin by noting that each
density is pXj (y) = 1

2δ(y) + 1
2δ(y−1). Therefore, their joint probability density p(X1,...,Xn) is

p(X1,...,Xn)(y1, . . . , yn) :=
n∏
j=1

pXj (yj) =
n∏
j=1

1

2
δ(yj) +

1

2
δ(yj − 1) =

1

2n

∑
c∈{0,1}n

δ(y − c).

Exercise 3.3.11. Compute the following expectations.

(a) Let X and Y be the random variables in Example 3.3.9. Compute the expectation of
their product E [XY ].

(b) Let X1, . . . , Xn ∈ R be n i.i.d. fair coin tosses as in Example 3.3.11. Compute the

expectation of their product E
[∏n

j=1Xj

]
.

Exercise 3.3.12. Let X,Y ∈ R be independent random variables. Show that the expectation
of their product Z = XY always satisfies E[Z] = E[XY ] = E[X]E[Y ].
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3.3.2 Chernoff Inequalities and Variance Reduction by Averaging

Now we turn to a key fact about random variables and controlling variance: averaging
across several i.i.d. copies of a random variable decreases the variance. We make this precise
in the following theorem.

Theorem 3.3.12. Let X1, · · · , Xn ∈ R be independent random variables satisfying E[Xi] =
µ ∀i ∈ [n]. Then, the random variable 1

n

∑n
j=1Xj satisfies both

Var

 1

n

n∑
j=1

Xj

 ≤ maxj Var [Xj ]

n
and E

 1

n

n∑
j=1

Xj

 = µ.

Proof. By Theorem 3.3.5 and Exercise 3.3.6 we always have that

E

 1

n

n∑
j=1

Xj

 =
1

n

n∑
j=1

E[Xj ] = µ.

Now let γ2 := maxE[X2
j ]. By (3.5) we have that

Var

 1

n

n∑
j=1

Xj

 = E

 1

n

n∑
j=1

Xj

2− µ2

= E

 1

n2

 n∑
j=1

X2
j +

∑
j 6=k
j,k∈[n]

XjXk


− µ2

=
1

n2

n∑
j=1

E[X2
j ] +

1

n2

∑
j 6=k
j,k∈[n]

E[Xj ]E[Xk]− µ2 (Exercises 3.3.6 and 3.3.12)

≤ γ2

n
+

(
n2 − n
n2

)
µ2 − µ2

=
1

n
[γ2 − µ2]

=
maxj Var [Xj ]

n
. (By (3.5))

With variance reduction at our disposal we can now prove one of the most fundamental
results of probability.
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Exercise 3.3.13 (“Weak” Law of Large Numbers). Choose ε > 0 as small as you like. Use
Chebychev’s inequality to argue that for a sequence of random variables X1, X2, · · · ∈ R
with bounded variances and the same expectations E[Xj ] = µ we have

lim
n→∞

P

∣∣∣∣∣∣ 1n
n∑
j=1

Xj − µ

∣∣∣∣∣∣ < ε

 = 1.

In Exercise 3.3.13 you proved that the average of a very large number of independent
random variables will be close to its expectation with extremely high probability. In our
next theorem we will specialize this result to a particular kind of discrete random variable
taking on only 1’s and 0’s (i.e., what we have been calling “coin flips” so far). As motivation,
let’s consider how many ‘Tails” (i.e., 1’s) we can safely bet on being able to flip with a fair
coin in 100 independent tries. Doing a quick expectation calculation reveals that we should
get “about 50 Tails”. However, that’s not much comfort if I am asked to bet my house
that I can get more than 40 Tails in 100 fair coin flips. How sure can I be that I won’t
end up homeless? The following theorem will help me decide how comfortable I should be
betting my house on being able to accomplish this task. Before we proceed to the theorem,
however, we need to recall some useful inequalities from calculus.

Fact 3.3.13. For all x ∈ R,
1 + x ≤ ex.

As a result we can see that for ∀c, x ∈ R with x > 0,(
1 +

c

x

)
≤ ec/x =⇒

(
1 +

c

x

)x
≤ ec.

Exercise 3.3.14. Prove Fact 3.3.13.

With this fact in hand, we can now bound the probability that a sum of independent
coin flips is significantly smaller than its mean.

Theorem 3.3.14 ( A One-Sided Chernoff Inequality [40, Theorem 4.1] ). Let I1, . . . , In ∈ R
be independent discrete random variables with probability densities pj(x) = λjδ(x− 1) + (1−
λj)δ(x) where λj ∈ (0, 1). Let Y =

∑n
j=1 Ij with µ = E[Y ] =

∑n
j=1 λj. Then, for w ∈ (0, 1)

we have

P [Y ≤ (1− w)µ] ≤
[

e−w

(1− w)(1−w)

]µ
Proof. Suppose t > 0. We can see that

P [Y ≤ (1− w)µ] = P [−tY ≥ −t(1− w)µ] = P

[
e−tY ≥ e−t(1−w)µ

]
.

We may now apply the Markov inequality (Theorem 3.2.3) to the right hand side to see that



148

P [Y ≤ (1− w)µ] ≤ E [exp (−tY )]

exp (−t(1− w)µ)
. (3.6)

Note that since the random variables are independent, we can write the sum in the
exponential function as a product. Doing so we obtain

E [exp (−tY )] = E

exp

−t n∑
j=1

Ij

 =
n∏
j=1

E [exp (−tIj)] (Exercises 3.3.10 and 3.3.12)

=
n∏
j=1

∫
R

exp (−tx) [λjδ(x− 1) + (1− λj)δ(x)] dx

=
n∏
j=1

[λj exp (−t) + (1− λj) exp (−t(0))]

=
n∏
j=1

[
1 + λj

(
e−t − 1

)]
≤

n∏
j=1

eλj(e
−t−1) (Fact 3.3.13)

= e
∑n
j=1 λj(e

−t−1) = eµ(e−t−1).

Combining this with (3.6) and substituting t = − ln(1− w) we have obtain

P [Y ≤ (1− w)µ] ≤ eµ(e−t−1)

exp (−t(1− w)µ)

=
eµ(eln(1−w)−1)

exp ((1− w)µ ln(1− w))

=

(
e−w

(1− w)(1−w)

)µ
which is our desired result.

We can now use Theorem 3.3.14 to help determine how foolish it would be for me to
risk my house on a bet that I can get more than 40 tails in 100 fair coin flips.14

14Of course I shouldn’t risk anything unless I actually get something good if I win the bet!!! Let’s suppose
I am offered a free cup of coffee if I win the bet. That said, sometimes people risk things on dares even if
they get nothing tangible by winning the dare beyond, perhaps, perceived reputational benefits. Worse still,
the bigger the risk, the more likely they are to sometimes take on the dare. In short: people are weird –
thankfully this is not a psychology textbook!
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Example 3.3.15 (Should I Bet My House?). Given n = 100 fair coin flips I1, . . . , I100 ∈
{0, 1} i.i.d. random variables with densities p(x) = 1

2δ(x − 1) + 1
2δ(x), we want to know

how likely it is that I will get more than 40 “1’s” to win the bet. Note that this will happen
exactly if Y =

∑100
j=1 Ij > 40. Given that µ = E[Y ] = 50, we can see that I will loose the bet

only if Y ≤ 40 = 0.8µ. Thus, we may apply Theorem 3.3.14 with 1− w = 0.8 in order to
learn that

P[I Loose the Bet] = P[Y ≤ 0.8µ] ≤
(
e−0.2

0.80.8

)50

< 0.342.

So, I will probably win the bet (with probability at least 0.658), but I can’t guarantee I’m not
giving my house away about every third time I try based on this analysis. I don’t think I’ll
take the bet.

Exercise 3.3.15. Suppose I offer to buy you a sandwich if you can flip more than 10
“Heads” in 100 fair coin flips. If you flip fewer than 10 heads, I get to take your house (or,
your most valuable possession, whatever that may be). How likely are you to win? Will you
take my bet?

In fact with some additional effort one can also obtain a 2-sided version of the last
theorem. It tells us in the context of our coin flipping example that we shouldn’t ever bet
on being able to get many fewer or many more “Tails” or “Heads” than what we expect in
a large number of tries.

Theorem 3.3.16 (A Two-Sided Chernoff Inequality [52, Exercise 2.3.5] ). Let X1, · · · , Xn ∈
R be independent random variables with probability densities pj(x) = λjδ(x−1)+(1−λj)δ(x)
where λj ∈ (0, 1). Let w ∈ (0, 1] and Y =

∑n
j=1Xj with µ := E[Y ] =

∑n
j=1 λj. Then,

P[|Y − µ| ≥ wµ] ≤ 2e−cµw
2
,

where c > 0 is an absolute constant.

Of course, we are far less interested in flipping coins herein than in computing. The
next section will now give you a great example of how what we have learned so far can help
us do exactly that.

3.4 Application: Fault-Tolerant Monte Carlo Integration

MARK IS WORKING HERE ABOUTS... BELOW IS ROUGHER, BUT
KEEP READING! YOU WILL SURVIVE!

MEDIAN OF MEANS = ROBUSTNESS TO adversarial outliers
– Function of many variables that we can evaluate anywhere we want to the domain.

No closed form or simple formula. But, each function evaluation takes a relatively long time
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(e.g., a second). – Median of Means estimator will allow us to control the probability that
our error is larger than a small fraction of the functions total energy... This same estimation
strategy will then be utilized several more times in different applications later one.

– Define ‖f‖2 norm!!!!
We now turn to an algorithmic application involving these probabilistic ideas and results:

Monte Carlo integration. This is useful in cases where f has no closed form expression.
Suppose f : [0, 1]n → R and f can be evaluated at points.

Goal. Evaluate ∫
[0,1]n

f(x)dx =: Int(f)

Note. Standard techniques for griding [0, 1]n require cn points for n ≥ 100

One very famous approach to solving this problem is a probabilistic technique called the
Monte-Carlo Integration or Method. The power of this technique lies in the the fact that it
doesn’t require knowledge of the function f on it domain. A few random points suffice.

Let f : [0, 1]N → R. Choose X1, . . . , Xm ∈ [0, 1]N are i.i.d uniform random variables.
We seek to estimate the integral,

J :=

∫
[0,1]n

f(x)dx (3.7)

To begin estimating this, we introduce the random variable Z, which is the sum of function
evaluations at the i.i.d. uniform points Xj

Z :=
1

m

m∑
j=1

f(Xj). (3.8)

By Theorem 3.3.5 we can see that

E [Z] = E [f(Xj)] =

∫
[0,1]n

f(y)dy = J

Furthermore, one can show that

Var [Z] ≤ 1

m
‖f‖22. (3.9)

Exercise 3.4.1. Prove that (3.9) holds.

Lemma 3.4.1. Choose ε > 0. If m ≥ 10
ε2

then

P [|Z − J | ≤ ε‖f‖2] ≥ 0.9

where J is defined as in (3.7) and Z is defined as in (3.8).
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Proof. Note from complementary events we have

P [|Z − J | < ε‖f‖2] = 1−P [|Z − J | ≥ ε‖f‖2]

As we saw in the previous discussion, we have that |Z − J | = |Z −E[Z]| and ‖f‖2 ≤
(mVar[Z])1/2. Thus after noting R \ [J − ε‖f‖2, J + ε‖f‖2] ⊂ R \ [J − ε (mVar[Z])1/2 , J +

(mVar[Z])1/2] apply Chebyshev’s inequality and the hypothesis to obtain

P [|Z − J | ≥ ε‖f‖2] ≤ P
[
|Z − J | ≥ ε (mVar[Z])1/2

]
≤ 1

mε2
≤ 1(

10
ε2

)
ε2

= 0.1

So in turn using the complement of the event |Z − J | ≥ ε‖f‖2, we have the desired result.

Using Lemma 3.4.1, we can justify the statement that error of Monte Carlo Integration

decays O( 1√
m

). That is, solving for ε in the hypothesis of Lemma 3.4.1 we have ε =
√

10
m .

We now turn to a method by which we can increase the likelihood of a our estimate
being within a desired error bound beyond the guarantee seen in Lemma 3.4.1. To that end
we introduce some notation, building several independent Z estimators as in (3.8).

Let

Zk :=
1

m

m∑
j=1

f(Xk,j) (3.10)

where Xk,j ∈ [0, 1]N , 1 ≤ j ≤ m, 1 ≤ k ≤ K are all i.i.d uniform random variables
(say we are double indexing mK random varaibles...). We have described repeating the
experiment K times and gathering these estimators in the independent random variables
{Zk}Kk=1. We then use the median of these estimators:

Furthermore, let

Ik :=

{
1 |Zk − J | ≤ ε‖f‖2
0 otherwise

(3.11)

These are indicator functions for whether a given estimate Zk is within the desired error
bound ε to the target integral J . Note that since the random variables Zk are independent,
then so are the discrete random variables Ik.

How big then does K need to be to achieve some desired likelihood q of a sufficiently
accurate estimator Z̃ (estimator is defined in equation 3.12)? The following Lemma provides
an answer: when K is larger than C log 1

q , most of our estimates will be accurate within
the error bound with probability at least 1− q.

Lemma 3.4.2. Let Ik for k ∈ [K] be independent indicator variables as defined in (3.11).
∃C ∈ [0,∞) so that when K ≥ C log 1

q then

P

[
K∑
k=1

Ik ≤ K/2

]
≤ q
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for any arbitrary q ∈ (0, 1), provided m ≥ 10/ε2. Here C is a constant that is independent
of all other quantities (and in fact is bounded by log.95 thing)...

Proof. Lemma 3.4.1 implies that p̃ = P [Ik = 1] ≥ 0.9. Theorem 3.3.14 however provides us
a means to bound the sum of indicator variables of this sort. NotingK/2 = (1−(1−1/2p̃))Kp̃

and E
[∑K

k=1 Ik

]
= Kp̃ we have that

P

[
K∑
k=1

Ik ≤ K/2

]
= P

[
K∑
k=1

Ik ≤ (1− (1− 1/2p̃))Kp̃

]

≤
[

exp (−(1− 2/p̃))

(1/2p̃)(1/2p̃)

]Kp̃
=
(√

2p̃ exp (−(p̃− 1/2))
)K

≤
(√

2e−0.4
)K

≤ 0.95K

where we have used w ← (1− 1/2p̃) in Theorem 3.3.14. So

0.95K ≤ q =⇒ K ≥ − log(0.95) log(1/q)

and we have the desired result.

Theorem 3.4.3 (Median of Means Estimation for Monte Carlo). Let ε, q ∈ (0, 1) and
define Zk as in 3.10 with m ≥ 10/ε2 and K an odd integer such that K ≥ C log(1/q) where
C is the constant from Lemma 3.4.2. Let J =

∫
[0,1]N f(x)dx for f : [0, 1]N → R. Define

Z̃ := median {Z1, . . . , ZK} . (3.12)

Then, ∣∣∣Z̃ − J∣∣∣ ≤ ε‖f‖2 (3.13)

hold with probability at least (1− q). The total required number of function evaluations of f
is O

(
log(1/q)/ε2

)
Proof. The proof follows from Lemmas 3.4.1 and 3.4.2 along with Lemma 3.4.4, and is left
as an exercise.

Lemma 3.4.4. Let K ∈ N be odd, and Ik for k ∈ [K] be independent indicator variables
as defined in (3.11). If

∑K
k=1 Ik >

K
2 , then Z̃ in (3.12) satisfies (3.13).
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Proof. Assume
∑K

k=1 Ik >
K
2 , and for the purposes of contradiction, further suppose that

Z̃ < Int(f) − ε‖f‖2. Because K is odd, Z̃ ∈ {Z1, . . . , ZK}. Hence, Z̃ < Int(f) − ε‖f‖2
implies that at least K−1

2 + 1 elements of the set {Z1, . . . , ZK} are less than Int(f)− ε‖f‖2,
and thus their corresponding indicator variables Ik are all zero. However K−1

2 + 1 > K
2 ,

so in this case
∑K

k=1 Ik < K
2 must hold, contradicting our initial assumption. Thus,

Z̃ ≤ Int(f)− ε‖f‖2 cannot hold. Similarly, we will arrive at another contradiction should
we assume Z̃ > Int(f) + ε‖f‖2.

Exercise 3.4.2. Re-prove Lemma 3.4.1 for f : [0, 1]n → C.
HINT: If A,B ∈ R are random numbers, then µ = E[A + iB] = E[A] + iE[B] and
Var [A+ iB] = E[(A+ iB − µ)(A+ iB − µ)].

Exercise 3.4.3. Write out a formal proof of Theorem 3.4.3.

3.5 Conditional Probability

Why is conditional probability useful for computation? It’s sometimes easier to com-
pute/bound a probability one is interested using conditional expectations than it is to
directly compute the probability. We will see examples of this later in the LSH section.

Definition 3.5.1. The conditional probability that X ∈ T ⊆ Rn given that Y ∈ S ⊆ Rm is
defined to be

P
[
X ∈ T

∣∣ Y ∈ S] :=
P[X ∈ T & Y ∈ S]

P[Y ∈ S]
=
P[(X,Y ) ∈ T × S]

P[Y ∈ S]

provided that P[Y ∈ S] > 0.

Example 3.5.2. Let X ∼ N (0, σ2) and b > a ≥ 0. The density function of X is

pX(y) = 1√
2πσ

e−
y2

2σ2 . Then

P
[
X < 0

∣∣ |X| ∈ (a, b)
]

=
P
[
X ∈ (−b,−a)

]
P
[
X ∈ (a, b)

⋃
(−b,−a)

]
=

1√
2πσ

∫ −a
−b e

− y2

2σ2 dy

1√
2πσ

( ∫ −a
−b e

− y2

2σ2 dy +
∫ b
a e
− y2

2σ2 dy
)

=
1

2

since e−
y2

2σ2 is an even function.
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Note that this computation conforms to our intuition: if the probability density of a
random number is symmetric about the y-axis, then knowing something about its absolute
value shouldn’t tell us anything about its sign. In the next example, however, the density
is not symmetric so that we can infer one sign is indeed more likely when given absolute
value information.

Example 3.5.3. Let X ∼ Unif([−2, 4]) and denote the indicator function on a given set
S ⊂ R by

χS(y) :=

{
1 if y ∈ S
0 if y /∈ S

.

Then,

P
[
X < 0

∣∣ |X| ∈ (1, 4)
]

=
P
[
X ∈ (−4,−1)

]
P
[
X ∈ (1, 4)

⋃
(−4,−1)

]
=

1
6

∫ −1
−4 χ[−2,4](y) dy

1
6

∫ 4
1 χ[−2,4](y) dy + 1

6

∫ −1
−4 χ[−2,4](y) dy

=
1

4
.

Exercise 3.5.1. Let X ∼ Unif([−2, 4]). Compute the following conditional probabilities.

(a) Show that P
[
X < 0

∣∣ X2 ∈ (1, 4)
]

= 1
2 .

(b) Show that P
[
X2 ∈ (1, 4)

∣∣ X < 0
]

= 1
2 .

(c) Show that P
[
X2 ∈ (1, 4)

∣∣ X > 0
]

= 1
4 .

(d) Compute P
[
X2 ∈ (0, 4)

∣∣ |X| < 1
]
.

(e) Compute P
[
X < 0

∣∣ X2 > 4
]
.

(f) Compute P
[
X > 0

∣∣ X2 < 4
]
.

Exercise 3.5.2. Let X ∈ Rn and Y ∈ Rm be independent random vectors. Show that
P
[
X ∈ T

∣∣ Y ∈ S] = P[X ∈ T ] holds for all reasonable S ⊂ Rm and T ⊂ Rn.

Theorem 3.5.4 (Baye’s Law). If P
[
Y ∈ S

]
6= 0 and P

[
X ∈ T

]
6= 0 both hold, then

P
[
X ∈ T

∣∣ Y ∈ S] =
P
[
Y ∈ S

∣∣ X ∈ T ] ·P[X ∈ T ]
P
[
Y ∈ S

] .

Exercise 3.5.3. Prove Baye’s Law.
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As we will see later in, e.g., Section 3.7, conditional probability can be a valuable tool
in helping us to bound the probability that complicated functions of a random variable
behave as we expect. Before we can see this useful tool in action, however, we will need to
justify some commonly used notation. Toward this end, let S = (a, b)× (c, d) ⊂ R2 be the
cartesian product of two open intervals, choose z ∈ (a, b), and consider two independent
random numbers X,Y ∈ R with densities pX and pY , respectively. In this case we will
define make it clear that we have a division by zero if we consider the ”event” X = z, so we
use limits to say what the notation means... this is 0/0 unless we make sense of it more
carefully.

P
[
(X,Y ) ∈ S

∣∣ X = z
]

:= lim
ε→0

P
[
(X,Y ) ∈ S

∣∣ X ∈ (z − ε, z + ε)
]

= lim
ε→0

P [(X,Y ) ∈ S & X ∈ (z − ε, z + ε)]

P [X ∈ (z − ε, z + ε)]

= lim
ε→0

P [(X,Y ) ∈ (z − ε, z + ε)× (c, d)]

P [X ∈ (z − ε, z + ε)]

= lim
ε→0

∫ z+ε
z−ε

∫ d
c pX(u)pY (v) dvdu∫ z+ε
z−ε pX(u) du

=

∫ d

c
pY (v) dv.

Using this calculation motivation we can now define the following more general notation.

Definition 3.5.5. Let X ∈ Rn and Y ∈ Rm be independent random vectors, S ⊆ Rn+m,
and z ∈ Rn. Then,

P
[
(X,Y ) ∈ S

∣∣ X = z
]

:=

∫
Sz:={y|(z,y)∈S}

pY (v) dv,

where pY is the density of Y .

With Definition 3.5.5 in hand we can now prove a useful lemma which will have several
applications below.

Lemma 3.5.6. Let X ∈ Rn and Y ∈ Rm be independent random vectors with densities pX
and pY , respectively. Then if f : Rn+m → Rd, S ⊆ Rd, and T ⊆ Rn, we have that

P [f(X,Y ) ∈ S] = P [f(X,Y ) ∈ S & X ∈ T ] =

∫
T
P
[
f(X,Y ) ∈ S

∣∣ X = z
]
pX(z) dz

whenever f−1(S) ⊆ T ×Rm.
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Proof. Beginning with the left most expression we have that

P [f(X,Y ) ∈ S] = P
[
(X,Y ) ∈ f−1(S)

]
= P

[
(X,Y ) ∈ f−1(S) ∩ (T ×Rm)

]
= P [f(X,Y ) ∈ S & X ∈ T ]

where we have used that f−1(S) = f−1(S) ∩ (T ×Rm) in the last line. Continuing our
formal calculation we now further see that

P [f(X,Y ) ∈ S & X ∈ T ] = P
[
(X,Y ) ∈ f−1(S) ∩ (T ×Rm)

]
=

∫
T

(∫
{y|(u,y)∈f−1(S)}

pY (v) dv

)
pX(u) du,

where we have again used that f−1(S) ⊆ T × Rm on the last line. Substituting Defini-
tion 3.5.5 into the last expression now yields the desired result.

We are now in the position to use Lemma 3.5.6 to prove one of the most fundamental
properties of Gaussian random variables.

3.5.1 Linear Combinations of Independent Gaussians are Gaussian

Perhaps one of the most fundamental properties of Gaussian random variables is that they
are closed under linear transformations (i.e., linear combinations of independent Gaussian
random variables are again Gaussian random variables). This is a special property that does
not hold for random variables in general. Consider, e.g., two i.i.d. coin flips X1, X2 ∈ {0, 1}.
The sum of two such random variables is certainly no longer a random coin flip given that,
e.g., X1 +X2 now has a nonzero probability of being 2. More generally, one can convince
themselves using similar arguments that no discrete random variable will ever be closed
under arbitrary linear combinations of i.i.d. copies. Indeed, the Central Limit Theorem
effectively guarantees that large finite linear combinations of i.i.d. copies of general classes
of continuous random variables will no longer have the same distribution either (because,
e.g., they change to become “more Guassian” when averaged). Independent gaussian
random variables, on the other hand, do yield new Gaussian random variables under linear
combinations. The next lemma proves that this remarkable property holds.

Lemma 3.5.7. Let X ∼ N(0, σx) and Y ∼ N(0, σy) be two independent mean 0 Gaussian
random numbers with variance σ2

x and σ2
y respectively. Then

X + Y ∼ N
(

0,
√
σ2
x + σ2

y

)
.
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Proof. It suffices to show for an arbitrary interval S = (a, b) that

P [X + Y ∈ S] =
1√

2π(σ2
x + σ2

y)

∫ b

a
exp

(
− x2

2(σ2
x + σ2

y)

)
dx. (3.14)

To start, we consider T = R and apply Lemma 3.5.6 with f(x, y) = x+ y to obtain

P [X + Y ∈ S] = P [X + Y ∈ S & X ∈ R] =

∫
R

P
[
X + Y ∈ S

∣∣ X = x
]
pX(x) dx.

Utilizing Definition 3.5.5 in our last expression after noting that Sx = {y ∈ R | f(x, y) ∈ (a, b)} =
(a− x, b− x) we have that

P [X + Y ∈ S] =

∫
R

(∫
Sx
pY (y) dy

)
pX(x) dx

=
1

2πσxσy

∫
R

∫ b−x

a−x
exp

(
− y2

2σ2
y

)
exp

(
− x2

2σ2
x

)
dydx

=
1

2πσxσy

∫
R

∫ b

a
exp

(
−(z − x)2

2σ2
y

)
exp

(
− x2

2σ2
x

)
dzdx.

In the last line above we used the change of variable z = x+ y in the inner integral. In fact,
if you continue by combining and then simplifying the exponentials in the integral above,
and then utilize another clever substitution, you will now be able to finishing proving that
(3.14) holds yourself. See Exercise 3.5.4.

Exercise 3.5.4. Finish the proof of Lemma 3.5.7.

We can now use Lemma 3.5.7 to better understand the inner product of a Gaussian
random vector with another fixed vector x. In the following exercises you will prove that if
g ∼ N(0, In), then 〈g,x〉 ∼ N(0, ‖x‖2). This fact will be important in Chapter 4.

