Instruction to Sublinearized CoSaMP
Contact Info : Bosu Choi (choibosu@msu.edu) ,
Mark Iwen (iwenmark@msu.edu), Felix Krahmer (felix.krahmer@tum.de).
[bookmark: _GoBack]There are two versions of sublinearized CoSaMP in this package, one for Fourier basis setting (in ‘subcosamp_fourier’ folder) and the other for Chebyshev basis(in ‘subcosamp_chebyshev’ folder) . The details of this method can be found in the paper attached in this package, which is titled “Sparse Harmonic Transforms : A New Class of Sublinear-time Algorithms for Learning Functions of Many Variables”(2018) written by B. Choi, M. Iwen and F. Krahmer. If readers want to try other basis functions, then they need to write their own code. Random sampling points for function evaluations should be drawn from the probability distribution according to each basis function. Also, the sampling points in U_j in the paper in order to compute the inner product in Algorithm 2 should be chosen according to the basis function as well, and numerical methods for calculating one-dimensional inner product should be chosen properly. The authors above used the fast Fourier transform (FFT) for the Fourier basis and the fast cosine transform (DCT) for the Chebyshev basis. Moreover, the entries of sampling matrices are the tensorized basis function evaluated at randomly chosen sampling points. Thus, readers who want to experiment with other bases will need to modify these relevant parts of the code.
For the theoretical details of the method, again refer the attached paper.
How to run the sublinearize CoSaMP
1. Open “sublin_cosamp_func_demo”(or “sublin_cosamp_cheby_func_demo”).
2. Adjust parameters “N”, “d”, “s”, “m”, “m_1”, “m_2”, “m_bar” and “trial_n”.
(If you want to add noise to each sample, then open and run “sublin_cosamp_noise_func_demo”(or “sublin_cosamp_cheby_func_noise_demo”) instead of “sublin_cosamp_func_demo” (or “sublin_cosamp_cheby_func_demo”). There is one additional parameter to adjust, “sr” implying the noise level.)
3. Run “sublin_cosamp_func_demo”(or “sublin_cosamp_cheby_func_demo”) in MATLAB.
4. Then, the resulting files of each trial and the statistics .mat file will be generated.
5. If large amount of either the memory or the time is required, the code needs to be run on HPC(high performance computing). Example matlab.sh file for running the MATLAB code in HPC is attached.
>> sh matlab.sh (after adjusting wall time or memory in the file, and the file name if necessary)
Comparison with CoSaMP
For the comparison with regular CoSaMP, the authors also attached the CoSaMP code that they wrote in MATLAB. There are also two versions for the Fourier and Chebyshev bases (either in ‘cosamp_fourier’ or ‘cosamp_chebyshev’ folder respectively). For the detail of this method, refer the paper titled "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples"(2008) written by D. Needell and J.A. Tropp.

Plotting the Results
Example codes to produce figures in our paper are in ‘produceFigures’ folder. Readers need to modify the codes according to “Stat_...” mat files for the statistics with particular ‘N’, ’d’, ‘s’, and ‘sr’, produced by the sublinearized CoSaMP and regular CoSaMP.

