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Abstract

We outline existence of the Brenier map. As an application we
present simple proofs of the multiplicative form of the Brunn–Minkowski
inequality and the Marton–Talagrand inequality.

1.1 Introduction

Given any two probability measures µ and ν on the Euclidian space Rn we
say that a map T : Rn → Rn transports µ to ν if for each measurable set
A ⊆ Rn we have

µ(T−1(A)) = ν(A). (1)

Condition (1) is equivalent to the following one: for any bounded continuous
real-valued function f we have

ˆ
Rn

f(T (x))dµ(x) =

ˆ
Rn

f(x)dν(x). (2)

It is worth mentioning that such map does not exist for arbitrary prob-
ability measures µ and ν. For example, if µ is one point mass and ν is
supported on two different points then we can easily see that condition (1)
can not be fulfilled.

Problem of mass transportation at first time was like this: for the given
two probability measures µ and ν we need to minimize functional

ˆ
‖x− Tx‖dµ(x) (3)

over all possible choices of T which transports µ to ν. The norm ‖·‖ represents
usual Euclidian distance in Rn.

One can easily see that such optimal map T which minimizes (3) is not
unique in general. The problem of mass transportation itself is very difficult,
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for example, because of requirement (1). In order to avoid such strong re-
quirement one can consider the following mass transportation problem: given
two probability measures µ and ν we need to minimize the functional

ˆ
‖x− y‖dγ(x, y) (4)

over all possible choices of the measure γ on the product Rn ×Rn such that
for all measurable sets A,B ⊆ Rn we have

γ(A× Rn) =µ(A), (5)

γ(Rn ×B) =ν(B). (6)

We should mention that in the case when both of the measures µ and ν
are discrete, then the problem of minimizing (4) with conditions (5),(6) and
the fact that both of the measures ν, µ are probability measures is nothing
more than just a problem of linear programming. So the existence of measure
γ in this particular case follows immediately.

From the point of view of linear programming it is quite natural to replace
the integrand in (4) by some arbitrary real-valued function c(x, y) . In this
general case we can treat the value c(x, y) as a cost of moving the point x to
y.

Henceforth, we will pay attention to the optimal transportation map T
which transports µ to ν (see (1)) and minimizes

ˆ
c(x, Tx)dµ(x).

It is known that if c is a strictly convex function of the distance ‖x−y‖ then
the optimal transportation T is unique. In [2], Brenier explained that for
c(x, y) = ‖x− y‖2 the optimal map T is a gradient of some convex function
ϕ : Rn → R and vice versa, if φ is convex function and ∇φ transports µ to ν
then T = ∇φ is optimal transportation. Such a map T will be called Brenier
map. The property T = ∇ϕ allows us to use Brenier map for a wide range
of applicatons (see subsections 1.3,1.4)

1.2 A construction of the Brenier Map

In the next theorem Brenier map will be constructed for some special mea-
sures.
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Theorem 1. If µ and ν are probability measures on Rn, ν has compact
support and µ assigns no mass to any set of Hausdorff dimension (n − 1)
then there is a convex function ϕ : Rn → R, so that T = ∇ϕ transports µ to
ν.

We sketch the proof of the theorem. First we consider the case when the
measure ν is atomic i.e.

ν =
n∑
1

αjδuj

For such a measure we find a convex function of the form ϕ(x) = maxj{〈x, uj〉−
sj} with some apropriate nambers sj, such that it satisfyes the required prop-
erty. In general, we approximate measure ν weakly by atomic measures vk.
It turns out that we can choose coresponding convex functions ϕk so that
they converge locally uniformly to some convex function ϕ, moreover

∇ϕk → ∇ϕ

except for some set. Finally, by standart weak limit arguments we can see
that the map ∇ϕ transports the measure µ to ν.