Exercise 3.5.5. Let X ∼ N(0, σ). Show that aX ∼ N(0, |a|σ) ∀a ∈ R \ {0} by

(a) first proving that that aX ∼ N(0, aσ) ∀a ∈ (0,∞), and

(b) then by proving that −aX ∼ N(0, aσ) ∀a ∈ (0,∞).

Exercise 3.5.6. Let g ∼ N(0, In) and x ∈ Rn. Use Lemma 3.5.7 along with the last
exercise to prove that 〈g,x〉 ∼ N(0, ‖x‖2).
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3.6 Application: Markov Chains and Morris’s Algorithm

3.6.1 Problem Statement and the Naive Solution

Talk about streaming model. Can’t record every conversation you have with every person
over your entire life – we take. notes to summarize. You can’t store all the internet traffic
that ever happens. Want to summarrize constant stream of internet data.

Counting objects is a common challenge in settings involving very large data sets.
Memory efficient methods are needed in order to make object counts feasible for routine
use on these data. This type of problem and the ensuing discussion will also serve as an
introduction to some key ideas for the course. In it we see a deterministic, simple sounding
task (counting in this case) which under further study shows the need for fast and memory
efficient algorithms that give good approximations to well constructed statistics questions.

A formal statement of the problem is as follows: Given a sequence {zj}Nj=1 where
∀j, zj ∈ U and some item w ∈ U of interest, count the number of occurrences of term w in

the sequence {zj}Nj=1.

Goal. Estimate the count of w occurring in the sequence using dlog2dlog2Nee bits of
memory. We require our estimate of the count be larger than the actual count, but no more
than twice the actual count.

The source of the overestimate error on the count will be made clear shortly. Examples
abound for data sets for which counts of this sort are useful

Example 3.6.1. U is the set of all possible phone numbers, and {zj}Nj=1 is a list of phone
numbers which have communicated with a particular cellphone tower over some period of
time. The term w is a phone number of interest, perhaps a known spammer.

Example 3.6.2. U is all possible pairs of words in the English language. So hello world

or thank you are members of U . The sequence {zj}Nj=1 is a list of all pairs of words that
appear in emails contained in some user’s inbox. The term w then could be “buy Ford”
which is of interest to perhaps stock traders or advertisers.

Example 3.6.3. U is all possible IP addresses and {zj}Nj=1 is a list that contains the
originating IP address for all packets received by a certain router. The term w is the IP
address of a server used by a movie streaming service of interest to an internet service
provider.

We may wish to consider counts of many different terms w for say all cell-phone towers
in a particular country, or all users of some particular email service. Clearly, the size of
such data sets means that counts can be potentially very large. Since N is an integer, a
priori, we would need (maximally) blog2Nc+ 1 bits to store a count of each w.
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Note. We can store N using blog2Nc+ 1 bits. We have blog2Nc = k only if k ≤ log2N <
k + 1 if and only if 2k ≤ N < 2k+1. That is, 2k ≤ N < 2k+1 is the range of integers which
requires k+ 1 bits. So the integers requiring 4-bits for example are 8 through 15. Depending
on implementation there are other bits required to say, store the sign of the integer. For
simplicity we say that storing an integer of size N requires dlog2Ne bits, though this may
be off by one, or some other constant, depending on implementation.

A first, naive approach is to increment a counter after one scan of the sequence, and
then store the logarithm of that count.

Algorithm 15 Naive Counter

Input: {zj}Nj=1 , w

Output: approximate count of w in {zj}Nj=1

for j = 1 to N do
if zj = w then
w̃ ← w̃ + 1

end if
end for
E ← dlog2 w̃e

Since E is of size at most dlog2Ne it takes at most dlog2dlog2Nee bits to store. Due to
the information lost by taking the ceiling, we also have that w̃ ≤ 2E ≤ 2w̃.

Does E and the algorithm 15 achieve our goal?

No. While it is true that E occupies the right number of bits, the counter itself w̃ would
need to occupy possibly dlog2Ne bits when running the algorithm.

3.6.2 A Lower-Memory Solution

Given a sequence of z0, . . . , zn−1 ∈ {0, 1} count the number of times that a 1 appears in the
sequence. We would like to use only c1 dlog dlog nee number of bits to store our estimate of
the counting problem, where c1 is an absolute constant (independent of n).

We introduce some notation:

• Let Tj =
∑j

`=1 z`. This is the true count of the one’s in the given sequence.

• ∀j ∈ [n] output Xj such that |Xj − Tj | ≤ c2Tj where c2 should be a (small) absolute
constant independent of j.

In algorithm form we have:
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Algorithm 16 Morris’ Algorithm

Input: z0, z1, . . . , zn−1 ∈ {0, 1}
Output: Xj ≈ Tj =

∑j
`=0 zj , ∀j ∈ [n]

Y−1 = 0
for j = 1, . . . , n− 1 do

if zj = 0 then
Yj ← Yj−1

else

B ∼

{
1 with probability 2−Yj−1

0 with probability 1− 2−Yj−1

Yj ← Yj−1 +B
end if
Xj ← 2Yj − 1

end for

To see why the memory usage fits our stated goal, consider 2Yn−1 − 1 ≤ c2Tn−1 which
implies Yn−1 ≤ log2 (c2Tn−1 + 1) which takes dlog dlog (c2Tn−1 + 1)ee.

Note that Y0, . . . , Yn−1 is an example of Markov chain because the process is “memoryless”
– the next state only depends on the current state.

In order to simplify analysis, we will consider the subsequences that correspond to the
actual events of interest: Let zi1 , . . . , ziñ be the members of the sequence where zj = 1. We
denote then Ỹk = Yjk for k = 1, . . . , ñ− 1. This corresponds then to our estimates at the
different points in the stream where the event of interest has occured.

In practice generating the random variable B with accuracy that accounts for potentially
very small values 2−Yj−1 itself could torpedo the project of making a low bit counter –
however the efficient generation of random numbers with high accuracy is a involved topic
outside our scope. In this course we’ll take it for granted that it can be accomplished.

For the following Lemmas we take the random variables to be defined as described in
Algorithm 16

3.6.3 Analysis of Morris’s algorithm

To show that

∣∣∣∣2Yj−1 − 1 − Tj
∣∣∣∣ ≤ cTj holds it’s good enough to analyze the subsequence

Ỹ1 = Yi1 , Ỹ2 = Yi2 , · · · for i′ms where zim = 1. We denote X̃j = 2Ỹj−1 − 1.

Lemma 3.6.4. Let m, j ∈ N be such that m ≥ 1 and j ≥ 0. Then:

E
[
2mỸj

]
= (2m − 1)E

[
2(m−1)Ỹj−1

]
+E

[
2mỸj−1

]
.
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Proof.

E[2mỸj ] =
∑
i∈Z

2miP[Ỹj = i]

=
∑
i∈Z

2mi
[

1

2i−1
P[Ỹj−1 = i− 1] +

(
1− 1

2i

)
P[Ỹj−1 = i]

]
=
∑
i∈Z

{
2 · 2(m−1)i

P
[
Ỹj−1 = i− 1

]
+ 2miP

[
Ỹj−1 = i

]
− 2(m−1)i

P
[
Ỹj−1 = i

]}
=
∑
i∈Z

2m · 2(m−1)(i−1)
P
[
Ỹj−1 = i− 1

]
+
∑
i∈Z

{
2mi − 2(m−1)i

}
P
[
Ỹj−1 = i

]
= 2mE[2(m−1)Ỹj−1 ] +E

[
2mỸj−1 − 2(m−1)Ỹj−1

]
= (2m − 1)E[2(m−1)Ỹj−1 ] +E[2mỸj−1 ].

Lemma 3.6.5 (CMSE 890 Lecture 4).

E
[
X̃j

]
= j ∀j = 0, 1, · · · ñ ≤ n.

Proof.

E[X̃j ] = E[2Ỹ1 − 1] = E[2Ỹj ]− 1.

So it suffices to show that E[2Ỹj ] = j + 1.
We can show this using induction.

• Base Case: E[2Ỹ0 ] = 1 = 0 + 1.

• inductive hypothesis: Suppose E[2Ỹj−1 ] = j.

• Then setting m = 1 in Lemma 3.6.4 we get:

E[2Ỹj ] = E[1] +E[2Ỹj−1 ] = j + 1.

Lemma 3.6.6. E[22Ỹj ] = 3
2j

2 + 3
2j + 1.

Proof.

E[22Ỹj ] = 3E[2Ỹj−1 ] +E[22 ˜j−1] setting m = 2 in Lemma 3.6.4

...

E[22Ỹ0 ] = 3E[2Ỹ0 ] +E[2Ỹ0 ]
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Adding all the equations and simplifying, we get:

E[22Ỹj ] = 3

{j−1∑
k=0

E[2Ỹk ]

}
+E[2Ỹ0 ]

= 3

{
1 + 2 + · · ·+ j

}
+ 1

=
3j(j + 1)

2
+ 1.

Lemma 3.6.7. Var
[
X̃j

]
= 1

2(j2 − j).

Exercise 3.6.1. Prove Lemma 3.6.7.

An application of Chebychev’s inequality now shows us that:

P
[
|X̃j − j| ≥ kj

]
= P

[
|X̃j − j| ≥

kj√
1
2(j2 − j)

√
1

2
(j2 − j)

]

≤
1
2(j2 − j)
k2j2

≤ 1

2k2
.

Now to improve the variance we take the average L independent estimators:

X̃
′
j :=

1

L

L−1∑
`=0

X̃`
j .

Again Using Chebychev’s inequality we have:

P

[
|X̃ ′j − j| ≥ kj

]
≤ 1

2k2L
.

Now in a manner similar to Lemma 3.4.1, and assuming L ≥ 5/ε2 (we’ve relabeled k as ε)
we obtain:

P
[∣∣∣X̃ ′j − j∣∣∣ ≥ εj] ≤ 1

10
.

Also we consider the random variables:

Ij :=

{
1 if

∣∣∣X̃ ′j − j∣∣∣ < εj

0 otherwise
.
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Where X̃
(i)
j is an independent mean estimator.

As was done previously during the discussion of Monte Carlo integration, we will consider
repeating the experiment of finding means and use this collection’s median to estimate the
desired quantity.

PROB Estimate below is broken

Indeed if i = 0, 1, · · · , log(1
q ) for some q ∈ (0, 1) then using Chernoff’s bound:

P

[∣∣∣median{X̃(i)
j , · · · , X̃(c log(1/q))

j } < εj
∣∣∣] ≥ (1− q)

3.6.4 Memory usage of Median of Means Estimators

#of bits used ≤ O
((

log logn
)
· L · log(

1

q
)

)
= O

(
1

ε2
log(

1

q
) log log n

)
• Trivial counter was O(log n)−bits.

• If we expect to make ≤ t
q estimate queries for q ∈ (0, 1) then we will have the correct

count up to ε−multiplicative error with probability at least 1− t for all queries by
the union bound.

Theorem 3.6.8 (Morris’s Algorithm ). Let L = 5/ε2 and I = c log( tq ) where ε, q ∈ (0, 1)

and c ∈ R+ is an absolute constant. Then the approximate counter make clear than you
modify the existimator Xj by multiplying by 1/1−ε... or something Xj resulting in a median
of means approach exists such that :

Tj ≤ Xj ≤
(

1 + ε

1− ε

)
Tj

holds for any t values of j with probability at least 1− q and the estimator Xj requires at
most O(L · I · log logn)−bits of memory with probability at least 1− LIq.

Exercise 3.6.2. Use the discussion in this section to write a formal proof for Theorem
3.6.8.

3.7 Application: Locality Sensitive Hashing and (c, r)-Nearest
Neighbor Problem
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3.7.1 Problem Statement and the Naive Solution

The next problem we consider is Nearest Neighbor in R. Here we have a set of points, and
are presented with a query point and wish to return the closet point in our set to the query
point, reckoned by a norm of interest. Formally, we have S ⊂ RD, and query y ∈ RD and
compute Define arg min yNN = arg min ‖x− y‖. The set S has cardinality N which can
be very large. Naturally we can extend this to k-nearest neighbors by returning a list of
the k closest points.

A simple linear scan then of the set is perhaps the most obvious solution to the problem

Algorithm 17 Naive Nearest Neighbors

Input: S,y, ‖ · ‖
Output: yNN

d =∞
for x in S do

if ‖x− q‖ < d then
yNN ← x

end if
end for

This problem is a fundamental building block type of problem in many algorithms and
data science applications.

Example 3.7.1. S is the a database of gray-scale images. A query point q is a novel image,
we return the image that is closest to using the `1 norm

Example 3.7.2. S is a database of names of people who bought departing tickets from a
given airport. A query point q is a name of a passenger of interest, we return the name
that is closest to it using the Hamming distance.

Example 3.7.3. S is a database of users of a dating website. Each user has a vector
of different features, which is computed from data collected about their interests, hobbies,
preferences, etc. A query point q represents a particular user, and developers for the website
have engineered a norm which represents similarity between users. The closest point in S is
recommended as a potential partner.

Since each of the N points in S needs to be compared to the query point, and calculating
the norm of the difference depends on the dimension D of the space, this scan has O(ND)
complexity. We will later study how to improve on this using good approximations.

THERE are also batch NN searches where you feed in P points, and want to identify
everyone’s most similar neighbor. There are really ∼ P 2 distances between all these points.
We can find nearly the shortest ones despite not even looking at them all!
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Recall the nearest-neighbor problem: Given S = {x0, . . . ,xp−1} ⊆ RD find fNN : [p]→
[p] such that ‖xj − xfNN(j)‖2 = miny∈S ‖xj − y‖2, ∀j ∈ [p]

Recall from chapter 1 that the complexity is O(p2D) for the linear scan solution, shown in
17. In this (exact) solution method, we compute all pairwise distances ‖xi−xj‖2, ∀i, j ∈ [p].

However, in many applications either p or D can be large, which means the exact
computation using this straightforward method becomes computationally intractable. We
will sacrifice accuracy in order to achieve faster results. Now consider the following variant
of the nearest neighbor problem.

3.7.2 A Modified Problem on Our Way to a Fast Approximate Nearest
Neighbor Algorithm

Definition 3.7.4 ((c, r)-Nearest Neighbor Problem). (c, r)-NN problem: Given S =
{x0, . . . ,xp−1} ⊆ RD find f : [p]→ [p] ∪ {−1} so that both:

1. d(xj,xf(j)) ≤ cr, ∀j ∈ [p] such that ∃i ∈ [p] with d(xj,xi) ≤ r.

The idea is that if there is a point that is r-close to xj, then the assignment function
will return a point that is almost as close. The possible error in the nearest neighbor
to xj is quantified by c.

2. f(j) = −1 if 6 ∃i ∈ [p] with d(xj,xi) ≤ cr.

In other words, if there is no point that is cr-close to the query point xj, then the
assignment function will indicate this fact by returning -1.

The diagram shows schematically how this new problem simplifies nearest neighbor.
The query point in the diagram is xj. If xk is within a distance r of the query point, then
our assignment function can return either xk or xi. If there are no points within cr distance
to the query (i.e. remove points xi and xk) then the function returns -1. If there is a point
within cr but no point within r (i.e. remove only xk) then there is no requirement that the
function assign any particular value to the nearest neighbor (e.g. returning xi or -1 are
possible)

Note that for this, and most other examples, we will concern ourselves with the Euclidean
distance: d(x,y) = ‖x− y‖2.

Goal. As a floor to solution run-time, we should at least read in all the data, which takes
Ω(pD)-time.

To understand this lower bound on run-time, consider what might happen by withholding
points from consideration in a solution. There is no way then to guarantee that the withheld
points are not nearest neighbors to a given query point in this scenario. A pause to recall
some

Definition 3.7.5 (O,Ω,Θ complexity). 1. Let g : R → R+. We say g is O(h), h :
R→ R+, if ∃C, x0 ∈ R such for all y > x0 g(y) ≤ Ch(y).
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r
cr

xj

xk

xi

Figure 3.1: (c, r)-NN with query point xj

2. Let g : R→ R+. We say g is Ω(h̃), h̃ : R→ R+, if ∃C, x0 ∈ R such for all y > x0

g(y) ≥ Ch̃(y).

3. If g is O(h) and Ω(h) then g is Θ(h).

In order to achieve our goal of improving on nearest neighbor beyond O(p2D), we will
take our set S ⊂ RD and project each of the points onto a random vector and find nearest
neighbors of the projections which are lower dimensional. Schematically,

Where the procedure is to generate a random line in the direction of g, and then

1. Project all points of S onto g, i.e. calculate 〈g,x1〉, 〈g,x2〉, . . .

2. Sort the distances {〈g,xj〉}4j=1

3. Read off nearest neighbors from the sorted list

So, using the schematic our DEFINE ASSIGNMENT FUNCTION assignment function
could be

f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 2

Now let’s consider complexity. The inner product of a point with a random vector
takes on order D operations and must be performed for all points, so step one takes on
order PD-time. Sorting lists is a well understood problem in computer science and can be
accomplished on order P logD time. Finally, scanning the list for a nearest neighbor takes
P time, so overall our complexity is O(PD + P logD + P ).
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x1

x̂1

x2

x̂2

x3

x̂3

x4

x̂4

Figure 3.2: (c, r)-NN using 2D data set

Definition 3.7.6 (Locality Sensitive Hash Function). We call a random function h :
RD → Z a Locality Sensitive Hash function if ∃p1, p2 ∈ (0, 1), p1 > p2, so that the following
properties hold for any two fixed points x,y ∈ RD:

1. If ‖x− y‖ < r then h(x) = h(y) with at least probability p1

2. If ‖x− y‖ > cr then h(x) = h(y) with probability at most p2

So a LSH function will hash similar points to the same integer and points which are
dissimilar to different integers. We now consider a particular example of such a function.

Example 3.7.7. Fix two points x,y ∈ RD. We define a hash function h : RD → Z as
follows

h(x) =

⌊
〈g,x〉+ u

w

⌋
where g ∼ N (0, I) and u ∼ Uniform(0, w) and w is a fixed positive number.

In the following then, we regard h to be a function of the two random variables of u
and g where the points themselves x,y are fixed. The key questions then to consider are
what are p1 and p2 in 3.7.7?

By FIX BROKEN LINK Lemma ??, since the event h(x) = h(y) implies |〈g,x〉 − 〈g,y〉| <
w, we have

Pu,g [h(x) = h(y)] = P [h(x) = h(y) ∩ |〈g,x〉 − 〈g,y〉| < w]
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and so applying Lemma 3.5.6 we have the following equivalent expression as an integral

P [h(x) = h(y) ∩ b〈g,x〉 − g,yc < w] =∫ w

0
P [h(x) = h(y)||〈g,x− y〉| = z]P [|〈g,x− y〉| = z] dz

Let’s consider each of the probabilities that appear in the integrand,

• The probability below is a probability of only the random variable u since all other
quantities are fixed.

P [h(x) = h(y)||〈g,x− y〉| = z]

So, given a particular x,y and z ∈ [0, w] such that |〈g,x− y〉| = z we need to
determine the probability that an offset u results in 〈g,x〉 and 〈g,y〉 falling into
the same ”bin” of width w, i.e. they are hashed to same integer h(x). IMPROVE
THIS DESCRIPTION Without loss of generality, suppose a = 〈g,x〉 − wh(x) <
〈g,y〉 −wh(x) = b. So, what then is the probability that h(x) = h(y) as a function
of u, given z? This reduces to considering which offsets results in a segment of length
z being contained entirely in a segment of length w - and due to the periodic nature
of moving bin boundaries, it suffices to consider the case when a = 0. To see why this
is, the diagram shows three possible scenarios for an offset u.

When u = 0, the bin boundary of bin 0 is aligned with a. As we imagine u taking
values from 0 to w we see the bin boundaries take all possible locations before ending
back in a position where a is again exactly aligned with a bin boundary (now the bin
corresponding to 1). So, for a non-zero a the starting condition is different, but the
overall “movie” is the same. We need then consider for what proportion of “frames”
for this movie the segment of length z is entirely contained in a single bin. If the
movie is of length w then for the first z frames, the segment is split between two
bins, i.e. with probability z

w the segment is split between bins and h(x) 6= h(y).
The complementary event then 1− z

w = w−z
w is the probability that the segment is

contained in a single bin, and thus h(x) = h(y)

• We now consider
P [|〈g,x− y〉| = z]

We know from Lemma 3.5.7 and subsequent discussion that 〈g,x−y〉 ∼ N (0, ‖x−y‖22).
Accounting for absolute values then, the probability is given by

√
2

‖x− y‖2
√
π

exp

(
− z2

2‖x− y‖22

)
Combining the results then above, conducting a change of variables and an integration

by parts, we have for n = ‖x− y‖2 then an expression which computes the probability that
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0 2ww

0 2ww

0 2ww

Figure 3.3: We can compute P [h(x) = h(y) | |〈g, x− y〉| = z] by considering the range of
intervals with length z contained in only one bin of size w.

two points hash to the same integer as a function of the distance between the points:

pw(n) =

∫ w

0
P [h(x) = h(y)||〈g,x− y〉| = z]P [|〈g,x− y〉| = z] dz

=
2√
π

∫ w
n
√
2

0
e−z

2
dz +

√
2

π

n

w

[
e
−
(

w
n
√
2

)2
− 1

]

Taking the derivative with respect to n we have
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d

dn
pw(n) =

d

dn

[
2√
π

∫ w
n
√
2

0
e−z

2
dz +

√
2

π

n

w

[
e
−
(

w
n
√
2

)2
− 1

]]

= − 2√
π

w√
2n2

e

(
w√
2n

)2
+

√
2

π

1

w

[
e
−
(

w
n
√
2

)2
− 1

]
+

√
2

π

n

2

2w2

2n3

[
e
−
(

w
n
√
2

)2]
=

√
2

π

1

w

[
e
−
(

w
n
√
2

)2
− 1

]
We can see that d

dnpw(n) < 0 which is to say that the function is monotonically
decreasing, thus when n = ‖x− y‖2 < r we have that pw(n) > pw(r). That is pw(r) = p1

from Definition 3.7.6. Furthermore, when for c > 1 we have n = ‖x− y‖2 > cr we know
that pw(cr) > pw(n). That is pw(cr) = p2 from Definition 3.7.6.

We have shown quantitatively that the probability of hashing to the same integer is
greater if the points are close and smaller if they are farther away. The following Lemma
summarizes then what we have demonstrated.

Lemma 3.7.8. Let g ∼ N (0, I),u ∼ ([0,w]) and w ∈ R+. Then h(x) =
⌊
〈g,x〉+u

w

⌋
is a LSH function ∀r ∈ R+ and c ∈ (0, 1) with respect to Euclidean distance. It has
p1 = pw(r) > p2(cr) = p2 where

pw(n) = erf

(
w√
2n

)
+

√
2

π

n

w

[
e
−
(

w√
2n

)2
− 1

]
Define the error function way above.

At present, our hashing function only addresses what happens for two fixed vectors x
and y. How can we use this function to build a hashing scheme which works for a large
data set with possibly billions of data points? We will accomplish this by repeating the
hash using independent draws of the random variables and using the collection of these to
hash the entire set.

Definition 3.7.9. Let gk : S → Zk be a new LSH function created by using k i.i.d LSH
functions of the type in Example 3.7.7, i.e. h1, . . . , hk, gk(x) = (h1(x), . . . ,hk(x))

Definition 3.7.10. When gk : S → Zk has the properties, for some fixed x ∈ S

1. If for y ∈ S where d(x,y) ≥ rc then gk(x) 6= gk(y).

2. If for at least one y ∈ S it happens that d(x,y) ≤ r then gk(x) = gk(y).

then it is a satisfactory LSH function for x ∈ S.
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In other words, gk does not hash a dissimilar points to the same thing as the query and
also if there is some point close to our query, then gk should hash a close point and query
to the same thing. Note that we now have a more expansive criteria for our hash than in
Example 3.7.7; it requires something hold true for all other points in the set, not simply a
pair.

Definition 3.7.11. For x ∈ S we denote the nearest neighbor of x as

x∗ = arg min
y∈S
x 6=y

d(x,y)

We wish to know bounds on the probability that gk fails to meet each of the properties
in Definition 3.7.10. Consider the first property, it fails when there exists a point which is
far away that nevertheless hashes to the same vector as x. In order to hash to the same
vector in Zk all k component hashes need to incorrectly hash “far” points to the same
integer. For each component that happens with probability p2. Thus:

P [gk fails 1 ] = P [∃y ∈ S s.t. gk(x) = gk(y), d(x,y) ≥ rc]

≤ |S|P [gk(x) = gk(y), d(x,y) ≥ rc]

Add more detail to this calculation

≤ |S|pk2

where we have used a union bound.
How can we bound the probability that the second property in Definition 3.7.9 fails?

The complementary event is that all points which are close hash to the same vector in Zk.
This means that component-wise the k hashes all need to hash x and y to the same integer,
which happens with probability p1 for each component. Thus:

P [gkfails 2] = P [∃y ∈ Sgk s.t. (x) 6= gk(y), d(x,y) < r]

≤ 1− |S|P [gk(x) = gk(y), d(x,y) ≥ rc]

≤ 1− pk1

The probability that gk is a satisfactory LSH then can be bounded from below by

P [gksatisfies 1 and 2] = 1− P [gkfails 1 or 2]

≥ 1− P [gkfails 1]− P [gkfails 2] ≥ 1− |S|pk2 − (1− pk1)

= pk1

(
1− |S|

(
p2

p1

)k)
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Let k = logp1/p2 (2|S|) and ρ = log p1
log p2

, then this simplifies as follows:

pk1

(
1− |S|

(
p2

p1

)k)
= p

(logp1/p2 (2|S|))
1

(
1− |S|

(
p2

p1

)(logp1/p2 (2|S|))
)

= p
(logp1/p2 (2|S|))
1

1− |S|
(
p1

p2

)(logp1/p2

(
1

2|S|

))
= p

(logp1/p2 (2|S|))
1

(
1− |S|

(
1

2|S|

))
=

1

2
p
(logp1/p2 2|S|)
1

=
1

2

p
(

logp1
(2|S|)

logp1( p1p2 )

)
1


=

1

2

[
p
(logp1 (2|S|))
1

] 1

log( p1p2 )
log p1

=
1

2
[2|S|]

log p1
log p2

log p1
log p2

−1

=
1

2
[2|S|]

ρ
1−ρ

We gather then this in the following Lemma

Lemma 3.7.12. If k = logp1/p2 (2|S|) and ρ = log p1
log p2

then gk as in Definition 3.7.9 will be
a satisfactory LSH as described in Definition 3.7.10 for any given x ∈ S with probability at
least

1

2
[2|S|]

ρ
1−ρ

Lemma 3.7.13. If we generate L ≥ 2(2|S|)
ρ

1−ρ log
(
|S|

1−σ

)
i.i.d. hash functions gik : S →

Zk, j = 1, . . . , L with k = logp1/p2 (2|S|), ρ = log p1
log p2

then the following will hold with
probability at least σ:

∀x ∈ S, ∃` ∈ [L] s.t. g`k is a satisfactory LSH in the sense of Definition 3.7.10 for x

Proof. Let δ = 1
2

(
1

2|S|

) ρ
1−ρ

and fix x ∈ S. The probability that a gik will be unsatisfactory

for x is at most (1− δ) by Lemma 3.7.12. Thus the probability that all gik will fail to be
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satisfactory is at most (1− δ)L. We can use Fact 3.3.13 to conclude that

(1− δ)L ≤ e−δL ≤ eδ2(2|S|)
ρ

1−ρ log
(
|S|
1−σ

)
= e

log
(

1−σ
|S|

)
=

1− σ
|S|

So the probability that for every x all hash functions fail to be satisfactory is bounded
by the union of |S| such probabilities seen above, i.e. 1 − σ. The complementary event,
that for every x at least one hash doesn’t fail, is then at least σ.

We now have the results needed to construct a randomized algorithm that solves the
(c, r)-NN problem.

SIMPLY THIS CODE – for each x, compute it’s nearest neighbor from things hashed
to the same bucket as it in all the L LSH functions

Algorithm 18 LSH for (c, r)-NN

Input: S ⊆ RD, d(x, y) = ‖x− y‖2
Output: f : S → S ∪ {∞} a (c, r)-NN map

for x in S do
∀` ∈ L compute g`k(x)

end for
∀x ∈ S, f(x) = (∞, . . . ,∞)
for each g`k, ` ∈ [L] do

for each n in g`k(S) where
∣∣(g`k)−1(n)

∣∣ ≥ 2 do

for each x in
(
g`k
)−1

(n) do

choose exactly one y in
(
g`k
)−1

(n) \ {x}
if ‖x− y‖2 < min {‖x− f(x)‖2, cr} then
f(x)← y

end if
end for

end for
end for

The first for loop has O(DKL|S|) run-time, since each element of S must be projected
with an inner-product of length D, K-times for each of the L hash functions.

Next we move onto the bottom block, after the first end for. We analyze the run-time
from the inside out: the inner if statement requires comparison of norms and so will require
O(D) comparisons. The two most inner for loops could in the worst case scenario iterate
over |S| vectors, each of which needs to compared on K entries (in the case that all vectors
hash to the same vector n) and therefore overall the inner loop has worst case run-time
complexity O(|S|DK). The outer-loop iterates L times, and so overall the entire loop has
at most O(DKL|S|)
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Recall that algorithm 17 finds exact answers in O(D|S|2) (which would naturally solve
the (c, r)-NN problem as well). So for what types of problems does this represent a
cost-savings? From our Lemma 3.7.13 and analysis we have that if

K ≥ logp1/p2 (2|S|)

L ≥ 2 (2|S|)
ρ

1−ρ log

(
|S|

1− σ

)
then with probability at least σ our algorithm should produce a satisfactory solution to

the (c, r)-nearest neighbor problem. That is for complexity

O
(
D|S|1+ ρ

1−ρ log

(
|S|

1− σ

)
logp1/p2 (2|S|)

)
and if we fix w = 3r and c = 3 in the Definition of the component hash functions h then
ρ

1−ρ ≈ 0.449 and p1/p2 ≥ 1.99 so in this scenario we have saved something on the order of

|S|1/2 from the naive solution, which represents a significant savings for large sets.

Theorem 3.7.14. Choose σ ∈ (0, 1), S ⊂ RD. Then ∀r > 0, (3, r)-NN problem can be
solved for S with respect to Euclidean distance with probability σ in time

O
(
D|S|1.5 log

(
|S|

1− σ

)
log1.99 (2|S|)

)
Note. 1. Having ρ = log p1

log p2
small is crucial. The following result is described in [16]:

∀q ∈ (0, 2] and r ∈ R+, δ.c ∈ (1,∞) ∃ an LSH function h : RD → Z with respect to
‖ · ‖q having ρ ≤ δmax

(
c−q, c−1

)
2. In [3] we have the following result which shows a near optimal result for Euclidean

distance: ∃ a LSH with respect to ‖ · ‖2, ∀r ∈ R+,c ∈ (1,∞) that has

ρ =
1

c2
+O

(
log log |S|
log1/3 |S|

)
for any given S ⊂ RD

3. In [39] we have a lower-bound on ρ. It states that for large D there exists an r and
p2 ≥ 2−O(D) for which ρ ≥ 0.462

cq for any LSH with respect to ‖ · ‖q, ∀c, q ≥ 1.

More detail on Cauchy random variable stuff.... Move order around.

Exercise 3.7.1. Use the Definition of Cauchy random variables and discussion below
to prove that h : RD → Z in 3.7.7 is still a Locality Hashing Function ∀w, r ∈ R+ and
c ∈ (1,∞) with respect to d(x,y) = ‖x − y‖1 when each entry of g is an i.i.d Cauchy
random variable with density f0,1(x) from 3.7.15.
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Definition 3.7.15 (Cauchy Random Variable). A Cauchy random variable is real value
X ∼ Cauchy(x0, γ0) that has the probability density function

fx0,γ(x) =
1

πγ

(
1 +

(
x−x0
γ

)2
) =

1

π

(
γ

(x− x0)2 + γ2

)

So for example when x0 = 0, γ = 1, f0,1(x) = 1
π(1+x2)

Interestingly, the mean and variance of Cauchy random variable are undefined, as can
be seen by writing the associated integrals.

Consider two independent Cauchy random variables X ∼ Cauchy(x0, γ0) and Y ∼
Cauchy(y0, δ0). Then

1. kX + L ∼ Cauchy(kx0 + L, |k|γ0)

2. X + Y ∼ Cauchy(x0 + y0, γ0 + δ0)

These two properties constitute the stable distribution property.

Exercise 3.7.2. For c = 3 and w = 3r verify that ρ
1−ρ ≈ 0.449 and p1

p2
≥ 1.99. Can you

improve for any arbitrary r?

Exercise 3.7.3. Let

R :=
minx∈S ‖x∗ − x‖2

maxx∈S ‖x‖2
< 1

choose σ ∈ (0, 1) such that , σ
log4/3(R) < 1. Prove that we can solve a sequence of (3, r)-NN

problems to get fANN : S → S satisfying

‖fANN (x)− x‖2 ≤ 4‖x− x∗‖2

for all x∗ ∈ S with probability at least σ in Link back to Def of x∗, and define what R is!

O

(
D|S|1.5 log

(
|S| log4/3

(
1
R

)
1− σ

)
log1.99(|S|) log1.99

(
1

R

))

3.8 Hashing (CMSE 890 Lecture 6)

Definition 3.8.1 (Perfect Hash). A random function h : U → [0, 1] with the properties that
∀a ∈ U

1. h(a) is a uniform random variable in [0, 1]

2. h(a) is independent of h(b) for a 6= b
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There are several ways in which we could generate a Perfect simple i.i.d uniform hash
function:

1 When a ∈ [M ] Connect M to cardinality of universe U below!, we generate a random
variable Xa ∈ [0, 1] and store (a,Xa).
When b is entered and we want to hash it:

- Check and see if we already generated a random value for b

- If we have already generated a random number for b, Xb, return it

- Else generate a new random number for b and store (b,Xb) in the list.
This approach require Ω(M)−memory and O(logM) evaluation-time per hash.

2 Generate M i.i.d uniform random variable.
When a ∈ [M ] arrives, output the ath entry in my random list.
This approach requires Ω(M)−memory and O(1) hash time.

Note. Storing arrays of M uniformly generated random numbers to use as hashes is
a problem if M � 1. We may also object to this approach on the grounds that reusing
or having foreknowledge about the array would torpedo the randomness aspect that we
want. An adversary given access to the hash could effect any count or miscount he
wanted by choosing the sequence of inputs (or simply by re-ordering them).

3.8.1 Hashing in Practice(Partially breaking the independence assump-
tion)

In practice, we consider the following procedure to generate a usable and tractable hash:

1. Select a very large prime number P > M

2. Choose two random, independent uniformly distributed integer values a, b ∈ [P ]

3. Compute for x ∈ [P ] hash to the value ha,b(x) in the following way

ha,b(x) =
(ax+ b) mod P

P
∈ [0, 1)

Lemma 3.8.2.

ha,b(x) =
(ax+ b) mod P

P
is uniformly distributed in {0, 1

P
, · · · , P − 1

P
} ⊂ [0, 1] for x ∈ [P ].

Proof. Let x, j ∈ [P ]. Then :

P

[
ha,b(x) =

j

P

]
= P[ax+ b = j mod P ]

= P[ax = (j − b) mod P ]
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If x 6= 0, P[a = (x−1)(j − b) mod P ] = 1
P since a is uniformly distributed in [P ]

Else if x = 0, P[b = j mod P ] = 1
P since b is uniformly distributed in [P ]

Lemma 3.8.3. Let x, y ∈ [P ], x 6= y. Then:

P

[
ha,b(x) =

j

P
and ha,b(y) =

l

P

]
=

1

P 2
∀j, l ∈ [P ].

Thus ha,b(x) and ha,b(y) are pairwise independent.

Proof. Assume without loss of generality x 6= 0, thus ∃x−1 ∈ ZP

P

[
ha,b(x) =

j

P
, ha,b(y) =

`

P

]
= P

[
a = x−1(j − b) mod P, b = `− ay mod P,

]
= P

[
a = x−1(j − `+ ay) mod P, b = `− x−1(j − b)y mod P,

]
= P

[
a = x−1(j − `)(1− x−1y)−1 mod P, b = (`− x−1jy)(1− x−1)−1 mod P,

]
=

1

P 2

Thus ha,b(x) and ha,b(y) are pairwise independent.

Observe that the hash function described in this section, and the resulting random
variables of the type ha,b(x1), . . . , ha,b(xn) have the product property (definition ??) only
for pairs. We have that ha,b(x), ha,b(y) for 0 6= x, y, z are not independent.
In fact if we know ha,b(x) and ha,b(y) then ha,b(z) is deterministically dependent.
To see why the hash is not three-wise independent, consider

P [ha,b(x) = j/P, ha,b(y) = `/P, ha,b(z) = f/P ] .

From the proof of Lemma 3.8.3 we have that:

a = x−1(j − `)(1− x−1y)−1 mod P

b = (`− x−1yj)(1− x−1y)−1 mod P

So then

ha,b(z) =
az + b mod P

P
=

(1− x−1y)−1
[
(j − `)z + (`− x−1yj)

]
P

= fx,y,z,`,j

i.e. once we’ve selected values for j and ` there is only one possible value that ha,b(z) can
hash to (it is completely determined by those two values). So

P [ha,b(x) = j/P, ha,b(y) = `/P, ha,b(z) = f/P ] =

{
1
P 2 if f = (1− x−1y)−1

[
(j − `)z + (`− x−1yj)

]
0 otherwise
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If the values were in fact independent, we would need that the probability for any particular
three values as 1/P 3.
Hash functions that have k-wise independence exist, however are beyond the scope of this
course and will require the use of polynomials over some finite fields.
We conclude our discussion of this hash function with a consideration for how large the
prime P should be. In the case of a perfect hash h we know that P [h(x) = h(y)] = 0
when x 6= y. With our imperfect hash ha,b, we would like to have ha,b(x) = ha,b(y) for
x 6= y ∈ [M ] with high probability 1− q for q ∈ [0, 1). Now, for x 6= y :

P [ha,b(x) = ha,b(y)] =
P−1∑
j=0

P

[
ha,b(x) =

j

P
, ha,b(y) =

j

P

]

=
P−1∑
j=0

1

P 2

=
1

P
.

Thus by the union bound, we have:

P [∃x, y ∈ [M ] : ha,b(x) = ha,b(y)] ≤
(
M

2

)
1

P
=
M(M − 1)

2P
.

 If P ≥ M(M−1)
2q for some q ∈ [0, 1) we get our desired result i.e

P [ 6 ∃x, y ∈ [M ] : ha,b(x) = ha,b(y)] = 1−P [∃x, y ∈ [M ] : ha,b(x) = ha,b(y)]

≥ 1− q.

 P ≈M3 is the rule of thumb.

3.8.2 Problem Statement and Naive Solution

Another problem which is similar to counting objects is the distinct elements problem. Here
we concerned with determining the number of distinct elements which appear in a given
sequence, as opposed to the frequency of a particular element.

Formally, given a sequence {zj}Nj=1 where ∀j, zj ∈ U , and |U | = D we wish to compute

the cardinality of {zj}Nj=1 as a set.

Goal. Estimate the number of distinct elements in a sequence using a number of bits
independent of both N and D.

One can imagine many different settings where such a count of distinct elements would
be useful.
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Example 3.8.4. U is the set of all possible phone numbers, and {zj}Nj=1 is a list of phone
numbers which have communicated with a particular cellphone tower over some period of
time. The cardinality of the sequence as a set would be the number of unique cellphones
that used the tower.

Example 3.8.5. U is all possible pairs of words in the English language. The sequence
{zj}Nj=1 is a list of all pairs of words that appear in a user’s current email outbox. The
cardinality of the sequence as a set would be an indicator of the variation of a given user’s
word choice in writing emails.

We consider two naive solutions to this problem, and observe how they do not achieve
the stated goal.

Algorithm 19 Naive Distinct Elements by D-array

Input: {zj}Nj=1

Output: number of distinct elements in {zj}Nj=1

Let A := array of zeros of size D
for j = 1 to N do

if A[zj ] = 0 then
A[zj ] := 1

end if
end for
‖A‖0

Algorithm 20 Naive Distinct Elements by Sorted List

Input: {zj}Nj=1

Output: number of distinct elements in {zj}Nj=1

Let L[j] := zj
Sort L
for j = 1 to N − 1 do

if L[j] = L[j + 1] then
flag L[j + 1] for removal

end if
end for
|L|

However, neither of these algorithms meet the requirements of the stated goal. In the
case of algorithm 19 the array A clearly occupies D bits. In the case of 20, the list L needs
N entries, and so will occupy at least N bits of memory. In a future lecture, we will study
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the Flajolet-Martin Algorithm which does solve the distinct element problem with constant
memory.

3.8.3 Distinct elements: Flajolet Martin algorithm

Recall that we have a sequence {zi}N−1
i=0 and ∀j, zj ∈ U , a subset of Z where |U | = M.

Problem: How many distinct elements are there in the sequence ?

Goal. Solve this problem using o(min(M,N))−memory.

Solution. Flajolet-Martin Algorithm.

Algorithm 21 Flajolet-Martin Algorithm

Input: z1, . . . , zN ∈ [M ], KL i.i.d. perfect hash functions h(k,`) : [M ]→ [0, 1]

Output: Ẽ estimate of |{z1, . . . , zN}| = ñ

E(k,`) ← 1, ∀k ∈ [K], ` ∈ [L]
for j = 1, . . . , N do

for ` = 1, . . . , L do
for k = 1, . . . ,K do
E(k,`) ← min

(
E(k,`), h(k,`)(zj)

)
end for
E` ← 1

K

∑K
k=1E

(k,`)

end for
end for
E ← median (E1, . . . , EL)
Ẽ ← 1

E − 1

• ∀j, l we have:

???SWAP k’s and j’s???

E(j,`) = min
{
h(j,`)(zk)

}
k∈[N ]

= min
{
h(j,`)(a)|a ∈ {z0, z1, . . . , zN−1}

}
= min ñ, ñ are i.i.d uniform random variable from [0, 1].

• The random variables ñ are order statistics.

 Essentially the F −M algorithm is transforming a distinct count problem into the
estimation of an order statistics.

Lemma 3.8.6. The probability density of E(k,`) = min {u1, . . . , uñ} where u1, . . . , uñ are
i.i.d uniform in the interval [0, 1] is p(x) = ñ(1− x)ñ−1
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Proof.

∫ y

0
p(x)dx = P [min {u1, . . . , uñ} ∈ [0, y]]

= 1−P [min {u1, . . . , uñ} ∈ [y, 1]]

= 1−P [all uj ∈ [y, 1]]

= 1−
ñ∏
`=1

P [u` ∈ [y − 1]] using independence

= 1−
(
1− y

)ñ
since u` ∼ U [0, 1].

By the Fundamental Theorem of Calculus, we have that:

p(x) = ñ
(
1− x

)ñ−1
.

Lemma 3.8.7. If E(k,`) = min {u1, . . . , uñ} then:

E

[
E(k,`)

]
= (ñ+ 1)−1 Var

[
E(k,`)

]
=

ñ

(ñ+ 1)2(ñ+ 2)
<

1

ñ+ 1

2

.

Proof.

E

[
E(k,`)

]
=

∫ 1

0
xp(x)dx

=

∫ 1

0
xñ
(
1− x

)ñ−1
dx

=

∫ 1

0
ñ
[
yñ−1 − yñ

]
dy using y = 1− x

= ñ

[
yñ

ñ
− yñ+1

ñ+ 1

]1

0

=
1

ñ+ 1
.
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Also

E

[(
E(k,`)

)2]
=

∫ 1

0
x2p(x)dx

=

∫ 1

0
x2ñ

(
1− x

)ñ−1
dx

=

∫ 1

0
ñ
[
yñ−1 − 2yñ + yñ+1

]
dy using y = 1− x

= ñ

[
yñ

ñ
− 2

yñ+1

ñ+ 1
+
yñ+2

ñ+ 2

]1

0

=
1

(ñ+ 1)(ñ+ 2)
.

Thus:

Var
[
E(k,`)

]
= E

[(
E(k,`)

)2]− (E [E(k,`)
] )2

=
ñ

(ñ+ 1)2(ñ+ 2)
<

1

(ñ+ 1)2
.

Since we have the expectation and variance of a single estimator E(k,`) we can use
reasoning similar to that seen in Monte Carlo integration and Morris’ Algorithm to combine
estimates in a median of means scheme to achieve the following overall estimate with

E

[
1

K

K∑
k=1

E(k,`)

]
=

1

ñ+ 1
, Var

[
1

K

K∑
k=1

E(k,`)

]
≤ 1

K(ñ+ 1)2

By choosing K = 10
ε2

and using Chebyshev inequality then we have that

P

[∣∣∣∣∣ 1

K

K∑
k=1

E(k,`) − 1

ñ+ 1

∣∣∣∣∣ < ε

(
1

ñ+ 1

)]
> 0.9

Now, choosing L ≥ c log
(

1
q

)
and using the sum of indicator variables and Chernoff inequality,

we can argue that the majority of the estimators will be within our chosen error bound
with high probability

P

[∣∣∣∣Ẽ − 1

ñ+ 1

∣∣∣∣ < ε

(
1

ñ+ 1

)]
≥ 1− q

for q ∈ (0, 1). More formally we have the following theorem
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Theorem 3.8.8 (Flajolet-Martin Algorithm). Choose ε, q ∈ (0, 1). Then Algorithm 21 will
output an estimate Ẽ = 1

E − 1 satisfying

ñ

1 + ε
−
( ε

1 + ε
− 1
)
≤ Ẽ ≤ ñ

1− ε
+
( ε

1− ε
− 1
)

with probability at least 1− q.

Proof. The formal proof is left as an exercise to the reader.

Exercise 3.8.1. Prove Lemma 3.8.7

Exercise 3.8.2. Using the discussion in this section, formalize a proof of Theorem 3.8.8

3.9 Notes and References

non-measure theoretic here – other options?

3.10 TO INCLUDE – USE TO PROVE EXISTENCE OF
JL MAPS AS FAST AS POSSIBLE

3.11 Useful General Purpose Probability Inequalities (MTH
994 Lecture 5)

Theorem 3.11.1 (Cramer’s Theorem). Let X1, . . . , Xm be a sequence of independent
real-valued random variables with cumulant generating functions

CX`(θ) = ln
(
E

[
eθX`

])
where ` ∈ [m]. Then, ∀t > 0

P

[
m∑
`=1

X` ≥ t

]
≤ exp

(
inf
θ>0

{
−θt+

m∑
`=1

CX`(θ)

})

Proof. By Markov’s inequality, for any θ > 0, and independence of the random variables
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we have:

P

[
m∑
`=1

X` ≥ t

]
= P

[
exp

(
θ

m∑
`=1

X`

)
≥ exp (θt)

]

≤ e−θtE

[
exp

(
θ

m∑
`=1

X`

)]

= e−θt
m∏
`=1

E [exp (θX`)]

= exp

(
ln

(
e−θt

m∏
`=1

E [exp (θX`)]

))

= exp

(
−θt+

m∑
`=1

CX`(θ)

)

Since the above holds for all θ > 0, it will hold for the infimum, which matches our desired
outcome

Theorem 3.11.2 (Hoeffding’s Inequality). Let X1, . . . , Xm be a sequence of independent
random variables such that E [X`] = 0 and |X`| ≤ B`, ∀` ∈ [m]. Then, ∀t > 0

P

[
m∑
`=1

X` ≥ t

]
≤ exp

(
−t2

2
∑m

`=1B
2
`

)

and so

P

[∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−t2

2
∑m

`=1B
2
`

)

Proof. We first estimate the moment generating function E [exp (θX`)] and then apply
Cramer’s Theorem.

For some t̃` > 0, we can write each of the random variables as some combination of its
bounds:

X` = t̃(−B`) + (1− t̃)B`

Solving for t̃` we have

t̃` =
B` −X`

2B`
∈ [0, 1]
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Since exp (θx), θ > 0 is a convex function and so we have the bound

exp (θX`) ≤ t̃ exp (−θB`) + (1− t̃) exp (θB`)

=

(
B` −X`

2B`

)
exp (−θB`) +

(
B` +X`

2B`

)
exp (θB`)

and so taking the expectation and recalling E[X`] = 0, we obtain the moment generating
function and the following bound

E [exp (θX`)] ≤
1

2
[exp (−θB`) + exp (θB`)]

=

∞∑
k=0

(θB`)
2k

(2k)!

≤
∞∑
k=0

(θB`)
2k

2kk!

= exp

(
θ2B2

`

2

)

Apply Cramer’s Theorem 3.11.1 with θ = t∑m
`=1B

2
`

and bound CX` by
θ2B2

`
2 to obtain

P

[
m∑
`=1

X` ≥ t

]
≤ exp

(
−t2

2
∑m

`=1B
2
`

)

Definition 3.11.3 (Radamacher Random Variable). A random variable X such that

X =

{
1 with probability 1/2

−1 with probability 1/2

Note that the expectation of such a variable is 0.

Corollary 3.11.4. Let a ∈ Rm and X = (X1, . . . , Xm) be a random vector with i.i.d.
Radamacher entries. Then, ∀u > 0, we have

P

[∣∣∣∣∣
m∑
`=1

a`X`

∣∣∣∣∣ ≥ u‖a‖2
]
≤ 2 exp

(
−u

2

2

)

The corollary follows from an application of Hoeffding’s inequality.
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Theorem 3.11.5 (Bernstein’s Inequality). Let X1, . . . , Xm be a sequence of independent
random variables such that E [X`] = 0 such that ∀n ≥ 2

E [|X`|n] ≤ n!Rn−2σ2
` /2, ∀` ∈ [m]

for some constants R > 0 and σ` > 0, ` ∈ [m]. Then ∀t > 0

P

[
m∑
`=1

X` ≥ t

]
≤ 2 exp

(
−t2/2
σ2 +Rt

)

where σ2 =
∑m

`=1 σ
2
`

Proof. First we bound the moment generating function E [exp (θX`)] by expanding the
exponential function into a series and applying the linearity of expectation after exchanging
integration and summation (Fubini and Dominated Convergence):

E [exp (θX`)] = 1 + θE [X`] +
∞∑
n=2

θnE [Xn
` ]

n!

= 1 +

∞∑
n=2

θnE [Xn
` ]

n!

≤ 1 +
σ2
` θ

2

2

∞∑
n=0

(θR)n

≤ 1 +
σ2
` θ

2

2
(1−Rθ)−1

≤ exp

(
σ2
` θ

2

2(1−Rθ)

)
where we require that 0 < Rθ < 1 to get convergence of the geometric series. Apply
Cramer’s theorem then using this bound on the cumulant density functions to obtain

P

[∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t
]
≤ 2 inf

θ∈(0,R−1)
exp

(
−θt+

m∑
`=1

σ2
` θ

2

2(1−Rθ)

)

= 2 inf
θ∈(0,R−1)

exp

(
−θt+

σ2θ2

2(1−Rθ)

)

Choosing θ = t
σ2+Rt

< 1
R then leads to our desired final bound.

Lemma 3.11.6. E[|X|n] ≤ n
∫∞

0 P [|X| ≥ t]tn−1dt, ∀n > 0
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Proof.∫
Ω
|X|np(x)dx =

∫
Ω

(∫ ∞
0

1{0≤y≤|X|n}dy

)
p(x)dx

=

∫ ∞
0

∫
Ω
P [|X|n ≥ y] dy Fubini’s Theorem

= n

∫ ∞
0

∫
Ω
P [|X|n ≥ tn] tn−1dt change of variable y = tn

= n

∫ ∞
0

∫
Ω
P [|X| ≥ t] tn−1dt

We now introduce some definitions about a large class of random variables which will
help us prove in a general way many important and useful results for JL maps.