Having this theorem, it is worth mentioning the following relation between
the measures µ and ν. Since T = ∇ϕ, therefore, derivative of T i.e. Hessian
of ϕ is positive semi-definite symmetric map. This means that T is essentialy
1-1. So, if µ and ν have densities f and g rspectively, then one can easily see
that condition (1) turns into the following one

f(x) = g(Tx) det(T ′(x)). (7)

This relation will be useful for our applications.

1.3 The Brunn–Minkowski Inequality

Classical Brunn-Minkovski inequality estimates the volume of the convex
sum of nonempty sets in the Euclidian space from below. Namely, let A and
B be non-measurable subset of Rn. For λ ∈ (0, 1) we define

(1− λ)A+ λB = {(1− λ)a+ λb : a ∈ A, b ∈ B}.
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Then

|(1− λ)A+ λB|1/n ≥ (1− λ)|A|1/n + λ|B|1/n (8)

where |A| denotes the n dimensional Lebesgue measure (volume) of the set
A.

The first applications of Brenier map in proving Brunn–Minkowski in-
equality was found by McCann [4]. Barthe [1] used the Brenier map and
gave a very clear proof of the Brascamp-Lieb inequality.

We restrict ourselves to a weak version of inequality (8), the so called
multiplicative form of Brunn–Minkowski inequality, namely

|(1− λ)A+ λB| ≥ |A|1−λ|B|λ. (9)

The idea of using Brenier map in proving inequality (9) is the following:
we consider the Brenier map T for the probability measures χA/|A| and
χB/|B|. Then the image of the map Tλ = (1−λ)x+λT (x) lies in (1−λ)A+
λB. So, using (7), one can see that inequality (9) follows from the estimate

det((1− λ)I + λT ′(x)) ≥ (detT ′(x))λ

which is true for every positive semi-definite symmetric matrix T ′(x).

1.4 The Marton–Talagrand Inequality

In this subsection we present Marton–Talagrand inequality which was firstly
observed by Marton [5]. The idea of proving this inequality is based on the
existence of Brenier map.

Let γ be the standard Gaussian measure on Rn with density

g(x) =
1

(2π)n/2
e−|x|

2/2.

For a density f on Rn we define the relative entropy of f to be

Ent(f ||γ) =

ˆ
Rn

f log(f/g)dx.

The cost of transporting measure γ to the measure with density f is defined
as

C(g, f) =

ˆ
|x− T (x)|2dγ,

T is the Brenier map transporting γ to the measure with density f .
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Theorem 2. With the notation above

1

2
C(g, f) ≤ Ent(f ||γ).

One of the important corollaries of the Marton–Talagrand inequality are
probabilistic deviation inequalities. Consider measurable set A ⊂ Rn. Let Aε
be a ε neighborhood of A. Set B = Rn \ Aε.

Then we have

γ(B) ≤ e−γ(A)ε
2

.

Indeed, take f = χBg(x)/γ(B). Then the relative entropy of f will be
− log γ(B). By Marton–Talagrand inequality we have C(g, f) ≤ −2 log γ(B).
However,

C(g, f) =

ˆ
Rn

‖x− T (x)‖2dγ ≥
ˆ
A

‖x− T (x)‖2dγ ≥ ε2γ(A)

So we obtain the desired result.
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Paris, 324, 885-888 (1997).

[2] Brenier, J., Polar factorization and monotone rearrangement of vector-
valued functions. Comm. Pure Appl. Math., 44, 375-417 (1991)

[3] K. Ball, An Elementary Introduction to Monotone Transportation. In:
Geometric Aspects of Functional Analysis. Springer, 2004, pp. 41-52.

[4] McCann, R. J., A convexity principle for interacting gases Adv. Math.,
228, 153-179 (1997)

[5] Marton, K., Bounding d̄-distance by informational divergence: A method
to prove measure concentration. The Annals of Probability, 24, 857-866
(1996)

Paata Ivanisvili, MSU
email: ivanishvili.paata@gmail.com

5