Definition 3.11.7 (Sub-exponential Random Variable). We say that X ∈ R is sub-
exponential random variable if ∃β, κ > 0 such that

P [|X| ≥ t] ≤ βe−κt, ∀t > 0

We can understand this as saying that the random variable decays exponentially.

Definition 3.11.8 (Sub-gaussian Random Variable). We say that X ∈ R is subgaussian
random variable if ∃β, κ > 0 such that

P [|X| ≥ t] ≤ βe−κt2 , ∀t > 0

Again, we understand this as saying that the random variable decays faster than
exponential, at a rate comparable to a Gaussian. What types of random variables fit
these definitions? The following examples provide some indication as to the richness of the
classification.

Example 3.11.9. If X is sub-gaussian, then X2 is sub-exponential with the same β and κ:

βe−κt
2 ≥ P [|X| ≥ t] = P

[
|X|2 ≥ t2

]
but after a relabeling of t we rewrite as

βe−κt ≥ P
[
X2 ≥ t

]
for all t > 0.

Example 3.11.10. All bounded random variables, e.g. Radamacher, Bernoulli, uniform
on bounded interval, all discrete random variables, are subgaussian.
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Example 3.11.11. A Gaussian random variable X ∼ N (0, 1) is sub-gaussian with β = 1
and κ = 1/2

Theorem 3.11.12 (Bernstein’s Inequality for sub-expoential random variables). Let
X1, . . . , Xm be independent mean 0 sub-expoential random variables such that ∃β, κ > 0
where P [|X`| ≥ t] ≤ βe−κt, ∀t > 0,∀` ∈ [m]. Then

P

[∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−(κt)2/2

2βm+ κt

)
Proof. By Lemma 3.11.6 we have

E [|X`|n] = n

∫ ∞
0

P [|X| ≥ t] tn−1dt

= βn

∫ ∞
0

e−κttn−1dt let κt = u

= βnκ−n
∫ ∞

0
e−uun−1du Notice Γ function definition

= βκ−nn!

Now apply Bernstein’s Inequality 3.11.5 with R = κ−1 and σ2
` = 2βκ−2 to obtain the

desired bound.

Exercise 3.11.1. Prove that if X is a bounded random variable then ∃t0 ∈ R+ such that

X is sub-gaussian ∀β, κ > 0 satisfying t0 =
√

lnβ
κ

Exercise 3.11.2. Prove that if X ∼ N (0, 1) then

P [|X| ≥ t] ≤ e−t2/2, ∀t > 0

Exercise 3.11.3. Let X be uniformly distributed on [−1, 1] show that

E

[
|X|2

]
= 1/3

and that
E [exp (θX)] ≤ exp

(
θ2/6

)
= exp

(
θ2
E[|X|2]/2

)
3.12 Stability of Subgaussians as a Class of Random Variables

Lemma 3.12.1. If X is a sub-gaussian random variable with parameters β, κ > 0 then

‖X‖p = (E [|X|p])1/p ≤ κ−1β1/2p1/2, ∀p ≥ 1
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Proof. By Lemma 3.11.6

E [|X`|p] = p

∫ ∞
0

P [|X| ≥ t] tp−1dt

=
p

(2κ)p/2

∫ ∞
0

P

[
|X| ≥ u√

2κ

]
up−1du let t =

u√
2κ

≤ pβ

(2κ)p/2

∫ ∞
0

e−u
2/2up−1du Xis sub-gaussian

=
pβ

2κp/2
Γ
(p

2

)
=

pβ

κp/2

√
π

2

(p
2

)p/2−1/2
e−p/2e1/6pΓ

(p
2

)
= κ−p/2βpp/2

[
1

2p/2
√
pπe−p/2+1/6p

]

[
1

2p/2
√
pπe−p/2+1/6p

]
is monotonically decreasing for p ≥ 1 and is bounded by 1 from above,

which then taking p-th root leads to the desired final bound.

Lemma 3.12.2. If X is sub-gaussian with parameters β, κ then ∃c ∈ (0, κ) and c̃ ≥
1 + βcκ−1

1−cκ−1 such that E
[
exp

(
cX2

)]
≤ c̃.

Proof. By using Lemma 3.11.6 with p← 2n then

E

[
|X|2n

]
≤ βκ−nn!

E
[
exp

(
cX2

)]
=

∫ ∞
0

∞∑
n=0

cnX2n

n!
p(x)dx

=
∞∑
n=0

cnE
[
X2n

]
n!

Fubini’s Theorem

≤ 1 +

∞∑
n=1

cnβκ−n Series converges when c ∈ (0, κ)

= 1 +
βcκ−1

1− cκ−1

Theorem 3.12.3 (Alternative Characterization of Sub-gaussian Property). Let X ∈ R be
a random variable
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1. If X is sub-gaussian with E[X] = 0 then ∀c ∈ R+ with c > max
{

1
2κ + 4e2

κ ln (1 + β) ,
√

2βe2

κ
√
π

}
then

E [exp (θX)] ≤ exp
(
cθ2
)
, ∀θ ∈ R+ (3.15)

2. If 3.15 holds for some c ∈ R+ then E[X] = 0 and X is sub-gaussian with parameters
β = 2 and κ = 1

4c

Proof. We begin with the second part of the statement of the theorem. Assume inequality
3.15 holds.

P [X ≥ t] = P
[
exp

(
θX ≥ eθt

)]
≤ e−θtE [exp (θX)] Markov’s Inequality

≤ ecθ2−θt by hypothesis

Setting θ = t
2c minimizes the right hand side and we have P [X ≥ t] ≤ e

−t2
4c . We can

repeat the same argument to conclude that P [−X ≥ t] ≤ e
−t2
4c and so conclude by a union

bound that P [|X| ≥ t] ≤ 2e
−t2
4c , i.e. X is sub-gaussian with with parameters β = 2 and

κ = 1
4c .

To see that the random variable must have mean zero, recall the bounds (1 + x) ≤
ex, ∀x ∈ R. Use this bound, taking expectation with respect to the random variable X,
and using the series definition of the exponential we have

1 +E [θX] ≤ E [exp (θX)]

=⇒ 1 + θE [X] ≤ exp
(
cθ2
)

=⇒ θE [X] ≤ 1

2
cθ2 +O

(
θ4
)

So sending θ → 0 yields E [X] = 0.

Now we consider the first part of the theorem. Assume that the random variable X is

sub-gaussian with c > max
{

1
2κ + 4e2

κ ln (1 + β) ,
√

2βe2

κ
√
π

}
. For the moment, consider |θ| ≤ θ0

for some yet to be determined θ0
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E [exp (θX)] = 1 + θE [X] +

∞∑
n=2

θnE [Xn]

n!
Fubini, linearity of expectation

= 1 +
∞∑
n=2

θnE [Xn]

n!
mean zero

≤ 1 +

∞∑
n=2

|θ|nκn/2βnn/2√
2πnne−n

Lemma 3.12.1. Sterling’s formula

= 1 +
β√
2π

θ2e2

κ

∞∑
n=0

θn0κ
−n/2en re-indexing, |θ| ≤ θ0

= 1 + θ2 β√
2π

θ2e2

κ

1

1− 1
2

set θ0 =

√
κ

2e

≤ exp(cθ2) when c >

√
2βe2

κ
√
π

We now must consider the case when |θ| > θ0. We wish to show that

E [exp (θX)] ≤ exp
(
cθ2
)
⇐⇒ E

[
exp

(
θX − cθ2

)]
≤ 1

Notice that by completing the square, for any positive constant c

θX − cθ2 = −
(√

cθ − X

2
√
c

+
X2

4c

)
≤ X2

4c

So then

E
[
exp

(
θX − cθ2

)]
≤ E

[
exp

(
X2

4c

)]
In particular for constant 1

2κ then,

E

[
exp

(
θX − 1

2κ
θ2

)]
≤ E

[
exp

(
κX2

2

)]
So then in Lemma 3.12.2, where for c = κ

2 we have for c̃ > 1 + βcκ−1

1−cκ−1 = 1 + β. Noting this
then we have that

E

[
exp

(κ
2
X2
)]
≤ 1 + β

So combining the two inequalities we have

E [exp (θX)] ≤ exp

(
θ2

2κ

)
(1 + β)
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Now let ρ = ln (1 + β) θ−2
0

E [exp (θX)] ≤ (1 + β) exp

(
θ2

2κ

)
= (1 + β) exp

(
−ρθ2

)
exp

(
θ2

2κ

)
exp

(
ρθ2
)

≤ (1 + β) exp
(
−ρθ2

0

)
exp

((
1

2κ
+ ρ

)
θ2

)
≤ exp

((
1

2κ
+ ρ

)
θ2

)

Noting that θ0 =
√
κ

2e and ρ = 4e2

κ ln (1 + β) we have then the desired bound.

Theorem 3.12.4 (Stability of Sub-gaussians). Let X = X1, . . . , Xm be independent mean
zero sub-gaussian random variables such that E [exp (θX`)] ≤ exp

(
cθ2
)

for ` ∈ [m], θ ∈ R+.
Let a ∈ Rm and define z = 〈a, X〉. Then z is sub-gaussian with

1.

E [exp (θz)] ≤ exp
(
c‖a‖22θ2

)
2.

P [|z| ≥ t] ≤ 2 exp

(
−t2

4c‖a‖22

)
, ∀t > 0

Proof. 1.

E

[
exp

(
θ

m∑
`=1

a`X`

)]
=

m∏
`=1

[exp (θa`X`)] X` independent

≤
m∏
`=1

exp
(
ca2
`θ

2
)

≤ exp
(
c‖a‖22θ2

)

2. This follows from part 2 of Theorem 3.12.3.

Definition 3.12.5. A sub-gaussian random variable X allows a parameter c if

E [exp (θX)] ≤ exp
(
cθ2
)
, ∀θ ∈ R+
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Lemma 3.12.6. Let Z ∈ RN be a random vector with independent, mean zero, variance 1,
sub-gaussian entries that all allow the same parameter c ∈ R+. Then

1.
E

[
|〈Z,x〉|2

]
= ‖x‖22, ∀x ∈ RN

2. 〈Z,x/‖x‖2〉 is sub-gaussian and also allows the parameter c

Proof. 1. We expand the square of the sum, use linearity of expectation, independence
of variables and the mean zero and variance of one of all the random variables to
obtain:

E

[
|〈Z,x〉|2

]
= E

( N∑
`=1

Z`x`

)2


= E

[
N∑
`=1

N∑
k=1

Z`Zkx`xk

]

=

N∑
`=1

N∑
k=1

E [Z`Zk]x`xk

=
N∑
`=1

E
[
Z2
`

]
x2
` +

N∑
`=1

∑
k 6=`

E [Z`]E [Zk]x`xk

=

N∑
`=1

(1)x2
`

= ‖x‖22

2. Follows from part 1. of Theorem 3.12.4

Theorem 3.12.7 (Concentration Inequality for Sub-gaussian Random Variables). Let
Φ ∈ Rm×N be a matrix with independent, mean zero, variance one sub-gaussian entries
that all allow parameter c. Then ∀x ∈ Rn and t ∈ (0, 1),

P
(∣∣m−1‖Φx‖22 − ‖x‖22

∣∣ ≥ t‖x‖22) ≤ 2 exp
(
−c̃mt2

)
where c̃ depends only on c, c̃ = 1

8c(16c+1)

Proof. Let Y1, . . . ,Ym ∈ RN be the rows of the matrix Φ. Define

Z` = |〈Y`,x〉|2 − ‖x‖22, ` ∈ [m].
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By Lemma 3.12.6 we have that E [Z`] = 0. Furthermore, 〈Y`,x/‖x‖2〉 is sub-gaussian with
parameter c. Now using the characterization of sub-gaussian random variables seen in
Theorem 3.12.3, we have that 〈Y`,x/‖x‖2〉 works as a sub-gaussian random variable for
β = 2 and κ = 1/4c with mean 0.

Therefore

P [|〈Y`,x/‖x‖2〉| ≥ r] ≤ βe−κr
2

Squaring the random variable then gives us a sub-exponential random variable concentration
result,

P
[
|〈Y`,x/‖x‖2〉|2 ≥ r̃

]
≤ βe−κr̃

where r̃ = r2. Note

1

‖x‖2
(
m−1‖Φx‖22 − ‖x‖22

)
=

1

m

m∑
`=1

(
|〈Y`,x〉|2 − ‖x‖22

‖x‖22

)

=
1

m‖x‖22

m∑
`=1

Z`

We now have what we need to satisfy Bernstein’s inequality for sub-exponential random
variables. That is

P

[
1

m‖x‖22

∣∣∣∣∣
m∑
`=1

Z`

∣∣∣∣∣ ≥ t
]

= P

[∣∣∣∣∣
m∑
`=1

Z`
‖x‖22

∣∣∣∣∣ ≥ mt
]

≤ 2 exp

(
−mt2κ2

4β + 2κt

)
≤ 2 exp

(
−mt2c̃

)
when β = 2, κ = 1

4c and c̃ = 1
8c(16c+1)

Theorem 3.12.8. Let S ⊂ RN be an arbitrary finite subset of RN . Let p, ε ∈ (0, 1).
Finally, let Φ ∈ Rm×N be a matrix with independent, mean zero, variance one, sub-gaussian
entries all allowing the parameter c. Then

(1− ε)‖x− y‖22 ≤ ‖
1√
m

Φ(x− y)‖22 ≤ (1 + ε)‖x− y‖22

will hold for all x,y ∈ S with probability at least p, provided that m ≥ 8c(16c+1)
ε2

ln
(
|S|2
1−p

)
.
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Proof. The proof of this theorem is left as an exercise to the reader.

Theorem 3.12.9. Let S ⊂ CN be an arbitrary finite subset of CN , p, ε ∈ (0, 1). Then Φ
as in Theorem 3.12.8 will satisfy

(1− ε)‖x− y‖22 ≤ ‖
1√
m

Φ(x− y)‖22 ≤ (1 + ε)‖x− y‖22

will hold for all x,y ∈ S with probability at least p, provided that m ≥ 48c(16c+1)
ε2

ln
(

4|S|2
1−p

)
.

Proof. The proof of this theorem is left as an exercise to the reader.

Theorem 3.12.10. Let p, ε ∈ (0, 1) and Φ as in Theorem 3.12.8. Choose m such that

m ≥ s
(

32c(16c+ 1)

ε2

)
ln

((
eN
s

) (
48
ε

)2
(1− p)1/s

)

then 1√
m

Φ will have the (s, ε)-RIP property (see Definition ??) with probability at least p.

Proof. The proof of this theorem is left as an exercise to the reader.

Exercise 3.12.1 (Towards Φ being sparse). 1. f(x) = pδ(x) + (1−p)3/2√
2π

exp
(
−x2(1−p)

2

)
for p ∈ (0, 1). Show that X with density f is mean 0, variance 1 and sub-gaussian
with parameter c = 1

2(1−p)

2. Let X have density

f(x) = pδ(x) +
(1− p)

2

[
δ

(
x− 1√

1− p

)
+ δ

(
x+

1√
1− p

)]
for p ∈ (0, 1). Show that X with density f is mean 0, variance 1 and sub-gaussian
with parameter c = 1

1−p

3. Consider Theorem 3.12.7 and how c has to scale in order to end up having fewer
non-zero entries in Φ with the same probability decay.

Exercise 3.12.2. Prove Theorem 3.12.8 (Hint: use union bound) and discuss why it also
implies a proof of Theorem 4.1.3.

Exercise 3.12.3. Prove that if Φ ∈ Rm×N is an ε-JL map of both S ⊂ RN and T ⊂ RN

then Φ is an ε-JL map of any R ⊂ CN with Re (R) ⊂ S and Im (R) ⊂ T .

Exercise 3.12.4. Prove Theorem 3.12.10. Hint: see Homework 4.2.2 and Theorem 4.3.1
as well as the following consequence of Sterling’s approximation(

N

s

)s
≤
(
N

s

)
≤
(
eN

s

)s
, ∀N, s ∈ Z+, N ≥ s
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Exercise 3.12.5 (optional). Suppose X is a Radamacher random variable. Show that X

allows a parameter c = 1
2 (Definition 3.12.5), i.e. E [exp (θX)] ≤ exp

(
θ2

2

)
.

– ADD TO LINEAR ALGEBRA CHAPTER?

Lemma 3.12.11. If p > q ≥ 1 then ‖x‖p ≤ ‖x‖q, ∀x ∈ Rn

Proof. Consider

‖x‖pp =
n∑
j=1

|xj |p

=

n∑
j=1

|xj |q|xj |p−q

≤ max
j
|xj |p−q

 n∑
j=1

|xj |q


Note that

max
j∈[n]
|xj |q ≤

n∑
j=1

|xj |q ⇐⇒ max
j∈[n]
|xj |p−q ≤

 n∑
j=1

|xj |q


p−q
q

=
(
‖x‖qq

) p−q
q

therefore

‖x‖pp ≤
(
‖x‖qq

) p−q
q ‖x‖qq

= ‖x‖pq

which implies the result after taking p-th root



Chapter 4

A Deterministic Approach to
Randomized Numerical Linear
Algebra

4.1 Johnson-Lindenstrauss Maps

Definition 4.1.1 (ε-JL map). A matrix Φ ∈ Cm×N is a linear ε-JL map of a set S ⊂ CN

into Cm if for all x ∈ S ∃εx ∈ (−ε, ε) such that

‖Φx‖22 = (1 + εx)‖x‖22.

Definition 4.1.2 (Set difference). Let S̃ ⊂ CN , then the set difference of S̃ denoted S̃ − S̃
is
{

x− y|x,y ∈ S̃
}
∈ CN

Note. WTF? When ε ∈ (0, 1), and Φ a ε-JL map, then Φ satisfies 1.7 for x ∈ Fp − Fp,
X = `2(Cm) and Y = `2(CN ).

Perhaps surprisingly, there are simple ways to construct ε-JL maps which, other than an
upperbound on the cardinality, do not depend on any particular property of S. We will see
that by drawing Φ as a random matrix, in a variety of ways, independent of S will result in
Φ being a ε-JL map for S so long as m ≥ C log(|S|), where C is a (mild) absolute constant.

Theorem 4.1.3. Let S ⊂ CN be finite. Then there exists a linear ε-JL map Φ ∈ Cm×N of
the set S into Cm where m ≤ C

ε2
log |S|, and C ∈ (0,∞) is an absolute constant independent

of both (S and ε). Furthermore, Φ may be generated with high probability for any S ⊂ CN

given only knowledge of |S|, the cardinality of the set.

For now we will take this theorem as given and work to understand its meaning and
consequences.

197
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In order to explain the meaning of the theorem, consider the following two-player game
between Alice and Bob. This game will proceed in two phases. In the first phase, Alice
selects a finite subset S of the space CN . The content of S is known only to Alice, however
the dimension N of the space and the cardinality |S| is information available to Bob. In
the second phase, Alice provides an error bound ε ∈ (0, 1) and Bob must generate an ε-JL
map Φ for Alice’s set S which has at most m rows where m ≤ C

ε2
log |S| rows. Bob wins the

game if Φ is an ε-JL map of S into Cm, otherwise Alice wins. At first gloss, we may suppose
that Alice has the advantage in this game. Afterall, she determines in whatever way she
may wish a set S and keeps most of that information secret. Bob has the seemingly more
difficult task of mapping a set he knows little about to a lower dimensional space with a
distortion error specified by his opponent. To abuse a metaphor, Bob has to draw a faithful,
recognizable picture of an object that Alice dreams while he is blindfolded. Shouldn’t Alice
be able to come up with a set and error for which this is difficult to achieve? Surprisingly,
Theorem 4.1.3 states that with high probability Bob will win the game simply by generating
a random matrix Φ ∈ Cm×N , no matter the set S Alice produces.

Also, note that should m ≥ N then the existence of an ε-JL map Φ is of little practical
use and we could in that case construct isometric embeddings trivially. We are interested
in ranges of values ε and |S| which lead to compression, i.e. m ≤ N .

Example 4.1.4 (Generating ε-JL maps). The following random processes generate Φ as in
Theorem 4.1.3 with high probability. Note that these are data oblivious maps - they do not
depend on any property of the set S other than the cardinality.

1 Φ has i.i.d entries where Φ(i,j) ∼ 1√
m
N (0, 1) = N (0, 1

m)

2 Φ has i.i.d entries where

Φ(i,j) ∼

{
1√
m

with probability 1/2

− 1√
m

with probability 1/2

3 The matrix Φ is a ”sparse J-L transform” containing at most O(ε−1 log |S|) nonzero entries
in each column, and thus there are proportionally O(ε) nonzero entries of Φ. [See[?]].

The above examples have a drawback in that they require O(nM) memory to store and
do not permit a fast matrix-vector multiply - afterall a matrix with independent random
values does not have a structure we can exploit to save on storing or in applying to vectors.
Our next example will show how we may achieve maps which do have better performance.
First however we will need a theorem.

Theorem 4.1.5 (Rahut, Foucart + Krahmer, Ward). Given the following

• U ∈ CN×N a unitary matrix with entries bounded by maxn,k∈[N ] |Uk,n| ≤ K√
N

.

• R ∈ Cm×N a matrix obtained by selecting m-rows from the N ×N identity matrix
i.i.d. uniformly at random.
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• D ∈ RN×N be a diagonal matrix with i.i.d ±1 Rademacher random values on its
diagonal.

Then √
N

m
RUD

Rademacher will be an ε-JL map of any given S ⊂ RN into Cm with probability at least
1− p provided that

m ≥ cK
2

ε2
log

(
4|S|
p

)
log4N

where c ∈ R+ is an absolute constant.

add intuitive remark about how random diagonal and unitary matrix spread info out to
all rows s.t. you can then safely downsample while preserving info about S. HW assignment
seeing what happens when you make U diagonal would be useful. As well as an example S
explaining why things can go wrong.

Note that D can be applied in O(N) time to a vector in x ∈ RN , since it involves
scanning the length of the vector and changing signs of some entries. The matrix R can be
applied to a vector of length N , UDx in O(N)-time since it involves scanning the length of
the vector and discarding values. Applying U then, since generically it should require at
least reading in the inputs should be at least O(N). Therefore the overall complexity is
governed principally by U . If the unitary matrix U admits a fast matrix-vector, like for
example using the Fast Fourier transforms to effect a Discrete Fourier transform, then U
can be applied to Dx in O(N logN)-time. In practice, the log4N factor in the bound of m
is often ignored with no change in performance.

Corollary 4.1.6. If U is a DFT then the ε − JL maps from Theorem 4.1.5 have a
O (N logN) matrix vector multiplication time.

Example 4.1.7. Let F be a unitary discrete Fourier transform matrix

Fn,k =
1√
N
e

2πink
N

If we take U = F and R and D be the matrices described in Theorem 4.1.5 then
√

N
mRFD

is a JL map where

max
n,k
|Fn,k| =

1√
N

so K = 1. The Fast Fourier Transform (FFT) can be used to apply F to any vector x ∈ RN

in O(N logN). This is the proto-typical “Fast JL Matrix.”
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We now consider a direct application of JL-maps to the Nearest Neighbor problem
introduced in 17. Recall in the Nearest Neighbor problem we want to find for each element
in a set S = {x1, . . . ,xN} ⊂ RD another element which is closest with respect to ‖ · ‖2.
Here we consider the case where D � logN . The naive solution requires O(DN2)-time.
How can we improve on this using a JL map? Note that S − S as in Definition 4.1.2 has
the following bound on its cardinality

|S − S| ≤ N2 −N + 1.

MOVE SET DIFF DEFINITION DOWN HERE CLOSER TO FIRST USE
Let Φ ∈ Cm×D be an ε-JL map of S−S with m ≥ O

(
log |S|
ε2

)
. To improve NN−runtime

we:

1 Compute S̃ := {Φx|x ∈ S}

2 Run NN−algorithm on S̃ instead

Finding the set S̃ takes O
(
ND
ε2

logN
)
-time and naive nearest neighbors on S̃ takes

O
(
N2

ε2
logN

)
-time. When D � logN , note

N

ε2
logN(D +N) < N2D

Note that it’s possible to combine the JL compression and LSH solution approach to
(c, r)-NN for faster speed ups.

Note. A linear ε-JL map Φ of S ⊂ CN \ {0} with ε ∈ (0, 1) must have S ∩KerΦ = ∅. The
requirement that the null space of the map is disjoint from the set S can be stated more
precisely as uniformly bounding the operator norm on S.

Definition 4.1.8. Let Φ ∈ Cm×N and S \ {0} ⊂ CN be nonempty. The operator norm of
Φ on S denoted ‖Φ‖S,2→2 is defined as

‖Φ‖S,2→2 = sup
x∈S\{0}

‖Φx‖2
‖x‖2

.

Lemma 4.1.9. ‖Φ‖S,2→2 is a semi-norm if S \ {0} 6= ∅ and it is a norm if S contains N
linearly independent vectors.

Lemma 4.1.10. ‖Φ‖S,2→2 = ‖Φ‖2→2 if
{

y
‖y‖2 |y ∈ S \ {0}

}
= B(0, 1) \B(0, 1) = δB(0, 1)

Lemma 4.1.11. If Φ is an ε-JL map of S then the following inequalities hold

‖Φ‖S,2→2 ≤
√

1 + ε, inf
y∈S\{0}

‖Φy‖2
‖y‖2

≥
√

1− ε, sup
y∈S\{0}

|〈(Φ∗Φ− I)y,y〉|
‖y‖22

≤ ε
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Norm preserving maps of certain sets which are geometrically related to S can also
preserve the geometry of S itself.
CMSE 890 Lecture 11

Motivation! Preserve all Euclidean geometry of arbitrary set in low-dim with random
matrix is funny, maybe unbelievable

Introduce polarization identity earlier (Chap 1)? Figure!?!

Lemma 4.1.12. Let S ⊂ CN and ε ∈ (0, 1). If Φ ∈ Cm×N is an ε-JL map of S′ into Cm,
where

S′ =

{
x

‖x‖2
+

y

‖y‖2
,

x

‖x‖2
− y

‖y‖2
,

x

‖x‖2
+ i

y

‖y‖2
,

x

‖x‖2
− i y

‖y‖2
|x,y ∈ S\{0}

}
it will satisfy ∀x,y ∈ S

|〈Φx,Φy〉 − 〈x,y〉| ≤ 4ε‖x‖2‖y‖2. (4.1)

Proof. Consider the case where x = 0 or y = 0 then the inequality holds because 0 ≤ 0. So
next we suppose x,y 6= 0. Consider the normalizations u = x

‖x‖2 ,v = y
‖y‖2 . The polarization

identity relates inner products with norms. Observe,

|〈Φu,Φv〉 − 〈u,v〉| =

∣∣∣∣∣14
3∑
`=0

i`
(
‖Φu + i`Φv‖22 − ‖u + i`v‖22

)∣∣∣∣∣
=

∣∣∣∣∣14
3∑
`=0

i`εu,v,`‖u + i`v‖22

∣∣∣∣∣
≤ 1

4

3∑
`=0

ε (‖u‖2 + ‖v‖2)2

= 4ε.

Note. If Φ ∈ Cm×N has ±1 Radamaecher entries, m ≥ c
ε2

log
(

2|S|2
)

will work w.h.p.

If M = RFD ”fast ε−JL map” then m ≥ c
ε2

log
(

2|S|2
)
· log4N will work w.h.p.

Note. Constructing Φ still only depends on the original information about the cardinality
of S since |S′| ≤ 4|S|2, and so we can apply Theorem 4.1.3 whether we have |S| or |S′|.

Note. Lemma 4.1.12 and Theorem 4.1.3 imply that ∃Φ ∈ Cm×N a ε-JL map where the
inequality 4.1 holds for any choice of S provided that

m =
c

ε2
log
(

4|S|2
)
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Should we wish to construct a ε-JL map with fast matrix-vector multiply, we can use an
RFD matrix like that in Example 4.1.7, and our sketching dimension m is

m =
c

ε2
log
(

4|S|2
)

log4N

We can use 4.1.12 to implement a fast approximate matrix multiplication algorithm.
We will show how to use any type of ε-JL map to achieve the speed-up.

Lemma 4.1.13. Let V ∈ CN×p and U ∈ CN×q have unit `2-normalized columns. Suppose
that Φ ∈ Cm×N satisfies Equation 4.1 from Lemma 4.1.12 where Complaint about notation
in def. of S S = {uj |uj = U [:, j]} ∪ {vj |vj = V [:, j]}. Then∣∣∣(V ∗Φ∗ΦU − V ∗U)k,j

∣∣∣ ≤ 4ε, ∀k ∈ [p], ∀j ∈ [q]

Proof. Note that |S| = p+ q thus S′ ≤ 4(p+ q)2 from Lemma 4.1.12. Furthermore note
that

ΦV =

 . . .
Φv1 Φv2 . . . Φvp

. . .

 , ΦU =

 . . .
Φu1 Φu2 . . . Φuq

. . .


So note then that ((ΦV )∗ΦU)k,j = 〈Φvk,Φuj〉. Therefore for all choices of k, j and given
Lemma 4.1.12 we have∣∣∣(V ∗Φ∗ΦU − V ∗U)k,j

∣∣∣ = |〈Φvk,Φuj〉 − 〈vk,uj〉|

≤ 4ε‖vk‖2‖uj‖2
= 4ε

Notes are structured funky.

Note. We can have Φ ∈ Cm×N :

• with Rademacher entries with m ∼ c log(p+q)
ε2

a fast RFD with m ∼ c log(p+q)·log4N
ε2

Note that we know there exists Φ ∈ Cm×N that satisfies the needed inequality from
Lemma 4.1.12 such that

m = O
(
ε−2 log

(
max(p, q)2

))
Theorem 4.1.14 (Fast Matrix-Matrix Multiply). Let A ∈ Cp×N and B ∈ CN×q have
SVDs given by A = U1Σ1V

∗ and B = UΣ2V
∗

2 and suppose that Φ ∈ Cm×N satisfies the
conditions of Lemma 4.1.13 for U and V . Then

‖AΦ∗ΦB −AB‖F ≤ 4ε‖A‖F ‖B‖F
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Proof. We will expand the quantity of interest according the SVD of the factors A and B

‖AΦ∗ΦB −AB‖F = ‖U1Σ1V
∗Φ∗ΦUΣ2V

∗
2 − U1Σ1V

∗UΣ2V
∗

2 ‖F
= ‖U1Σ1 (V ∗Φ∗ΦU − V ∗U) Σ2V

∗
2 ‖F

= ‖Σ1 (V ∗Φ∗ΦU − V ∗U) Σ2‖F

=

√√√√ p∑
k=1

q∑
j=1

(Σ1)2
k,k |V ∗Φ∗ΦU − V ∗U |

2
k,j (Σ2)2

j,j

≤

√√√√ p∑
k=1

q∑
j=1

σk(A)2(4ε)2σj(B)2

= 4ε

√√√√ p∑
k=1

σk(A)2

√√√√ q∑
j=1

σj(B)2

= 4ε‖A‖F ‖B‖F

What are the savings in runtime then if we wish to approximate matrix-matrix multipli-
cation in this way? To simplify the comparison suppose p, q = N (or at comparable at any
rate). Usual matrix multiplication then consists of computing N2 entries, each consisting
of the inner product of two N dimensional vectors, i.e. O(N3). If we use Theorem 4.1.14
then there are three major operations to consider

1. Compute the product ΦB which takes O(mN2)

2. Compute the product ΦA∗ which takes O(mN2). Conjugate transposition takes at
most O(N2) operations

3. Compute (AΦ∗) (ΦB) which takes O(nN2)

We have seen from Lemma 4.1.12 and Theorem 4.1.3 that m = O
(
ε−2 logN

)
. So the total

runtime for the approximate matrix-matrix multiplication is O(N
2

ε2
logN) vs O(N3) for

naive matrix multiplication.

Lemma 4.1.15. Let S ⊂ RN and ε ∈ (0, 1), then an ε-JL map Φ ∈ Cm×N of the set

S′ =

{
x

‖x‖2
+

y

‖y‖2
,

x

‖x‖2
− y

‖y‖2

∣∣∣∣x,y ∈ S}
will satisfy ∀x,y ∈ S

|Re (〈Φx,Φy〉)− 〈x,y〉| ≤ ε‖x‖2‖y‖2



204

Up to this point, Theorem 4.1.3 and the subsequent discussion has dealt with finite sets
of points S. We now turn to the question of whether these results can be applied to infinite
sets. We will begin by building new from old; infinite sets which are constructed from finite
ones.

Definition 4.1.16 (Cones). The conical region generated by S ⊂ CN is

cone(S) = {αx|x ∈ S, α ∈ C}

As an immediate consequence of the linearity, an ε-JL map Φ of set S, will be an ε-JL
map of cone(S) and vice-versa.

Another infinite set of importance is the convex hull of a set of points.

Definition 4.1.17 (Convex Hulls). The convex hull of a S ⊂ CN is

conv(S) =
∞⋃
j=1

{
j∑
`=1

α`x`|x1, . . . , xj ∈ S, α1, . . . , αj ∈ [0, 1]s.t.
N∑
`=0

α` = 1

}

We have in this next theorem that the infinitude of points in the convex hull can always
be reduced to a finite number of points from the original set. That is that each point in
conv(S) where S ⊂ RN can be expressed as a convex combination of at most N + 1 point
from S.

Theorem 4.1.18 (Caratheadory). Given S ⊂ RN , ∀x ∈ conv(S), ∃y1, . . . ,yÑ⊆ S?!?,

Ñ = min(|S|, N + 1), such that x =
∑Ñ

`=1 α`y` for some α1, . . . , αÑ ∈ [0, 1],
∑Ñ

`=1 α` = 1.

Theorem 4.1.19. Suppose S ⊂ B2(0, γ) ⊂ RN and ε ∈ (0, 1). Let Φ ∈ Cm×N be an(
ε

4γ2

)
-JL map of the set S′ defined as in Lemma 4.1.15, then

|〈Φx,Φy〉 − 〈x,y〉| ≤ ε (4.2)

∀x,y ∈ conv(S)

Proof. Let x,y ∈ conv(S). By Theorem 4.1.18, ∃ {yi}Ñi=1 , {xi}
Ñ
i=1 ⊂ S, {α`}

Ñ
`=1 , {β`}

Ñ
`=1 ⊂

[0, 1] such that

x =
Ñ∑
`=1

α`x`, y =
Ñ∑
`=1

β`y`
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So,

|〈Φx,Φy〉 − 〈x,y〉| =

∣∣∣∣∣∣
Ñ∑
`=1

Ñ∑
j=1

α`βj (〈Φx`,Φyj〉 − 〈x`,yj〉)

∣∣∣∣∣∣
≤ 4

Ñ∑
`=1

Ñ∑
j=1

α`βj

(
ε

4γ2

)
‖x‖2‖y‖2

≤ ε

 Ñ∑
`=1

α`

 Ñ∑
j=1

βj


= ε

where we have used the embedding error
(

ε
4γ2

)
and the fact that all norms of vectors

in this case will be less than γ

Corollary 4.1.20. If infx∈conv(S) ‖x‖2 ≥ 1 then Φ as in Theorem 4.1.19 will also be an
ε-JL map of conv(S) into Cm

Proof. Consider 4.2 with x = y to obtain∣∣‖Φx‖22 − ‖x‖22
∣∣ ≤ ε ≤ ε‖x‖22

which is the ε-JL property.

For points near zero, for example any points in the intersection Always use `2? No need
for extra subscript? S ∩B`2(0, ε), Theorem 4.1.19 does not provide useful relative errors
bounds. This occurs because the left hand side of 4.2 can be very small for these vectors
near zero relative to the fixed ε.

Recall, S is finite and (usually) conv(S) is infinite.
However, with the Corollary 4.1.20, when x = y and x ∈ conv(S) \B`2(0, α) then we

can achieve an ε-JL embedding MAP? Embedding versus map needs to be corrected... of
the convex hull less the ball about zero, conv(S) \B`2(0, α), by applying a

(
ε
α2

)
-JL to S.

Exercise 4.1.1. If B is the closed unit ball for any norm on CN , show that B −B is the
ball of radius 2.

Exercise 4.1.2. Prove lemma 4.1.9

Exercise 4.1.3. Prove lemma 4.1.10

Exercise 4.1.4. Prove lemma 4.1.11

Exercise 4.1.5. Prove lemma 4.1.15
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Exercise 4.1.6. Show that Theorem 4.1.19 still holds if S ∈ B`2(0, γ) ⊂ CN .

Exercise 4.1.7. Can just call R = T ∪ S and then show that it JL’s R × R. Wording
confusing. Let A ∈ Cm/2×N/2 be an ε-JL map of T∪S ⊂ CN/2. Prove that for x1,x2 ∈ S∪T ,
g : CN → Cm, defined by g(x1,x2) = (Ax1, Ax2) is an ε-JL embedding of (S × T ) ∪
(T × S) ∪ (S × S) ∪ (T × T )

Exercise 4.1.8. Wording confusing. Fix ε ∈ (0, 1) and let A ∈ Cm̃×N be a ε-JL map of
(S − S) ∪ S and G ∈ Cm×m̃ be an ε-JL map of A(S) ⊂ Cm̃, S ⊂ CN then

1. |A(S)| = |S|

2. GA is a 3ε-JL embedding of S into Cm

4.2 Covering Numbers of Balls (MTH 994 Lecture 3)

Next we turn to covering numbers, which will enable us to apply ε-JL maps to more general
infinite sets. We begin then with these definitions.

Definition 4.2.1 (δ-cover). Let T ⊆ CN . A δ-cover of T with respect to norm ‖ · ‖X is a
subset S ⊆ T such that ∀x ∈ T, ∃y ∈ S with ‖x− y‖X < δ. Hence,

T ⊆
⋃
y∈S

BX(y, δ).

Note that BX(y, δ) is the open ball with center y ∈ CN and radius δ with respect to
the norm ‖ · ‖X . Usually it will be clear from context the space and norm, and so we’ll
simplify notation and write instead B(y, δ)

Definition 4.2.2 (δ-covering Number). The δ-covering number of T ⊆ CN with respect to
‖ · ‖X , denoted CXδ (T ), is the smallest integer such that there exists a δ-cover S ⊆ T where
|S| = CXδ (T ). If no such integer exists we say that CXδ (T ) =∞

Definition 4.2.3 (δ-packing). Let T ⊆ CN . A δ-packing of T with respect to norm ‖ · ‖X
is a subset S ⊆ T such that ∀x,y ∈ S with x 6= y,

BX(x, δ/2) ∩BX(y, δ/2) = ∅.

Definition 4.2.4 (δ-packing Number). The δ-packing number of T ⊆ CN with respect to
‖ · ‖X , denoted PXδ (T ), is the largest integer such that there exists a δ-packing S ⊆ T where
|S| = PXδ (T ). If no such integer exists we say that PXδ (T ) =∞.

Lemma 4.2.5. Let T ⊆ CN and δ ∈ (0,∞). Then

PX2δ (T ) ≤ CXδ (T ) ≤ PXδ (T )
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Proof. Bad notation conflict for packing versus packing number? Let P2δ ⊂ T be a
maximal 2δ-packing of T and Cδ ⊆ T be a minimal δ-cover of T . Each point x ∈ P2δ

is closest to a different point y ∈ Cδ. To see this, suppose to the contrary that for
x1,x2,∈ P2δ,x1 6= x2 there was some point y ∈ Cδ such that x1,x2 ∈ B(y, δ) this implies
that y ∈ BX(x1, δ) ∩BX(x2, δ) which is a contradiction.

So, since each point in Pδ can be identified with at least one point in Cδ. We thus define
an injection f : P2δ → Cδ where f(x) = y, x ∈ B(y, δ). Since f is an injection, we have
that the cardinality of Cδ must be equal to or larger than P2δ, which is equivalent to the
left hand side of the desired inequality.

Next, suppose Pδ is a maximal δ-packing of T . Now suppose for eventual contradiction
that there exists a point y ∈ T,y 6∈ Pδ such that ‖x− y‖ ≥ δ, ∀x ∈ Pδ. This implies that
BX(x, δ/2) ∩BX(y, δ/2) =. Thus Pδ ∪ {y} is a δ-packing of T . This contradicts that Pδ is
maximal. So, for all points y ∈ T , there is x ∈ Pδ such that ‖x− y‖ ≤ δ, which is to say
Pδ is a δ-covering of T , and therefore the cardinality of Pδ is equal to or larger than the
δ-covering number for T . This is the right hand side of the desired inequality.

Lemma 4.2.6. Let T ⊆ RN and δ ∈ (0,∞). Furthermore let B denote the unit ball
BX(0, 1) in RN with respect to some norm ‖ · ‖X . Then(

1

δ

)N Vol (T )

Vol (B)
≤ CXδ (T ) ≤ PXδ (T ) ≤

(
2

δ

)N Vol
(
T +

(
δ
2

)
B
)

Vol (B)

holds, where Vol(T ) =
∫
T 1dV , the Lebesgue measure of T in RN .

Has T + S = T − (−S) = {t+ s|∀t ∈ T, s ∈ S} been defined formally yet? Just use
regular Euclidean balls below and scrap the generality?

Proof. Suppose Cδ is a minimal δ cover of T . By definition then of δ-cover

T ⊆
⋃

y∈Cδ

B(y, δ)

So, using properties of volume – and then mention measure theory stuff in footnote
“sub-additivity of measurable sets, translation invariance, and scaling” we have

Vol(T ) ≤ Vol
(⋃

y∈Cδ B(y, δ)
)
≤ CXδ Vol (B(y, δ)) = CXδ δ

NVol (B(0, 1))

Rearranging terms, we obtain the left hand side of the desired inequality(
1

δ

)N Vol (T )

Vol (B)
≤ CXδ (T )

Now suppose Pδ is a maximal δ-packing of T . It follows that⋃
y∈Pδ

B(y, δ/2) ⊂ T +B(0, δ/2)
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Since the balls that make up the δ-packing of T are disjoint, we have that their measure is
additive. Again, using translation invariance and scaling, this implies

Vol

 ⋃
y∈Pδ

B(y, δ/2)

 = PXδ (T )

(
δ

2

)N
Vol (B(0, 1)) ≤ Vol(T +B(0, δ/2))

Which after rearranging terms matches the right hand side of the desired inequality

Corollary 4.2.7.
(

1
δ

)N ≤ CXδ (B) ≤
(
1 + 2

δ

)N
for all norms ‖ · ‖X on RN

Proof. We can apply lemma 4.2.6 where T = B(0, 1). So,(
1

δ

)N
���

�Vol (B)

���
�Vol (B)
≤ CXδ (T )

yields the first half of the corollary. Next, note that using T = B(0, 1) we see that

B(0, 1) +B

(
0,
δ

2

)
⊆ B

(
0,

(
1 +

δ

2

))
Note that by scaling, we have the following for the volume calculation

Vol

(
B

(
0,

(
1 +

δ

2

)))
=

(
1 +

δ

2

)N
Vol(B(0, 1))

Putting this into the previous lemma, we see

CXδ (T ) ≤
(

2

δ

)N (
1 +

δ

2

)N
((((

((Vol(B(0, 1))

��
��Vol (B)

=

(
1 +

2

δ

)N
Which completes the second inequality

Note that if we add the assumption in the corollary that δ ∈ (0, 1) then we can bound(
1 + 2

δ

)
≤
(

1
δ + 2

δ

)
= 3

δ , for a more concise, though less tight bound.

Corollary 4.2.8. If S ⊆ BX(0, 1) ⊂ RN then

CXδ (S) ≤
(

1 +
2

δ

)N
.

Proof. By observing

Vol

(
S +B

(
0,
δ

2

))
≤ Vol

(
BX(0, 1) +B

(
0,
δ

2

))
and applying the same reasoning as corollary 4.2.7, we achieve the result.



209

Exercise 4.2.1. Consider the identification of CN with R2N given by the map

f :

 x1
...

x2N

→
 x1 + ix2

...
x2N−1 + ix2N


1. Verify that f : R2N → CN is a bijection with Why is c here. Just define with c = 1

since it’s much easier...

f−1(cz) =

Re(c)Re(z1)− Im(c)Im(z1)
Re(c)Im(z1) + Im(c)Re(z1)

...

 , ∀c ∈ C, z ∈ CN

2. Show that f(x + y) = f(x) + f(y) and f(cx) = cf(x) both hold ∀x,yR2N and c ∈ R

3. Verify that ‖f(x)‖2 = ‖x‖2, ∀x ∈ R2N , i.e. f is an isometry

4. Let ‖ · ‖X be a norm on CN over C. Prove that ‖ · ‖X′ : R2N → [0,∞) defined by
‖ · ‖X′ = ‖f(x)‖X is a norm on R2N over R.

5. Prove that f (BX′(y, r)) = BX (f(y), r) for all y ∈ R2N and r ∈ [0,∞)

Exercise 4.2.2. For T ⊂ CN we have Vol(T ) = Vol(f−1(T )). Modify the proofs of Lemma
4.2.6 and Corollary 4.2.7 to prove that(

1

δ

)2N

≤ CXδ (BX) ≤
(

3

δ

)2N

for all norms ‖ · ‖X on CN and δ ∈ (0, 1)

4.3 Linear Subspace Embedding (CMSE 890 Lecture 12)

Next we turn to covering numbers, which will enable us to apply ε-JL maps to more general
infinite sets. We begin then with these definitions.

4.3.1 Unit Balls in r-dim Subspaces of CN

1 L is an r−dimensional subspace of CN , then the unit ball in L is L
⋂
BN

2 , where
BN

2 := {x ∈ CN
∣∣‖x‖2 ≤ 1.}

2 Given an r-dimensional linear subspace of some orthonormal basis B = {b1, . . . ,br}
as

LrB = {ax|α ∈ C,x ∈ SrB} ⊂ CN
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Strange and annoying way to define this subspace. Where SrB denotes the r-dimensional
unit sphere with respect to the basis B

SrB =

x ∈ CN |x =

r∑
j=1

cjbj , c ∈ Cr s.t. ‖c‖2 = 1


Note that it is possible to represent any r-dimensional subspace as some LrB. Our strategy
for proving the main result of this section will be then to embed a sufficiently dense cover
of SrB ⊂ CN

Theorem 4.3.1 (Subspace Embeddings). Fix ε ∈ (0, 1). Let LrB ⊂ CN be a r-dimensional
subspace of CN with respect to some orthonormal basis B and furthermore let C ⊂ SrB be a
minimal

(
ε

16

)
-cover of SrB ⊂ LrB. Then if Φ ∈ Cm×N is an

(
ε
2

)
-JL map of C into Cm it

will also satisfy
(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22, ∀x ∈ LrB (4.3)

Proof. improve this proof.By linearity of Φ it suffices to prove that :

(1− ε) ≤ ‖Φx‖22 ≤ (1 + ε) ∀x ∈ SrB.

Note that SrB is a compact set, and therefore will contain its maximal element x. That is,
∃x ∈ SrB such that

‖Φx‖2 = ‖Φ‖SrB,2→2 = ‖Φ‖LrB = γ

Let y ∈ C be such that ‖x− y‖2 < ε/16. Then, after noting that x and y both are of unit
norm, we have by the triangle inequality and

(
ε
2

)
-JL property of Φ:

γ − 1 = ‖Φx‖2 − ‖x‖2
≤ ‖Φy‖2 + ‖Φ(x− y)‖2 − ‖x‖2

≤
(

1 +
ε

2

)1/2
‖y‖2 +

ε

2
γ − 1

After rearranging terms and using the inequality (a+ b)2 ≥ a2 + b2 and the fact that
ε2 < ε, we have

γ ≤ 1 + ε/4

1− ε/16
= 1 + ε/3

That is, we have shown that ‖Φx‖22 < 1 + ε, ∀x ∈ SrB. This establishes the required upper
bound for our desired result.

For the lower bound, let β = infz∈SrB {0} ‖Φz‖2. The infimum is included in the set since
the set is compact and the function continuous. Thus there exists x ∈ SrB, with ‖Φx‖2 = β.
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Now we take a point in the cover, y ∈ C. So ‖x − y‖2 < ε/16. Now we use the reverse
triangle inequality to observe:

β − 1 = ‖Φx‖2 − 1 ≥ ‖Φy‖2 − ‖Φ(x− y)‖2 − 1

≥
(

1− ε

2

)1/2
‖y‖2 − γ

( ε
16

)
− 1

≥
(

1− ε

2

)
−
(

1 +
ε

3

)( ε
16

)
− 1

≥
(

1− ε

3

)
−
(

1 +
ε

3

)( ε
16

)
− 1

= 1− ε

3
− ε

16
− ε2

48
− 1

≥ 1− ε

3
− ε

16
− ε

48
− 1

≥ 1− 5ε

12
− 1

So β ≥ 1− 5ε
12 > 1− ε which is the desired lower bound. Having shown the inequality 4.3

holds for x ∈ SrB, we have that the inequality holds for LrB by re-scaling and reducing to
the previous case.

1 Since LrB − LrB ⊆ LrB, so by merit of Φ being a JL map of LrB it is also a JL map of
the set difference of LrB with itself, and so Lemma 4.1.12 applies, and we have that Φ
approximately preserves inner products of vectors in the subspace. So both norms and
angles are preserved, and so in some sense the geometry of the subspace is preserved
by the map.

2 Using the covering number bound in Lemma 4.2.7, we can conclude that |C| ≤(
3
ε
16

)2r
=
(

48
ε

)2r
, where C is a minimal cover of the r dimensional unit sphere. Thus

we can construct Φ where

m =
c

ε2
log |C| ≤ 2cr

ε2
log

48

ε

Note we have optimal dependence on r. Note that the construction of Φ is oblivious -
we do not need to know anything special about LrB; an upper bound on r will suffice
in order to construct Φ

3 Because of 2, we have an ε− JL map with Rademacher entries if

m ≥ c

ε2
log

[(
48

ε

)2r
]
≥ c′r

ε2
log

(
48

ε

)
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4 Fast
√

N
mRFD ε-JL matrices have the row requirement

m =
cr

ε2
log

(
48

ε

)
log4N

and the matrix vector multiplication time is O (N logN).

Corollary 4.3.2. Let ε ∈ (0, 1). There exists an ε-JL map Φ ∈ Cm×N of any given
r-dimensional subspace LB ⊂ CN with m ≤ Cr

ε2
log
(
1 + 32

ε

)
where C ∈ R+ is an absolute

constant (independent of all r, ε,m,N,LrB)

The proof using Corollary 4.2.8, Theorems 4.1.3 and 4.3.1 is left as an exercise.
Recall the following property of orthonormal matrices:
Suppose B ∈ CN×r is the matrix formed by writing the orthonormal basis elements of

LrB as columns:

B =

b1 b2 . . . br


Then ‖B∗x‖22 = ‖x‖22, ∀x ∈ LrB.

In terms of the subject matter of this course, we can say that B is a 0-JL map. So why
then are ε-JL maps of interest, if there is a common, well understood way to find lossless
embeddings? In many settings however, we do not have detailed information about the
subspace - for example we cannot easily find r linearly independent points, or in general
sampling the space is costly.

Corollary 4.3.2 is an oblivious embedding; this means that we do not need to know what
LrB is in order to embed it into Cr accurately. One useful application that fits this setting
is finding the (approximate) principle Eigenspace for huge matrices. Another application is
a fast, approximate solution to least squares problems.

Exercise 4.3.1. Prove Corollary 4.3.2.

4.3.2 Overdetermined Least Squares

In the overdetermined least squares problem, we are tasked with finding a `2 minimizer
ymin to the matrix equation Ax = b where A ∈ CN×n, N > n, b ∈ CN .

ymin = arg min
x∈Rn

‖Ax− b‖2

Define argmin? When b is in the range of A, then we will be able to find a solution which
solves the equation exactly. However, if b does not lie in the range of A then ymin will be
the closest vector to b in the range of A.

A standard, classic solution approach to this uses QR decomposition and takes O
(
Nn2

)
time. See Lecture 11 in [51]. We seek then then a solution approach which improves this
runtime for N � n.
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Theorem 4.3.3. There exists universal constants c̄, c′ such that a fast JL embedding matrix,√
N
mRFD ∈ C

m×N with

m ≥ c̄(n+ 1) ln

(
c′

ε

)
ln4N

will satisfy

(1− ε)‖Ay − b‖2 ≤
√
N

m
‖RFDAy −RFDb‖2 ≤ (1 + ε)‖Ay − b‖2

∀y ∈ Rn with probability at least 1− p−N− ln3N

Explain better where lower bound on m is coming from.

Proof. Let B = {a1, . . . ,an,b} be the n+ 1 orthonormalized columns of A as well as b. As
before, let Ln+1

B be the linear subspace spanned by the basis, and Sn+1
B the unit ball in the

subspace. Let C ⊂ Sn+1
B be a minimal

(
ε

16

)
cover as in Theorem 4.3.1, and so |C| ≤

(
48
ε

)n+1

Theorem 4.3.1 then implies that so long as Φ is a ε
2 -JL map of C then for each y ∈ Cm

we have Ay − b ∈ span(B) or equivalently Ay − b ∈ Ln+1
B . So then for any such y

(1− ε)‖Ay − b‖22 ≤
√
N

m
‖RFDAy −RFDb‖22 ≤ (1 + ε)‖Ay − b‖22

with probability at least 1− p−N− ln3N

Denote F̃ =
√

N
mRFD, the fast JL matrix from Theorem 4.3.3. How good is the

approximation to the original least squares problem? Observe that F̃A ∈ Cm×n and
F̃ b ∈ Cm we have then a compressed minimization problem,

y′min = arg min
z∈Cn

‖F̃Az− F̃b‖2

By Theorem 4.3.3 we have

(1− ε)‖Ay′min − b‖22 ≤ ‖F̃Ay′min − F̃b‖22
≤ ‖F̃Aymin − F̃b‖22
≤ (1 + ε)‖Aymin − b‖22

Therefore,

‖Ay′min − b‖2 ≤
√

1 + ε

1− ε
‖Aymin − b‖2
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Similarly we can bound from below,

(1 + ε)‖Ay′min − b‖22 ≥ ‖F̃Ay′min − F̃b‖22
≥ (1− ε)‖Ay′min − b‖22
≥ (1− ε)‖Aymin − b‖22

Thus the solution to the approximate answer has the following error bounds√
1− ε
1 + ε

‖Aymin − b‖2 ≤ ‖Ay′min − b‖2 ≤
√

1 + ε

1− ε
‖Aymin − b‖2.

This means that y′ is almost as good a minimizer as the answer.

Runtime of the Randomized Approach:

The runtime of the approximate solution depends on multiplying A and b by F̃ and then
also solving the compressed minimization problem. That is,

1. Computing F̃A ∈ Cm×n can be computed in O (nN logN) time

2. Computing F̃b can be computed in O (N logN) time

3. Solving least squares problem arg minz∈Cn ‖F̃Az − F̃b‖2 can be solved in O(mn2)

using QR factorization for example. Substituting in m = c̄(n + 1) ln
(
c′

ε

)
ln4N we

have O(n3 log4N) (constants depending on ε and p are collapsed)

So the total runtime to find y′min is O
(
nN logN + n3 log4N

)
. Recall the classic solution

requires O(n2N). Therefore when logN . n . N log−4N we achieve a speedup by using
the approximate solution approach. For example, should n =

√
N then we have a runtime of

O
(
N1.5 log4N

)
for the approximate solution and O(N2) for the classical solution approach.

4.3.3 A Sketching Method for Approximating Singular Values

Lemma 4.3.4. Let A ∈ CN×p be a matrix with orthonormal columns. Suppose that
M ∈ Cm×N is an ε-JL map of the column space of {A} into Rm. Then MA is full rank
with

1− ε ≤ σj(MA) ≤ 1 + ε ∀j ∈ [p]. (4.4)

Proof. Let v ∈ Cp with ‖v‖2 = 1 be such that σj(MA) = ‖MAv‖2. Since

‖MAv‖2 ≤ (1 + ε)‖Av‖2 (M is an ε-JL map)

= 1 + ε (A has orthonormal columns),

we have σj(MA) ≤ 1 + ε. Following the same reasoning we have that σj(MA) ≥ 1− ε.
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Lemma 4.3.5. Let V ∈ CN×r have orthonormal columns, and suppose M ∈ Cm×N is an
ε−JL map of L =Column span of V in RN . Then MV ∈ Cm×r is full rank with

1− ε ≤ σj (MV ) ≤ 1 + ε ∀j ∈ [r].

Proof. Let u ∈ Cr with ‖u‖2 = 1 be such that

σ1 (MV ) = ‖MV u‖2.

u top singular vector of matrix... We have that:

σ1 (MV ) = ‖MV u‖ ≤ (1 + ε)‖V u‖
= (1 + ε) orthogonality of V + ‖u‖2 = 1

Similarly, letting w ∈ Cr with ‖w‖2 = 1 be such that

σr (MV ) = ‖MVw‖2.

Then:

σr (MV ) = ‖MVw‖ ≥ (1− ε)‖V w‖ = (1− ε).
= (1− ε) orthogonality of V + normality of u

Theorem 4.3.6. Suppose A ∈ Cn×p is a rank r ≤ min(n, p) matrix. Let M ∈ Cm×n be an
ε−JL map of the column space of A into Cm. Then:

|σj (MA)− σj (A)| ≤ εσj (A) ∀j ∈ [r]

Proof. Let A = UΣV T be A′s ”thin” SVD. By Lemma 4.3.5:

σj(MU) ∈ (1− ε, 1 + ε)∀j ∈ [r].

Furthermore:
MA = MUΣV T

. By Theorem 2.3.9 we have:

σj (MA) ≤ σ1 (MU)σj
(
ΣV T

)
≤ (1 + ε)σj (A) ∀j ∈ [r]

In addition, by Lemma 2.3.10 we have:

σj (MA) ≥ σr (MU)σj
(
ΣV T

)
≥ (1− ε)σj (A) ∀j ∈ [r]
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Theorem 4.3.7. Let A ∈ CN×p be a rank r ≤ min(N, p) matrix. Suppose that M ∈ Cm×N
is an ε-JL map of the column space of A into Cm. Then

|σj(MA)− σj(A)| ≤ εσj(A) ∀j ∈ [r]. (4.5)

Proof. Let A = U︸︷︷︸
N×r

Σ︸︷︷︸
r×r

V ∗︸︷︷︸
r×p

be a thin SVD of A. By Lemma 4.3.4, the singular values

of MU are contained in [1− ε, 1 + ε]. Furthermore, by Lemma 2.3.10 we have that for all
j ∈ [r],

σj(MA) ≤ σ1(MU)σj(ΣV
∗) ≤ (1 + ε)σj(A) (4.6)

σj(MA) ≥ σr(MU)σj(A) ≥ (1− ε)σj(A). (4.7)

The result now follows.

Corollary 4.3.8. Let A ∈ CN×N a rank r matrix. Suppose that M1,M2 is a ε-JL map of
the column space of A,A∗ into Cn, respectively. Then

|σj(M1AM
∗
2 )− σj(A)| ≤ ε(2 + ε)σj(A) ∀j ∈ [N ]. (4.8)

Proof. By Theorem 4.3.7 we have both

|σj(M1AM
∗
2 )− σj(AM∗2 )| ≤ εσj(AM∗2 )

and

|σj(AM∗2 )− σj(A)| = |σj(M2A
∗)− σj(A∗)| ≤ εσj(A).

Therefore, by triangle inequality we obtain

|σj(M1AM
∗
2 )− σj(A)| ≤ |σj(M1AM

∗
2 )− σj(AM∗2 )|+ |σj(AM∗2 )− σj(A)|

≤ ε(σj(AM∗2 ) + σj(A))

≤ ε((1 + ε)σj(A) + σj(A))

= ε(2 + ε)σj(A).

This completes the proof.

Corollary 4.3.9. Consider the following

• A ∈ Cn×n be rank r.

• M1 ∈ Cm×n an ε− JL map of the column space of A into Cm

• M2 ∈ Cm×n an ε− JL map of the column space of AT into Cm
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Then ∣∣σj (M1AM
T
2

)
− σj (A)

∣∣ ≤ ε(2 + ε)σj (A) ∀j ∈ [r].

Proof. By Theorem 4.3.6, we will have∣∣σj (M1AM
T
2

)
− σj

(
AMT

2

)∣∣ ≤ εσj (AMT
2

)
????since col − space(AMT

2 ) ⊆ col − space(A)

and ∣∣σj (AMT
2

)
− σj (A)

∣∣ =
∣∣σj (M2A

T
)
− σj

(
AT
)∣∣

≤ εσj
(
AT
)

= εσj(A).

Therefore∣∣σj (M1AM
T
2

)
− σj (A)

∣∣ ≤ ∣∣σj (M1AM
T
2

)
− σj

(
AMT

2

)∣∣+
∣∣σj (AMT

2

)
− σj (A)

∣∣
≤ ε

(
σj
(
AMT

2

)
+ σj (A)

)
≤ ε ((1 + ε)σj (A) + σj (A))

= ε(2 + ε)σj (A) .

 If A ∈ Cn×n is rank r � n, we now get to compute the SVD of an m×m matrix (
where m is Õ(r)) to learn the approximate set of singular values of A.

 This still works even if A is approximately low-rank.

Lemma 4.3.10. Let A ∈ Cn×p and suppose that M ∈ Cm×n is an ε−JL map of the
columns of A;{aj |j ∈ [p]} into Cm. Then∣∣‖MA‖2F − ‖A‖2F

∣∣ ≤ ε‖A‖2F .
Proof. Left as an exercise. add HW problem

 For an arbitrary matrix A ∈ Cn×n we can always split A using its SV D

A = UΣV T = U

(
Σr 0

0 Σn−r

)
V T

= UrΣrV
T
r + U\rΣn−rV

T

=: Ar +A\r.

Here Ur and U\r represent the matrix made of the fist r columns and last n− r columns of
U respectively. Also U,Σ, V ∈ Cn×n. actually define A\r
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Theorem 4.3.11. Let A ∈ Cn×n and chose r ∈ [n]. Furthermore, suppose that M1 ∈ Cm×n

and M2 ∈ Cm×n satisfy:

1 M1 is an ε−JL map of the column space of Ar into Cm

2 M1 is an ε−JL map of the n-columns of A\r into Cm

3 M2 is an ε−JL map of the column space of ATr into Cm

4 M2 is an ε−JL map of the n-columns of of AT\rM
T
1 into Cm.

Then: ∣∣σj (M1AM
T
2

)
− σj (A)

∣∣ ≤ ε(2 + ε)σj (A) + (1 + ε)‖A\r‖F ∀j ∈ [r].

Proof.

M1AM2 = M1ArM
T
2 +M1A\rM

T
2 .

Thus by Theorem ?? (c) we have:∣∣σj (M1AM
T
2

)
− σj

(
M1ArM

T
2

) ∣∣ ≤ σ1

(
M1ArM

T
2

)
≤ ‖M1A\rM

T
2 ‖F = ‖M2A

T
rM1‖F

Using Lemma 4.3.10 twice + together with assumption 2 and 4

≤
√

1 + ε‖AT\rM
T
1 ‖F =

√
1 + ε‖M1A\r‖F

≤ (1 + ε)‖A\r‖F

Finally we have:∣∣σj (M1AM
T
2

)
− σj (A)

∣∣ ≤ ∣∣σj (M1AM
T
2

)
− σj

(
M1ArM

T
2

) ∣∣+
∣∣σj (M1ArM

T
2

)
− σj (A)

∣∣
≤ (1 + ε)‖A\r‖F + ε(2 + ε)σj(A) Using Corollary 4.3.9.

4.4 New Randomized SVD [CMSE 890 Lecture 14]

Definition 4.4.1. Let ε > 0 and r ∈ N. A matrix X̃ ∈ Cn×m is an (ε, r)−Projection Cost
Preserving (PCP) sketch of X ∈ Cn×q if for all orthogonal projection matrices P ∈ Cn×n

with rank at most r,

(1− ε)‖X − PX‖2F ≤ ‖X̃ − PX̃‖2F ≤ (1 + ε)‖X − PX‖2F

holds.
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define orthogonal projection matrix in def above, and talk about it’s structure as QQT

Algorithm 22 Compressed PCA

Input: A ∈ Cn×q, Ã ∈ Cn×m and (ε, r)− PCP sketch of A.
Output: Approximation of Ar, the best rank r approximation of A = UΣV

(Ar = UrΣrVr).
Note: ‖A − Ar‖F ≤ ‖A − V ‖F ∀ rank ≤ r matrices
V .

1 Compute the SV D of Ã = P
(n×m)

Σ
(m×m)

V
(m×m)

and let Pr be the first r columns of P

2 Compute the SV D of P ∗rA
(r×q)

= Ũ
(r×r)

Σ̃
(r×r)

Ṽ
(r×q)

return Ã
′
r = (PrŨ)

(n×r)
Σ̃

(r×r)
Ṽ

(r×q)

(
will actually output PrŨ , Σ̃, Ṽ

)

 A QR−based SVD can be computed in O(min(n, q)ṅq)−time

 The algorithm above will take O(m2n
line1

+ r2q
line2

+ rnq
computeP ∗r A

)−time.

 If m ∼ r sufficiently (it will) this gives us FIX!:

O(n3)− time (standard) V.S O(rnq +m2n+ r2q) (algorithm above.)

Theorem 4.4.2. Let ε ∈ (0, 1). Then the output of the compressed PCA Algorithm above
will satisfy:

‖A− Ã′r‖F ≤
√

1 + ε

1− ε
‖A−Ar‖F .

Proof. Clean up presentation & make explanatory comments more clearly comments....

‖A− Ã′r‖2F = ‖A− PrŨrΣ̃Ṽ ‖2F = ‖A− PrP ∗rA‖2F

≤
‖Ã− PrP ∗r Ã‖2F

1− ε
since Ã is an (ε, r)PCP sketch of A

≤
‖Ã− UrU∗r Ã‖2F

1− ε
by PrP

∗
r def + Ã

optimalrankrapproximation
= Ãr where Ar = UrΣrV

T
r

≤ 1 + ε

1− ε
‖A− UrU∗rA‖2F using the PCP property

=
1 + ε

1− ε
‖A−Ar‖2F .
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 Obvious question: How can we actually compute Ã quickly ?

 Idea:Let Ã = A
(n×N)

Ω∗
(N×m)

where Ω is a random matrix.

Make dimensions of matrices and variable names below consistent with definitions
above...

Theorem 4.4.3. Let X ∈ Cn×N of rank r̃ ≤ min(n,N) have the full SVD X = UΣV ∗,
and let Vr′ ∈ CN×r′ denote the first r′ columns of V ∈ CN×N for all r′ ∈ [N ]. Fix r ∈ [n]
and consider the head-tail split X = Xr

best rk r approx w.r.t‖.‖F
+X\r. If Ω ∈ Cm×N satisfies :

1 (1− ε
3)‖X∗r y‖22 ≤ ‖ΩX∗r y‖22 ≤ (1 + ε

3)‖X∗r y‖22 ∀y ∈ Rn.

2 ‖X\rΩ∗ΩVmin(r,r̃) −X\rVmin(r,r̃)‖F ≤ ε

6
√

min(r,r̃)
‖X\r‖F ‖Vmin(r,r̃)‖F ≤ ε

6‖X\r‖F ,

3 (1− ε
6)‖y‖22 ≤ ‖Ωy‖22 ≤ (1 + ε

6)‖y‖22 ∀y ∈ {n columns of XT
\r}

4 ‖X\rΩ∗ΩX∗\r −X\rX
∗
\r‖ ≤

ε
6
√
r
‖X\r‖2F ,

Then X̃ = XΩ∗ is an (ε, r)− PCP sketch of X.

Proof. Let Q ∈ Cn×r be an arbitrary matrix with orthogonal columns s.t QQ∗ is an
orthogonal projection matrix. Let P = I −QQ∗. It suffices to prove that :

(A)

∣∣∣∣‖PX‖2F − ‖PXΩ∗‖2F

∣∣∣∣ ≤ ε‖PX‖2F
Writing X = Xr +X\r where (Xr = Ur

(first r cols of U in SVD of X)
Σr

(r×r)
V ∗r

(r×N)

) and using that

i trAA∗ = ‖A‖2F
ii P = P ∗

iii X\rX
∗
r = 0 (HW!)

We have that the LHS of (A) is equivalent to

LHS(A) =

∣∣∣∣‖P (Xr +X\r)‖2F − ‖P (Xr +X\r)Ω
∗‖2F
∣∣∣∣

=

∣∣∣∣tr (P (XrX
∗
r +X\rX

∗
\r)P

)
− tr(P (XrΩ

∗ΩX∗r +XrΩ
∗ΩX∗\r +X\rΩ

∗ΩX∗r +X\rΩ
∗ΩX∗\r)P

∗)

∣∣∣∣
≤
∣∣∣∣tr (P (XrX

∗
r −XrΩ

∗Ωx∗r)P )

∣∣∣∣+ 2

∣∣∣∣tr (P (X\rΩ
∗ΩX∗r )P

) ∣∣∣∣+

∣∣∣∣tr (P (X\rX
∗
\r −X\rΩ

∗ΩX∗\r)P
) ∣∣∣∣ = (B)

Thus it suffices to show that (B) ≤ ε‖PX‖2F . To show this it in turn suffices to show that
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(I)

∣∣∣∣tr(P (XrX
∗
r −XrΩ

∗ΩX∗r )P )

∣∣∣∣ =

∣∣∣∣‖X∗rP‖2F − ‖ΩX∗rP‖2F ∣∣∣∣ ≤ ε
3‖PX‖

2
F (HW!)

(II)

∣∣∣∣tr(P (X\rΩ
∗ΩX∗r )P )

∣∣∣∣ ≤ ε
6‖PX‖

2
F

(III)

∣∣∣∣tr(P (X\rX
∗
\r −X\rΩ

∗ΩX∗\r)P )

∣∣∣∣ ≤ ε
3‖PX‖

2
F

Proof of II: Using the invariance of trace under transposition and permutation and the the
fact that P ∗ = P = P 2 we get ∣∣∣∣tr(PX\rΩ∗ΩX∗rP )

∣∣∣∣ =

∣∣∣∣tr(PXrΩ
∗ΩX∗\rP )

∣∣∣∣
=

∣∣∣∣tr(PXrΩ
∗ΩX∗\r)

∣∣∣∣
Using the thin SUD of X = Û

(n×r̃)
Σ̂

(r̃×r̃)
V̂ ∗

(r̃×N)
we can write

=

∣∣∣∣tr(PÛÛ∗XrΩ
∗ΩX∗\r)

∣∣∣∣
=

∣∣∣∣tr(PÛ Σ̂V̂ ∗V̂ Σ̂−1Û∗XrΩ
∗ΩX∗\r)

∣∣∣∣
=

∣∣∣∣tr(PÛ Σ̂V̂ ∗)(V̂ Σ̂−1Û∗XrΩ
∗ΩX∗\r)

∣∣∣∣
=

∣∣∣∣tr(PX)(V̂ Σ̂−1Û∗XrΩ
∗ΩX∗\r)

∣∣∣∣
 〈A,B〉 = tr(AB∗) is an inner product with ‖A‖F =

√
tr(AA∗). Hence by C-S we have:∣∣∣∣tr(PX\rΩ∗ΩX∗rP )

∣∣∣∣ ≤ ‖PX‖F ‖V̂ Σ̂−1Û∗XrΩ
∗ΩX∗\r‖F

= ‖PX‖F ‖Σ̂−1Û∗(UrΣrV
∗
r )Ω∗ΩX∗\r‖F since V̂ has orthogonal columns

= ‖PX‖F ‖V ∗min(r,r̃)Ω
∗ΩX∗\‖F

= ‖PX‖F ‖X\rΩ∗ΩVmin(r,r̃)‖F
Now using that X\rVmin(r,r̃) = 0 we have

= ‖PX‖F ‖X\rΩ∗ΩVmin(r,r̃) −X\rVmin(r,r̃)‖F
≤ ‖PX‖F

ε

6
‖X\r‖F by assumption (2)

≤ ε

6
‖PX‖2F
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Since ‖X\r‖F = ‖X − Xr
best rk r approx

‖F ≤ ‖X −QQ∗‖F .

Proof of III:∣∣∣∣tr(P (X\rX
∗
\r −X\rΩ

∗ΩX∗\r))

∣∣∣∣ =

∣∣∣∣tr((I −QQ∗)(X\rX∗\r −X\rΩ∗ΩX∗\r))∣∣∣∣
≤
∣∣∣∣tr(X\rX∗\r −X\rΩ∗ΩX∗\r)∣∣∣∣+

∣∣∣∣QQT (X\rX
∗
\r −X\rΩ

∗ΩX∗\r)

∣∣∣∣
≤
∣∣∣∣‖X∗\r‖2F − ‖ΩX∗\r‖2F ∣∣∣∣+ ‖QQT ‖F ‖X\rX∗\r −X\rΩ

∗ΩX∗\r‖

≤ ε

6
‖X∗\r‖

2
F +
√
r‖X\rXT

\r −X\rΩ
∗ΩX∗\r‖F

≤ (ε/6 + ε/6)‖Xr‖2F
≤ ε

3
‖PX‖2F since Xr is the best rank r approximation

CMSE 890 Lecture 15

Lemma 4.4.4. Let A ∈ Cn×N have rank r̃ ≤ min(n,N). Fix r ∈ [N ]. There exist finite

sets S1, S2 ⊂ CN (determined by A) with |S1| ≤
(

141
ε

)min(r,r̃)
and |S2| ≤ 32n2 + n such that

the following holds: If Ω ∈ Cm×N is both:

• An ε/6−JL map of S1 into Cm and

• An ε
6
√
r
−JL map of S2 into Cm,

then AΩ∗ is an (ε, r)−PCP sketch of A.

Proof. To ensure condition 1 of Theorem 4.4.3 Ω needs to be an oblivious subspace embed-
ding of the column space of A∗r . This can be accomplished by having Ω be an ε/6−JL map
of a minimal (ε/48)−cover of the unit `2−ball in the min(r, r̃)− dimensional column space
of A∗r . Let S1 be this (ε/48)−cover.
To guarantee condition 2 of Theorem 4.4.3 we need to embed the set

S′ = {x± iy, x± y|x, y ∈ S}

where S = {columns ofA∗\r}∪{columns of Vmin(r,r̃)}. Note that |S| ≤ 2n so |S′| ≤ 4(2n)2 ≤
16n2.
Similarly to guarantee condition 4 of Theorem 4.4.3 we need to embed a second set S̃′ of
size ≤ 16n2.

Finally to guarantee condition 3 we need to ε−JL map ˜̃S = {ncolumsn of A∗\r} into Cm.

Thus S2 := S′ ∪ S̃′ ∪ ˜̃S has cardinality ≤ 32n2 + n.
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Example 4.4.5. If Ω ∈ Cm×N has i.i,d ±1(with prob 1/2) for entries then it will be
an (ε, r)−PCP sketch of a given A ∈ Cn×N w.h.p if m ≥ c r

ε2
max{ln

(
c1
ε

)
, ln (c2n)} where

c, c1, c2 ∈ R+ are absolute constants.

Make proving example and exercise... Add a few more special cases too!
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Chapter 5

Sublinear-Time Compressive
Sensing

BEGIN WITH GENRAL DISCUSSION OF COHERENCE AND SLOW COMPRESSIVE
SENSING

5.1 “Slow” combinatorial compressive sensing using binary
low coherence matrices

We will now discuss how coherence propertries can be combined with deterministic construc-
tions to achieve compressive sensing with quadratic dependence on sparsity s (compared
with linear dependence for probabilistic approaches seen so far) but which do offer faster
recovery and also guarantee error bounds (i.e. no chance of failure)

Definition 5.1.1 (Coherence). Let Φ ∈ Cm×N be a matrix with `2-normalized columns
ϕ0, . . . ,ϕN−1 having ‖φj‖ = 1 ∀j ∈ [N ]. The coherence µ(Φ) = maxi 6=j |〈ϕj ,ϕi|

Note that if U is orthonormal, then µ(U) = 0. If U contains two identical columns then
µ(U) = 1. So we see that µ(Φ) ∈ [0, 1]. Compared to other matrix properties of interest for
compressive sensing settings, coherence is easy to compute.

We will show how low coherence matrices have the RIP property, and in turn can be
used as JL maps. In order to do this, we will need the following classic theorem from linear
algebra.

Theorem 5.1.2 (Gerschgorin Disc). Let λ be an eigenvalue of a square matrix A ∈ CN×N .
Then there exists an index j ∈ [N ] such that

|λ−Ajj | ≤
∑

`∈[N ]\{j}

|Aj`|
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Proof. Let (λ,u) be an eigenpair of the matrix. Let j be the index corresponding to the
largest entry of the eigenvector, i.e. |uj | = ‖u‖∞. Then

∑
`∈[N ]Aj`u` = λuj . That is since

Au = λu, the j-th entry of the vector Au is the inner product of the j-th row of A with u
scaled by λ.

Now, moving the term Ajjuj to the other side, we obtain∑
`∈[N ]\{j}

Aj`u` = (λ−Ajj)uj

Using the triangle inequality and bounding with the infinity norm, we have

|λ−Ajj ||uj | ≤
∑

`∈[N ]\{j}

|Aj`u`| =⇒ |λ−Ajj ||uj | ≤ uj
∑

`∈[N ]\{j}

|Aj`|

Dividing each side then by |uj | yields the desired result. Note that every eigenpair may
have a different center and radius, depending on which entry of the eigenvector is of largest
magnitude.

Corollary 5.1.3. Every eigenvalue of A lies in at least one of the N circular disks in the
complex plane with centers Ajj and radii

∑
i 6=j |Aij |. Moreover if m of these disks form a

connected domain that is disjoint from the other N −m disks, then there are m eigenvalues
of A within the domain.

Theorem 5.1.4. Let Φ ∈ Cm×N be a matrix with `2-normalized columns, take s ∈ [N ].
Then ∀s-sparse vectors x ∈ CN

(1− (s− 1)µ(Φ))‖x‖2 ≤ ‖Φx‖22 ≤ (1 + (s− 1)µ(Φ))‖x‖22

Proof. Let S ⊂ [N ], |S| ≤ s. Then the matrix Φ∗SΦS ∈ Cs×s formed by omitting all
columns of Φ not in S is positive semi-definite. Denote its largest and smallest eigenvalues
as λmax, λmin. If x is s-sparse and S = supp(x) then

‖Φx‖22 = ‖ΦSxS‖22
= 〈ΦSxS ,ΦSxS〉
= 〈Φ∗SΦxS ,xS〉

≤ λmax‖xS‖22
≤ λmax‖x‖22

In a similar fashion we can show that ‖Φx‖22 ≥ λmin‖x‖22. That is we have

λmin‖x‖22 ≤ ‖Φx‖22 ≤ λmax‖x‖22
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Gerschgorin’s Disc theorem implies that there exists some index j ∈ S such that∣∣∣λ− (Φ∗SΦS)jj

∣∣∣ ≤ s∑
i 6=j

∣∣∣(Φ∗SΦS)ij

∣∣∣
However, we know that (Φ∗SΦS)ij = 〈ϕi,ϕj〉, so

|λ− 1| ≤
s∑
i 6=j
|〈ϕi,ϕj〉| ≤ (s− 1)µ(Φ)

Theorem 5.1.4 immediately implies the following

1. Φ has the RIP of order (s, (s− 1)µ(Φ)).

2. For Φ∗SΦS ∈ CN×N , all of its non-zero eigenvalues are contained in the interval
[1− (s− 1)µ(Φ∗SΦS), 1 + (s− 1)µ(Φ∗SΦS)]

Definition 5.1.5. Let K,α ∈ [N ] := {0, . . . , N − 1}. A matrix A ∈ {0, 1}m×N is (K,α)-
coherent if the following conditions hold:

1. Every column of A contains at least K ones, and

2. For every j, ` ∈ [N ], j 6= `, the inner product of the columns aj and a` satisfies
〈aj ,a`〉 ≤ α.

Exercise 5.1.1. Fix ω ∈ [N ] \ {0} and let X` = exp
(

2πiu`ω
N

)
where u` are i.i.d. uniformly

in [N ] random variables ∀` ∈ [m].

1. Prove that 0 = E
[

1
mRe(X`)

]
= E

[
1
m Im(X`)

]
2. Use Theorem 3.11.2 twice to show that

P

[
1

m

∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t
]
≤ p

N − 1

for any choice of p ∈ (0, 1) provided m ≥ 4
t2

ln 4(n−1)
p

3. Let A ∈ Cm×N be given by

A`,ω =
1√
m

exp

(
2πiu`ω

N

)
, ` ∈ [m], ω ∈ [N ]

Show that the columns of A are `2-normalized and that the coherence of µ(A) < ε
with probability greater than 1− p provided

m ≥ 4

ε2
ln

(
4(N − 1)

p

)
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4. Show that A has the RIP of order (s, ε) for A with high probability when

m ≥ C s
2

ε2
ln

(
4(N − 1)

p

)
Goal. Keep α small while making K large.

Proposition 5.1.6 (Welch bound). For a matrix A ∈ {0, 1}m×N , the coherence satisfies

max
1≤j 6=`≤N

∣∣∣∣〈 aj
‖aj‖2

,
a`
‖a`‖2

〉∣∣∣∣ ≥
√

N −m
m(N − 1)

.

The Welch bound then gives a lower bound on the number of rows for a (K,α)-coherent
matrix:

α

K
≥

√
N −m
m(N − 1)

=⇒ m ≥ K2

α2

N −m
N − 1

.

When, for example, m ≤ N/2 (which we henceforth assume), we must then have m =
Ω(K2/α2).

Example 5.1.7 ([28], Theorem 2). Fix some probability threshold σ ∈ [0, 1), and generate
M ∈ {0, 1}m×N where each entry is i.i.d. Bernoulli, i.e.,

mi,j =

{
1 with probability p

0 with probability 1− p,

where

p =
log4/e

(
3N2

1−σ

)
K (1 + o(1))

for some K ≥ α ≥ 2 log4/e

(
3N2

1−σ

)
. Then M will be (K,α)-coherent with probability at least

σ provided that m ≥ cK2/α.

5.1.1 Deterministic block constructions

Example 5.1.8 ([18] and [33]).

1. Choose a prime p ∈ [N ].

2. For each j ∈ [N ] we will consider the representation of j in base p, denoted

j = j0 + j1p+ j2p
2 + · · ·+ jdlogpNe−1p

dlogpNe−1,

where j0, . . . , jdlogpNe−1 ∈ [p].
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3. Now, we map every j ∈ [N ] to the polynomial

Qj(x) := j0 + j1x+ · · ·+ jdlogpNe−1x
dlogpNe−1,

over the finite field Zp.

4. Define M = (m0, . . . ,mN−1) ∈ {0, 1}p2×N by

m`+bp,j =

{
1 if Qj(b) = `,

0 otherwise,

of the form depicted in ??.

We now consider the coherence of M ,

〈mj ,m`〉 = |{b ∈ [p] : Qj(b) = Q`(b) ⇐⇒ (Qj −Q`)(b) = 0}|.

Since Qj −Q` is a polynomial of degree at most
⌈
logpN

⌉
− 1, it can have at most

⌈
logpN

⌉
zeros. Thus, M is a

(
p,
⌈
logpN

⌉)
-coherent matrix with p2 rows separated into p blocks.

Example 5.1.9 (Construction by error-correcting codewords). We can view the previous
construction as a special case of the construction of a (K,α)-coherent matrix where we view
the columns as binary error-correcting codewords with Hamming weight K by specifying a
lower bound on the Hamming distance.

Indeed, writing M = (m0, . . . ,mN−1) ∈ {0, 1}m×N where each codeword mj ∈ {0, 1}m
has Hamming weight K (that is, K nonzero entries), we calculate 〈mj ,m`〉 in terms of the
Hamming distance ∆(mj ,m`) := |{i ∈ [m] : (mj)i 6= (m`)i}|. Let ik ∈ [m] be an index of
mj such that (mj)ik = 1 The corresponding entry of m` will either satisfy

1. (m`)ik = 1, and therefore this index increases 〈mj ,m`〉 by one or,

2. (m`)ik = 0, and therefore this index increases ∆(mj ,m`) by one. Additionally, this
“mismatched one” in mj must have a corresponding “mismatched one” somewhere
in m` (since both codewords have the same Hamming weight) which again increases
∆(mj ,m`) by one.

Thus, after iterating through all K ones in mj, we account for 〈mj ,m`〉 and exactly half of
∆(mj ,m`), that is

〈mj ,m`〉 = K − ∆(mj ,m`)

2
.

A lower bound for the Hamming distance of 2(K − α) will then ensure that M is (K,α)-
coherent.

In 5.1.8, each column has a Hamming weight of exactly p when viewed as an error-
correcting codeword. The Hamming distance ∆(mj ,m`) is twice the number of block indices
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b which are not zeros of Qj −Q`. By same argument as before, this “number of non-zeros”
is at least by p−

⌈
logpN

⌉
, giving

∆(mj ,m`) ≥ 2
(
p−

⌈
logpN

⌉)
.

Thus, in the context of error-correcting codewords, we have again shown that the matrix
constructed in 5.1.8 is

(
p,
⌈
logpN

⌉)
-coherent.

Example 5.1.10 (A Fourier friendly construction [29, 30]). Let

p0 = 1, p1 = 2, p2 = 3, p3 = 5, . . . , p` = the `th prime.

1. For some starting index q ∈ N, fix the K sequential primes pq, . . . , pq+K−1.

2. Define M ∈ {0, 1}(
∑K−1
`=0 pq+`)×N with rows indexed by

(`, h) ∈ ([q, q +K − 1] ∩N)× [p`]

by

m(`,h),j =

{
1 if j ≡ h mod pq+`,

0 otherwise.

?? gives an example of this constructed matrix for starting index q = 1. We now obtain K
blocks of rows (one for each prime) where each column contains exactly one 1 in each block.

Considering the coherence of M , we calculate

〈mj ,m`〉 = |{p ∈ {pq, . . . pq+K−1} : ` ≡ j mod p}| =: |R|.

By the Chinese Remainder Theorem, the product of all primes in R must divide |`− j| < N .
This restricts R to sets of primes whose product is strictly less than N . Thus, for j 6= `,

α := min{m ∈ [K] : pqpq+1 · · · pq+m ≥ N}

provides an upper bound on the cardinality of R and therefore the coherence of M . Then,

pαq ≤ pqpq+1 · · · pq+α−1 < N,

giving that α ≤
⌊
logpq N

⌋
, and therefore M is

(
K,
⌊
logpq N

⌋)
-coherent. Additionally, if q

is chosen so that pq−1 < K ≤ pq, bounds on q [1] and the prime number theorem give that
pK+q−1 = O(K logK), and therefore M has

m =

K−1∑
`=0

pq+` = O(K2 logK)

columns.
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Theorem 5.1.11. For all x̃ ∈ CN with ‖x̃‖0 ≤ s, if we set K = s blogsNc /ε, then

(1− ε)‖x̃‖22 ≤ ‖Mx̃‖22 ≤ (1 + ε)‖x̃‖22.

Proof. The coherence of M/
√
K is bounded by ε/s which implies the restricted isometry

property (RIP) of order s by standard arguments, e.g., [21, Theorem 5.3].

Now how is this matrix Fourier friendly? Let Ñ =
∏q+K−1
`=q p` and M̃ ∈ {0, 1}m×Ñ

be as above with, e.g., K ≤ pq < 2K (which is possible by Bertrand’s postulate) where
K = s blogsNc /ε. Recall that these assumptions imply s � N � Ñ . Additionally let

f̂ ∈ CÑ be such that
∑

j>N |f̂j | is small (e.g., zero) and suppose that {f̂j}j∈[N ] has a good
s-sparse approximation (e.g., because it’s s-sparse). In this case, we can use compressive
sensing methods to recover f̂ using only the values of M f̂ . Moreover, we can compute these
values quickly by the following observations.

First, we see that

M̃ f̂ = M̃FÑ×Ñ

(
F−1
Ñ×Ñ f̂

)
=: M̃FÑ×Ñ f ,

where f :=
{
f
(

2πj

Ñ

)}
j∈[Ñ ]

is the vector of Ñ equally spaced samples from f(x) :=∑
j∈[Ñ ] f̂je

ijx. But note that

M̃FÑ×Ñ = FÑ×Ñ

and therefore each row in the product is the product of a discrete spike train with FÑ×Ñ .

For example, following the same indexing scheme as M̃ ,

(
M̃FÑ×Ñ

)
(`,h),k

=
1

Ñ

Ñ
pq+`

−1∑
j=0

e

−2πi(h+jpq+`)k

Ñ =

{
1

pq+`
e
−2πihk
Ñ if k ≡ 0 mod Ñ

pq+`
,

0 otherwise.

Note then that this product is extremely sparse, with each block corresponding to pq+` having
at most pq+` nonzero columns, which makes for at most m nonzero columns. Additionally,
the resulting structure of the product allows one to compute

M̃ f̂ = M̃FÑ×Ñ f =



Fpq×pq

(
f
(

2πj
pq

))
j∈[pq ]

Fpq+1×pq+1

(
f
(

2πj
pq+1

))
j∈[pq+1]

...

Fpq+K−1×pq+K−1

(
f
(

2πj
pq+K−1

))
j∈[pq+K−1]
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via K fast Fourier transforms of size at most Pq+K−1 = O(K logK). Thus, M̃ f̂ can be
computed in O(K2 log2K log logK) time if we have sampling access to f . By our assumption
that K = s blogsNc /ε for compressive sensing, we effectively compute M f̂ in

O
(

s2

log2 s
log2N (log s+ log logN)2 log (log s+ logN)

)
= O

(
s2 log2+εN

)
= O

(
s2 log3N

)
time, which is sublinear in N when s� N .

However, while we can compute the samples of M f̂ in sublinear time, standard com-
pressive sensing algorithms are all O(N)-time, so the entire recovery process will not be
sublinear. The solution which we now pursue will be to avoid these standard RIP based
recovery algorithms.

We will need to generalize the error bounds and analyses previously developed for
general sublinear-time compressive sensing methods as part of the analysis of the recovery
algorithms in [4]. These more general results will then let us recover good best s-term
approximations to eigenvectors in sub-linear time.

Definition 5.1.12. Let K,α ∈ [N ] := {0, . . . , N − 1}. A matrix A ∈ {0, 1}m×N is
(K,α)-coherent if the following conditions hold:

1. Every column of A contains at least K ones, and

2. For every j, ` ∈ [N ], j 6= `, the inner product of the columns aj and a` satisfies
〈aj ,a`〉 ≤ α.

See Example 5.1.2 for a concrete illustration. Random constructions include, e.g., this
one:

Running Example ([28], Theorem 2). A random matrix M ∈ {0, 1}m×N with i.i.d.
Bernoulli random entries will be (K,α)-coherent with high probability under mild assumptions
provided that m ≥ cK2/α.

There are also deterministic constructions too of course that are nearly as good, including
those by, e.g., [33, 18, 29, 30]. More generally, one can easily prove the following lemma
after recalling a couple basic definitions from the theory of error correcting codes.

Running Example. Let cj , c` ∈ {0, 1}m. The Hamming weight of cj is wt(cj) := ‖cj‖1.
Moreover, the Hamming distance between cj and c` is d(cj , c`) := ‖cj − c`‖1. Any error
correcting code (c0, . . . , cN−1) ∈ {0, 1}m×N with constant Hamming weight K = wt(cj) ∀j ∈
[N ] and minimum Hamming distance ∆ := minj 6=` ‖cj − c`‖1 is also a (K,K − ∆

2 )-coherent

matrix. In fact, one can see that 〈cj , c`〉 = K − ‖cj−c`‖12 ≤ K − ∆
2 for all j 6= `.

Given Example 5 one can see that there are in fact many deterministic constructions of
(K,α)-coherent matrices waiting in the error correcting code literature. See, e.g., [37] for
more related discussion.
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5.1.2 Majority (s,K)-reconstructing matrices

We begin with some definitions and examples toward an alternative to the Restricted
Isometry Property (RIP) often used in the compressive sensing and sparse approximation
literature [21].

Running Example. The matrix A ∈ {0, 1}4×6 given by

A =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


is (2, 1)-coherent.

Definition 5.1.13. If M has at least K ones in every column, then M(n) ∈ {0, 1}K×N
for n ∈ [N ] is the K ×N submatrix of M created by selecting the first K rows of M with
nonzero entries in the nth column.

Definition 5.1.14. If M has at least K ones in every column, then M ′(n) ∈ {0, 1}K×(N−1)

is the K × (N − 1) submatrix of M(n) created by removing its nth column.

Running Example. Suppose K = 2. Then, for n = 2,

A =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1



column 2

7→ A(2) =

(
1 1 1 0 0 0
0 0 1 0 1 1

)column 2 is all ones

and for n = 5,

A =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1



column 5

7→ A(5) =

(
0 1 0 1 0 1
0 0 1 0 1 1

)
.

column 5 is all ones

Furthermore, for n = 2 and n = 5 as above,

A′(2) =

(
1 1 0 0 0
0 0 0 1 1

)
and A′(5) =

(
0 1 0 1 0
0 0 1 0 1

)
.

Definition 5.1.15. For x ∈ CN , after ordering its entries by magnitude

|xj1 | ≥ |xj2 | ≥ · · · ≥ |xjN |
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(where ties are broken for |xji | =
∣∣xji+1

∣∣ so that ji ≤ ji+1), we define the index sets

Sk,1 := {j1, . . . , jk}, Sk,2 := {jk+1, . . . , j2k}, . . . , Sk,r := {j(r−1)k+1, . . . , jN},

for r =
⌊
N−1
k

⌋
+ 1.

Definition 5.1.16. For x ∈ CN and any index set S ⊆ [N ] we define the restriction of x
to S denoted x|S ∈ CN to be the vector with entries

(x|S)j :=

{
xj if j ∈ S
0 otherwise.

Definition 5.1.17. Given x ∈ CN , the s-sparse vector xs ∈ CN is defined as xs := x|Ss,1 .

We can now present our alternative to the RIP.

Definition 5.1.18 (Majority (s,K)-reconstructing). Let s ∈ N, and M ∈ {0, 1}m×N have
at least K ∈ [m] ones in every column. We will say that M is majority (s,K)-reconstructing
for x ∈ CN if the set

Bn :=
{
j :
∣∣∣(M(n)x)j − xn

∣∣∣ ≤ (1/s) ‖x− xs‖1
}
⊆ [K] (5.1)

has cardinality |Bn| > K/2 for all n ∈ [N ].

More generally, one can change the fraction involved in the cardinality lower-bound
of Bn in Definition 5.1.18 from K/2 to c−2

c K for any c ≥ 4. Doing so allows for modified
reconstruction procedures in the next section. Finally, the following lemma concerning
majority (s,K)-reconstructing matrices will be useful later.

Lemma 5.1.19. Suppose M ∈ {0, 1}m×N is majority (s,K)-reconstructing for x ∈ [0,∞)N .
Choose any diagonal matrix D ∈ CN×N you like satisfying |Dj,j | = 1 for all j ∈ [N ]. Then,
M is also (s,K)-reconstructing for Dx ∈ CN .

Proof. Let n ∈ [N ], and choose any j such that
∣∣∣(M(n)x

)
j
− xn

∣∣∣ ≤ 1
s‖x− xs‖1. Then,

∣∣∣(M(n)Dx
)
j
−
(
Dx
)
n

∣∣∣ =

∣∣∣∣∣∣
∑
`6=n

Mj,`

(
Dx
)
`

∣∣∣∣∣∣ ≤
∑
`6=n

∣∣Mj,`

(
Dx
)
`

∣∣ =
∑
`6=n

Mj,`|x`|

=
∣∣∣(M(n)x

)
j
− xn

∣∣∣ ≤ 1

s
‖x− xs‖1 =

1

s

∥∥(Dx
)
−
(
Dx
)
s

∥∥
1
.
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Algorithm 23 Median Recovery, MR : Cm × P([N ])× [N ]→ CN .

INPUT: y = Mx + n, S ⊆ [N ], s ∈ [N ].
OUTPUT: z|S̃ ∈ (C × [N ])min(|S|,2s), encoding a sparse vector z ∈
CN

1: for n ∈ S do
2: Let Re(zn)← median of Re

(
M(n)x + n|M(n)

)
entries in y.

3: Let Im(zn)← median of Im
(
M(n)x + n|M(n)

)
entries in y.

4: end for
5: Sort {zn}n∈S by magnitude so that |zn1 | ≥ . . . ≥ |zn|S| |. S̃ := {n1, . . . , nmin(2s,|S|)}.
6: Output z|S̃ with (

z|S̃
)
j

:=

{
zj if j ∈ S̃
0 otherwise

as a sparse approximation to x.

5.1.3 A Reconstruction Algorithm

For measurements of a vector taken with a s-reconstructing matrix, we provide Algorithm 23
to rapidly construct an approximation. In the algorithm, n ∈ Cm represents arbitrary
additive errors on our measurements of x given by y = Mx + n, and n|M(n) ∈ CK contains
the K entries of n ∈ Cm associated with the K rows of M(n) in M .

Complexity Analysis

The runtime of Algorithm 23 can be accounted for as follows:

• The “for loop” lines 1–4 can be performed in O(|S| · K)-time using fast median
algorithms [2] assuming that the rows of M(n) can be identified in O(K)-time for
any given n ∈ [N ]. Note that this is indeed the case for, e.g., the Fourier-friendly
matrices in [29, 30] by simply computing n modulo K prime numbers.

• Line 5 can be performed in O(|S| log |S|) time using, e.g., merge sort [36].

• Lines 5–6 output z|S̃ in a compressed format in O(s)-time and space.

Therefore, the total runtime/flop count of Algorithm 23 is O (m+ |S| ·max (K, log |S|)).
Thus, the algorithm is fast if both |S| and K are small. In Section 5.1.3, we will analyze
when it is also accurate. And, in Section 5.1.6 we will discuss how to quickly identify a
small S that still guarantees accuracy. Finally, it’s also worth mentioning that Algorithm 23
is trivially parallelizable since the zn values can be computed in parallel, and since efficient
parallel sorting methods exist (see, e.g., [43] for a comparison of several standard parallelized
sorting algorithms).
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Theoretical Error Analysis

The following theorem provides approximation guarantees for the output of Algorithm 23.

Theorem 5.1.20 (Modified from [4]). Let β ∈ [1,∞), s ∈ [N ], x ∈ CN , and n ∈ Cm.
Suppose that M ∈ {0, 1}m×N is majority (s,K)-reconstructing for x ∈ CN , and that
S ⊆ [N ] contains the set

Cs,β(x,n) :=

{
n ∈ [N ] : |xn| > β

(
‖x− xs‖1

s
+ ‖n‖∞

)}
.

Then,

‖x−MR(Mx + n, S, s)‖2 ≤ ‖x− x2s‖2 + Cβ

(
‖x− xs‖1√

s
+
√
s‖n‖∞

)
for an absolute constant Cβ ∈ R+ depending only on β. Furthermore, Cβ ≤ 6 + 2

√
2β.

We will prove Theorem 5.1.20 with the help of a couple of lemmas.

Lemma 5.1.21. Every zn estimate produced in lines 1–4 of Algorithm 23 satisfies

|zn − xn| ≤
√

2

(
‖x− xs‖1

s
+ ‖n‖∞

)
.

Proof. This follows directly from the majority (s,K)-reconstructing property of M for
x ∈ CN . Indeed, since the set Bn in (5.1) of Definition 5.1.18 has cardinality |Bn| > K/2,
reordering the K-length vector Re(M(n)x + n|M(n))j∈[K] by magnitude ensures that there
exist indices in Bn of elements in the reordered vector which lay on either side of the median
Re(zn). Thus, there exists some j ∈ Bn such that

|Re(zn)− Re(xn)| ≤
∣∣Re(M(n)x + nM(n))j − Re(xn)

∣∣ ≤ |(M(n)x)j + nj − xn|

≤
‖x− xs‖1

s
+ ‖n‖∞ =: δ′ (5.2)

where the first inequality holds by the previous argument, and the third inequality holds by
the definition of Bn. Similarly, |Im(zn)− Im(xn)| ≤ δ′. Thus,

|zn − xn| ≤
√

(δ′)2 + (δ′)2 =
√

2δ′.

Lemma 5.1.22. If n ∈ Cs,β(x,n) \ S̃ for S̃ in line 5 of Algorithm 23, then

|xn| ≤
(
β + 2

√
2
)(‖x− xs‖1

s
+ ‖n‖∞

)
.
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Proof. Note first that under the reordering |xj1 | ≥ . . . ≥ |xjN |, j` ∈ Cs,β(x,n) implies that
jk ∈ Cs,β(x,n) for all 1 ≤ k ≤ `. When N > 2s,

‖x− xs‖1 ≥
2s∑

`=s+1

|xj` | ≥ s|xj2s+1 |.

Thus, Cs,β(x,n) ⊆ S2s,1 ∩S for all β ≥ 1, giving |Cs,β(x,n)| ≤ min(2s, |S|) = |S̃|. Therefore
if n ∈ Cs,β(x,n) \ S̃, there must exist some j ∈ S̃ \ Cs,β(x,n) in particular satisfying

|xj | ≤ β
(
‖x− xs‖1

s
+ ‖n‖∞

)
and |zj | ≥ |zn|.

Hence, for δ′ as in (5.2),

βδ′ +
√

2δ′ ≥ |xj |+
√

2δ′ ≥ |zj | ≥ |zn| ≥ |xn| −
√

2δ′

where the second and fourth inequalities hold by Lemma 5.1.21.

Lemma 5.1.23. The distance between x and x|Cs,β(x,n) in `2 can be bounded by

∥∥∥x− x|Cs,β(x,n)

∥∥∥
2
≤ ‖x− x2s‖2 +

√
2sβ

(
‖x− xs‖1

s
+ ‖n‖∞

)
.

Proof. Since Cs,β(x,n) ⊆ S2s,1,

∥∥∥x− x|Cs,β(x,n)

∥∥∥2

2
= ‖x− x2s‖22+

∑
n∈S2s,1\Cs,β(x,n)

|xn|2 ≤ ‖x− x2s‖22+2sβ2

(
‖x− xs‖1

s
+ ‖n‖∞

)2

.

We are now prepared to prove our theorem concerning the output of the Median Recovery
algorithm.

Proof of Theorem 5.1.20. Let δ′ :=
‖x−xs‖1

s + ‖n‖∞ as in (5.2). Then,

‖x−MR(Mx + n, S, s)‖2 ≤
∥∥x− x|S̃

∥∥
2

+
∥∥x|S̃ − z|S̃

∥∥
2

≤
∥∥x− x|S̃

∥∥
2

+
√

2s(
√

2δ′),



238

by Lemma 5.1.21. Continuing with our upper bound using that S̃c = (S̃c \ Cs,β(x,n)) ∪
(Cs,β(x,n) \ S̃) ⊆ (Cs,β(x,n))c ∪ (Cs,β(x,n) \ S̃) we next obtain that

‖x−MR(Mx + n, S, s)‖2 ≤
∥∥x− x|S̃

∥∥
2

+ 2
√
sδ′ =

√∑
n∈S̃c

|xn|2 + 2
√
sδ′

≤
√ ∑
n∈S̃c\Cs,β(x,n)

|xn|2 +
√ ∑
n∈Cs,β(x,n)\S̃

|xn|2 + 2
√
sδ′

≤
√ ∑
n∈(Cs,β(x,n))c

|xn|2 +
√ ∑
n∈Cs,β(x,n)\S̃

|xn|2 + 2
√
sδ′

=
∥∥∥x− x|Cs,β(x,n)

∥∥∥
2

+
√ ∑
n∈Cs,β(x,n)\S̃

|xn|2 + 2
√
sδ′.

Continuing our bound by applying Lemmas 5.1.23 and 5.1.22 we can now finally see that

‖x−MR(Mx + n, S, s)‖2 ≤
∥∥∥x− x|Cs,β(x,n)

∥∥∥
2

+
√ ∑
n∈Cs,β(x,n)\S̃

|xn|2 + 2
√
sδ′

≤ ‖x− x2s‖+
√ ∑
n∈Cs,β(x,n)\S̃

|xn|2 + (2 +
√

2β)
√
sδ′

≤ ‖x− x2s‖+

√
2s
(

(β + 2
√

2)δ′
)2

+ (2 +
√

2β)
√
sδ′

= ‖x− x2s‖2 +
(√

2(β + 2
√

2) + 2 +
√

2β
)√

sδ′

as desired.

Corollary 5.1.24. Under the assumptions of Theorem 5.1.20, we also have

‖x−MR(Mx, S, s)‖2 ≤ C
′
β

‖x− xs‖1√
s

when n = 0. Here, C ′β ∈ R+ is an absolute constant with C ′β ≤ Cβ + 1 for Cβ the constant
in Theorem 5.1.20.

Proof. By [21, Proposition 2.3] (with q = 2 and p = 1), we have

‖x− x2s‖2 ≤
‖x− xs‖1√

s
,

finishing the proof.
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Up to now, we have seen that there are some nice (K,α)-coherent matrix constructions,
and that the majority (s,K)-reconstructing property allows for standard compressive sensing
error guarantees to be obtained. We will now

1. relate (K,α)-coherent matrices to the majority (s,K)-reconstructing property by
showing how to construct matrices with this property using any (K,α)-coherent
matrix, and then

2. consider fast algorithms for rapidly finding small sets S ⊇ Cs,β(x,n). This will allow
the Median Recovery algorithm to run in sublinear-time while still having good error
bounds.

5.1.4 Constructions of majority (s,K)-reconstructing matrices

We will give a majority (s,K)-reconstructing matrix construction using (K,α)-coherent
matrices. It will hold for all x ∈ CN deterministically, but will have a sub-optimal number
of rows. This will suffice for our purposes herein. We note however that majority (s,K)-
reconstructing matrices for a fixed individual x ∈ CN having fewer rows also exist (see, e.g.,
[28, Corollary 2] for an implicit construction).

We begin with the following lemmas to help with the deterministic construction.

Lemma 5.1.25. Suppose M ∈ {0, 1}m×N is (K,α)-coherent. Let n ∈ [N ], s ∈ [1,K/α]∩N,
and x ∈ CN−1. Then at most sα of the entries in M ′(n)x ∈ CK will have magnitude
greater than or equal to ‖x‖1/s.

Proof. By Markov’s inequality, we have∣∣∣∣{j : |(M ′(n)x)j | ≥
‖x‖1
s

}∣∣∣∣ ≤ s

‖x‖1

∥∥M ′(n)x
∥∥

1

≤ s
∥∥M ′(n)

∥∥
1→1

.

Furthermore, if we write M ′(n) = (m′k)k∈[N−1] and M(n) = (m`)`∈[N ] both column-wise,
we may calculate ∥∥M ′(n)

∥∥
1→1

= max
k∈[N−1]

∥∥m′k∥∥1

= max
`∈[N ]\{n}

〈m`,mn〉

≤ α,

finishing the proof.

Lemma 5.1.26. Suppose M ∈ {0, 1}m×N is a (K,α)-coherent matrix. Let n ∈ [N ],
s ∈ [1,K/α]∩N, S ⊂ [N ] with |S| ≤ s, and x ∈ CN−1. Then M ′(n)x and M ′(n) (x− x|S)
will differ in at most sα of their K entries.
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Proof. Let 1 ∈ CN−1 be the vector of all ones. We have for B := {j : (M ′(n)x)j 6=
(M ′(n)(x− x|S))j} that

|B| =
∣∣∣{j :

(
M ′(n)x|S

)
j
6= 0
}∣∣∣ ≤ ∣∣∣{j :

(
M ′(n)1|S

)
j
≥ 1
}∣∣∣ (5.3)

since the nonzero entries of M ′(n) are all ones. Now, we may apply Lemma 5.1.25 to (5.3)
with M ′(n) applied to 1|S , which has ‖1|S‖1 = |S| ≤ s to learn that |B| ≤ αs.

We are now prepared to provide our general majority (s,K)-reconstructing matrix
construction.

Theorem 5.1.27 (Modified from [4]). Suppose M is (K,α)-coherent. Let s ∈ [1,K/α]∩N
and c ∈ [4,∞) ∩N. If K > cαs, then M is majority (s,K)-reconstructing for all x ∈ CN .
In particular, the cardinality of Bn in (5.1) is such that |Bn| >

(
c−2
c

)
K for all n ∈ [N ] and

x ∈ CN .

Proof. Let n ∈ [N ] and x ∈ CN . Furthermore, let y ∈ CN−1 be x with xn removed so that

yj =

{
xj if j < n

xj+1 if j ≥ n.

Finally, let m0, . . .mN−1 ∈ {0, 1}K be the columns of M(n).
We have that

M(n)x = xnmn +M ′(n)y = xn1+M ′(n)y.

Lemma 5.1.26 tells us that at most sα entries of M ′(n)y differ from those in M ′(n) (y − ys).
Of the remaining entries of M ′(n)y (of which there are at least K−sα), at most sα of them
have magnitudes greater than or equal to ‖y − ys‖1/s by Lemma 5.1.25 (since removing
the at most sα rows j from M for which (M ′(n) (y − ys))j 6= (M ′(n)y)j leaves us with

another (K − sα, α)-coherent matrix and s ∈ [1, K−sαα ] as K > cαs > 2αs). Hence, at least

K − 2sα = K − 2

c
cαs > K − 2

c
K =

(
c− 2

c

)
K

entries of M ′(n)y have magnitudes bounded above by

1

s
‖y − ys‖2 ≤

1

s
‖x− xs‖1.

The result follows after noting that c−2
c ≥

1
2 for all c ∈ [4,∞).

Recalling the Fourier-friendly matrices from [29, 30], we note that setting K =
4s blogsNc for them yields a majority (s,K)-reconstructing matrix for any s ≤ N . This
matrix has at most

m = O
(
s2 log2

s N log(s logsN)
)

rows.
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5.1.5 Toward Fast Support Recovery: Generalized Bit Testing

Our current objective is to rapidly identify a small superset S of the set Cs,β(x,n) defined
in Theorem 5.1.20. In what follows we will learn an encoded version of each element in
Cs,β(x,n) using Error Correcting Code (ECC) ideas. To begin, note that any (K,α)-coherent
matrix A ∈ {0, 1}m×N with α < K can’t have any repeated columns since 〈aj , a`〉 = K > α
if aj = a`. Thus, for any such matrix the function fA : [N ]→ {0, 1}m defined by f(j) = A:,j

(i.e., that maps column numbers to the columns of A) is injective. In what follows below,
we also want f−1

A : {columns of A} ⊂ {0, 1}m → [N ] to be rapidly computable for such
matrices. An example of a class of matrices with this property follows.

Definition 5.1.28. For N ∈ N the N th bit testing matrix, BN ∈ {0, 1}(1+dlog2Ne)×N , is
the matrix whose jth-column ∀j ∈ [N ] is a 1 followed by j written in binary. For example,

B8 =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .

Recalling that we begin indexing the rows of our matrices with 0, we can see now that

j = f−1
BN

((BN ):,j) =

dlog2Ne∑
`=1

2`−1(BN )`,j . (5.4)

Note that BN is effectively the parity check matrix for a Hamming code with an additional
row of 1’s appended at the top, and so f−1

BN
effectively represents the efficient correction of

a single error in the ECC context. In our setting this means that linear systems of the form
BNx = y can be solved for all 1-sparse x = γej in O(logN)-time since for all such vectors
we have

BNx = BN (γej) = γ(BN ):,j = y

so that
x = y0ef−1

BN

(
1
y0

y
).

Of course, one is unlikely to encounter exactly 1-sparse vectors in many situations.
Toward generalizing, suppose now instead that x = γej + n ∈ CN , and that we want to
recover the correct j ∈ [N ] for x from noisy measurements of the form BNx+ñ ∈ C1+dlog2Ne.
If |γ| > ‖n‖1 + 3‖ñ‖∞ it turns out that we can still recover j quickly from y = BNx + ñ in
this approximately 1-sparse setting using “bit testing”. To see how, note that if the `th-bit
of j ∈ [N ] in binary is 1 then

y`+1 = (BNx+ñ)`+1 = 〈(BNx)`+1,:,x〉+ñ`+1 =
∑

k∈[N ] with

`th bit =1

xk+ñ`+1 = γ+
∑

k∈[N ] with

`th bit =1

nk+ñ`+1,
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while

y0−y`+1 =
∑
k∈[N ]

xk−
∑

k∈[N ] with

`th bit =1

xk+(ñ0−ñ`+1) =
∑

k∈[N ] with

`th bit =0

xk+(ñ0−ñ`+1) =
∑

k∈[N ] with

`th bit =0

nk+(ñ0−ñ`+1).

Thus, |y`+1| > |y0 − y`+1| will hold if the `th-bit of of j ∈ [N ] is 1 since in that case

|y`+1| =

∣∣∣∣∣∣∣∣γ +
∑

k∈[N ] with

`th bit =1

nk + ñ`+1

∣∣∣∣∣∣∣∣ ≥ |γ| −
∑

k∈[N ] with

`th bit =1

|nk| − |ñ`+1|

> ‖n‖1 + 3‖ñ‖∞ −
∑

k∈[N ] with

`th bit =1

|nk| − |ñ`+1|

≥
∑

k∈[N ] with

`th bit =0

|nk|+ 2‖ñ‖∞

≥

∣∣∣∣∣∣∣∣
∑

k∈[N ] with

`th bit =0

nk + (ñ0 − ñ`+1)

∣∣∣∣∣∣∣∣ = |y0 − y`+1|.

Similarly, one can also see that |y0 − y`+1| > |y`+1| will hold if the `th-bit of j in binary is
0. Combining these observations we obtain the following lemma.

Lemma 5.1.29 (Bit Testing). Let j ∈ [N ], ` ∈ [dlog2Ne], n ∈ CN , ñ ∈ C1+dlog2Ne, and
γ ∈ C satisfy |γ| > 3(‖n‖1 + ‖ñ‖∞). Set y = BN (γej + n) + ñ. Then, the `th-bit of j when
written in binary is 1 if and only if |y`+1| > |y0 − y`+1|.

We note here that the first known deterministic Sparse Fourier Transform (SFT)
methods [29] utilized a different matrix than BN with an alternate bit testing procedure
that’s instead based on the Chinese Remainder Theorem in order to prove an analogous
result to Lemma 5.1.29. More generally, a useful variant of Lemma 5.1.29 can be proven for
any matrix A ∈ {0, 1}m×N that has a rapidly computable inverse column map f−1

A . For the
sake of generality we next state a generalized bit testing result from which all such useful
variants can be easily derived. It’s proof is an straightforward generalization of the proof of
Lemma 5.1.29.

Lemma 5.1.30 (Generalized Bit Testing). Let A ∈ {0, 1}m×N have an injective column
map fA : [N ]→ {0, 1}m defined by fA(j) = A:,j, and define Ã ∈ {0, 1}(m+1)×N to be A with
an additional row of 1’s appended at the top. Now let j ∈ [N ], ` ∈ [m], n ∈ CN , ñ ∈ Cm+1,
and γ ∈ C satisfy |γ| > 3(‖n‖1 +‖ñ‖∞). Set y = Ã(γej +n)+ ñ. Then, (fA(j))` = A`,j = 1
if and only if |y`+1| > |y0 − y`+1|.
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We are now prepared to present what will ultimately serve as our algorithm for rapidly
finding small sets S ⊇ Cs,β(x,n). When combined with Algorithm 23 it will provide us with
a sublinear-time compressive sensing algorithm.

5.1.6 Support Recovery: Rapidly Finding a Good Set S ⊂ [N ]

In this section A ∈ {0, 1}m1×N will always represent a matrix for which the function
fA : [N ] → {0, 1}m1 defined by f(j) = A:,j is injective. As a consequence, we note that
f−1
A : {columns of A} ⊂ {0, 1}m1 → [N ] will always exist. For any such matrix A, we

will also let Ã ∈ {0, 1}(m1+1)×N denote A with an additional first row of 1’s appended
to its top. Furthermore, in this section we will generally assume that M ∈ {0, 1}m2×N

is (K,α)-coherent with s ∈ [1,K/α] ∩N and K > 4αs so that M is also majority (s,K)-
reconstructing for all x ∈ CN by Theorem 5.1.27. In that case we note that the cardinality
of Bn in (5.1) will exceed K/2 for all n ∈ [N ] and x ∈ CN .

Before we can present our support recovery algorithm we will also need some additional
notation.

Definition 5.1.31 (Khatri–Rao Product). Let B ∈ Cm×N and C ∈ Cp×N . Their Kha-
tri–Rao product, B � C ∈ Cmp×N , is defined as

B � C =


B0,0C:,0 B0,1C:,1 . . . B0,N−1C:,N−1

B1,0C:,0 B1,1C:,1 . . . B1,N−1C:,N−1
...

...
. . .

...
Bm−1,0C:,0 Bm−1,1C:,1 . . . BN−1,N−1C:,N−1

 .

More precisely, for any j ∈ [mp] we note that we may uniquely write j = qm+ r for some
q ∈ [p] and r ∈ [m]. The (j, k) ∈ [mp]× [N ] entry of B � C is then (B � C)j,k = Br,kCq,k.

Looking at Definition 5.1.31 we note that somewhat conveniently we also have

B � C =


B0,: � C
B1,: � C

...
Bm−1,: � C

 . (5.5)

In our support recovery algorithm below, Algorithm 24, we use measurements of the

form y =
(
M � Ã

)
x. Choose any r ∈ [m2] you like. Due to (5.5) and the row of

1’s always present in Ã, we note that any such y will always contain both Mx and

yr :=
(
Mr,: � Ã

)
x = Ã(Mr,: � x) as subvectors. This fact is used heavily in Algorithm 24.
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Algorithm 24 Support Recovery, SR : function pointer×C(m1+1)m2 × [m2]→ P([N ]).

INPUT: Pointer to f̃−1
A in line 10, y =

(
M � Ã

)
x + n, K. Here A ∈ {0, 1}m1×N is as in

the first paragraph of Section 5.1.6, and M ∈ {0, 1}m2×N is majority (s,K)-reconstructing
(see Theorem 5.1.32).
OUTPUT: S ⊆ [N ]

1: for r ∈ [m2] do
2: Locate yr = Ã(Mr,: � x) + ñr ∈ Cm1+1 as a subvector of y ∈ C(m1+1)m2 .
3: Initialize z← 0 ∈ {0, 1}m1 .
4: for ` ∈ [m1] do
5: if

∣∣(yr)`+1

∣∣ > ∣∣(yr)0 − (yr)`+1

∣∣ then
6: z` ← 1.
7: end if
8: end for
9: #In line 10, f̃−1

A : {0, 1}m1 → N can be any desired extension of f−1
A :

{columns of A} → [N ] #one likes to all of {0, 1}m1 as long as it satisfies f̃−1
A (A:,j) =

f−1
A (A:,j) = j ∀j ∈ [N ].

10: jr ← f̃−1
A (z).

11: end for
12: Initialize S ← ∅
13: for k ∈ [m2] do
14: if jk appears in the sequence {jr}r∈[m2] created in line 10 more than K/2 times then
15: S ← S ∪ {jk}
16: end if
17: end for
18: Output S ∩ [N ]

Complexity Analysis

The runtime of Algorithm 24 can be accounted for as follows for A ∈ {0, 1}m1×N and
M ∈ {0, 1}m2×N :

• Note that yr in line 2 can be located in O(m1)-time for each r ∈ [m2] using the
structure of the Khatri–Rao product. Similarly, the inner “for loop” lines 4 – 8
together with its initialization step in line 3 can also be performed in O(m1)-time for
each r ∈ [m2]. Finally, assuming that f̃−1

A : {0, 1}m1 → N in line 10 can always be
evaluated with at most TA flops (i.e., in O (TA)-time), one can see that the entire
outer “for loop” lines 1 – 11 can be performed in O (m2TA +m2m1)-time.

• The final “for loop” together with its initialization step in lines 12 – 17 can be
implemented by, e.g., (i) sorting the sequence {jr}r∈[m2], followed by (ii) reading
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through the sorted sequence once while counting the lengths of strings of repeated
elements (listing those repeated > K/2 times). Sorting the sequence {jr}r∈[m2] can
be done in O(m2 logm2)-time using, e.g., merge sort [36]. Reading through the sorted
sequence to find all elements repeated more than K/2 times can then be done in
O(m2)-time. Thus, the total runtime of lines 12 – 17 is O(m2 logm2).

• Line 18 can be implemented in O(m2/K)-time by simply reading through S without
outputting elements not in [N ].

Therefore, the total runtime/flop count of Algorithm 24 is O (m2(TA +m1 + logm2)).
Furthermore, note that m1 must be Ω(logm2) in order for fA to be injective.1 Thus,
the algorithm’s runtime is linear in the size of y if f̃−1

A : {0, 1}m1 → N in line 10 can
be evaluated in O(m1)-time. Looking at (5.4) one can see that this will indeed be the
case when, e.g., Ã is chosen to be the N th bit testing matrix. In particular, if Ã = BN
then Algorithm 24 will be O(m2 logN)-time. Finally, it’s also worth mentioning that
Algorithm 24 is trivially parallelizable since, e.g., lines 2 – 10 can all be run in parallel for
different r ∈ [m2]. Furthermore, lines 12 – 18 can also be parallelized by, e.g., (i) using
efficient parallel sorting methods to sort {jr}r∈[m2] after it’s formed (see, e.g., [43]), and
then by (ii) counting the number of times each element is repeated in the sorted sequence
(and then outputting as appropriate) in parallel for each k ∈ [m2].

Theoretical Guarantees

The following Theorem guarantees that Algorithm 24 will recover a relatively small set S
that contains all of Cs,3(x,n) as desired.

Theorem 5.1.32. Let x ∈ CN and define x̃ ∈ [0,∞)N to be such that x̃n = |xn| for all
n ∈ [N ]. Suppose further that M ∈ {0, 1}m2×N is majority (s,K)-reconstructing for x̃,
A ∈ {0, 1}m1×N is as in the first paragraph of Section 5.1.6, and n ∈ C(m1+1)m2. Set

y =
(
M � Ã

)
x + n. Then, SR

(
f̃−1
A ,y,K

)
will output a set S ⊆ [N ] of cardinality

|S| < 2m2
K satisfying

Cs,3(x,n) =

{
n ∈ [N ] : |xn| > 3

(
‖x− xs‖1

s
+ ‖n‖∞

)}
⊆ S.

Proof. The cardinality bound |S| < 2m2
K is ensured by lines 12 – 17 of Algorithm 24, and

S ⊆ [N ] is ensured by line 18. Thus, the remainder of the proof will be dedicated to proving
that Cs,3(x,n) ⊆ S. Toward that end, let k ∈ Cs,3 ⊆ [N ], and suppose that j ∈ Bk for x̃ in
(5.1) so that ∣∣∣(M(k)x̃)j − x̃k

∣∣∣ ≤ ‖x̃− x̃s‖1
s

=
‖x− xs‖1

s
. (5.6)

1Here we assume m2 ≤ N since, if not, none of the techniques discussed herein should be used anyway.
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Note that every j ∈ [K] satisfying (5.6) maps injectively to a unique j′ ∈ [m2] satisfying

both Mj′,k = 1 and
∥∥∥∑` 6=k

(
Mj′,: � x

)
`
e`

∥∥∥
1

=
∣∣∣∑`6=k

(
Mj′,: � x̃

)
`

∣∣∣ ≤ ‖x−xs‖1
s . Let yj′ =

Ã(Mj′,: � x) + ñj′ be the subvector of y found for r = j′ in line 2 of Algorithm 24. We
can see that Mj′,: � x = γek + n′ where n′ =

∑
`6=k
(
Mj′,: � x

)
`
e` and |γ| = |xk| >

3
(
‖x−xs‖1

s + ‖n‖∞
)
≥ 3

(
‖n′‖1 +

∥∥ñj′∥∥∞). As a consequence, when r = j′ Lemma 5.1.30

guarantees that lines 4 – 8 of Algorithm 24 will recover z = A:,k so that k is added to the
sequence created by line 10.

Moreover, the fact that M is majority (s,K)-reconstructing for x̃ guarantees that k
must appear in the sequence created by line 10 more than K/2 times since more than K/2
different j ∈ [K] must satisfy (5.6). Hence, k will be added to S in line 15 of Algorithm 24.
Finally, the fact that k ∈ [N ] guarantees that it won’t then be removed from S later in
line 18.

In order to obtain the main result of this paper it will be convenient to apply Theo-
rem 5.1.32 with the matrix A chosen as below.

Definition 5.1.33 (β-Augmented Bit Testing Matrices). Let β ∈ N. The β-Augmented Bit

Testing Matrix Bβ
N ∈ {0, 1}(β+dlog2Ne)×N , is the matrix whose jth-column ∀j ∈ [N ] consists

of β 1’s followed by j written in binary.

The following result is a simple corollary of Theorem 5.1.32.

Corollary 5.1.34. Choose an integer β > 0. Let x ∈ CN and define x̃ ∈ [0,∞)N to be
such that x̃n = |xn| for all n ∈ [N ]. Suppose further that M ∈ {0, 1}m2×N is majority

(s,K)-reconstructing for x̃, let Bβ
N ∈ {0, 1}(β+dlog2Ne)×N be as in Definition 5.1.33, and

n ∈ C(β+dlog2Ne)m2 . Set y =
(
M �Bβ

N

)
x + n. Then, SR

(
f̃−1

Bβ−1
N

,y,K

)
will output a set

S ⊆ [N ] of cardinality |S| < 2m2
K satisfying

Cs,3(x,n) =

{
n ∈ [N ] : |xn| > 3

(
‖x− xs‖1

s
+ ‖n‖∞

)}
⊆ S.

Furthermore, SR

(
f̃−1

Bβ−1
N

,y,K

)
can be executed in O (m2(β + logN))-time.

Proof. Apply Theorem 5.1.32 with A = Bβ−1
N . Noting that Ã = Bβ

N is a trivial extension
of BN in this case, one can see that line 10 of Algorithm 24 can be implemented to run in
O(β + logN)-time. The stated runtime complexity now follows from Section 5.1.6.

We are now prepared to provide some applicable sublinear-time compressive sensing
results which will later be applied to approximate compressible eigenvectors.
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5.1.7 Our Final Sublinear-Time Recovery Result

The following recovery result will utilize A = Bβ−1
N for some integer β > 1 in Algorithm 24

above. We hasten to add here, however, that those wishing to, e.g., develop sparse Fourier
transform variants will need to choose different matrices A. The recovery procedure we will
analyze follows.

Algorithm 25 Fast Compressive Sensing, FastCS : N× [N ]× [m′]×C(β+dlog2Ne)m′ → CN .

INPUT: β ∈ N, s ∈ [N ], K ∈ [m′], y =
(
M �Bβ

N

)
x + n ∈ C(β+dlog2Ne)m′ . Here

M ∈ {0, 1}m′×N is majority (s,K)-reconstructing (see Theorem 5.1.35).
OUTPUT: z|S̃ ∈ (C×[N ])≤2s, encoding a sparse vector z ∈ CN

1: Find support set S′ ← SR

(
f̃−1

Bβ−1
N

,y,K

)
⊆ [N ].

2: Locate y′ = Mx + n′ ∈ Cm′ as a subvector of y ∈ C(β+dlog2Ne)m′ .
3: Output MR(y′, S′, s) as a sparse approximation to x.

The following theorem provides a best s-term approximation guarantee [13] for Algo-
rithm 25.

Theorem 5.1.35. Let β ∈ [1,∞) ∩ Z, s ∈ [N ], x ∈ CN , and define x̃ ∈ [0,∞)N

to be such that x̃n = |xn| for all n ∈ [N ]. Suppose that M ∈ {0, 1}m′×N is majority

(s,K)-reconstructing for x̃, let Bβ
N ∈ {0, 1}(β+dlog2Ne)×N be as in Definition 5.1.33, and

n ∈ C(β+dlog2Ne)m′. Set y =
(
M �Bβ

N

)
x + n. Then,

‖x− FastCS(β, s,K,y)‖2 ≤ ‖x− x2s‖2 + 6(1 +
√

2)

(
‖x− xs‖1√

s
+
√
s‖n‖∞

)
. (5.7)

Furthermore, FastCS(β, s,K,y) can be executed in O (m′(β + logN))-time whenever the K
rows of M(n) can be identified in O(K)-time for any given n ∈ [N ].

Proof. We know that S′ ⊆ [N ] contains Cs,3(x,n) by Corollary 5.1.34. Furthermore, we
know that M is also majority (s,K)-reconstructing for x by Lemma 5.1.19. Hence, (5.7)
will hold by Theorem 5.1.20.

Considering the quoted runtime complexity for Algorithm 25, we note that Line 1 will run
in O (m′(β + logN))-time and produce a set S′ satisfying |S′| < 2m′

K by Corollary 5.1.34.
Similarly, the subvector y′ in Line 2 can always be located in O (m′(β + logN))-time.
Finally, recalling the discussion in Section 5.1.3, Line 3 will run in

O
(
m′ + |S′| ·max

(
K, log |S′|

))
= O

(
m′ ·max

(
1,

log(m′/K)

K

))
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time whenever the K rows of M(n) can be identified in O(K)-time for any given n ∈ [N ].
The result now follows after noting that m′ will be O(N) in all non-trivial applications of
these results.
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