
1 Krein-Milman theorem
We are going to prove a following wonderful theorem

Theorem 1.1. Let X be a locally convex linear toplogical vector space. Let
A be a convex compact in X. Then

• The set of extrem points is not empty.

• A is a closure of the convex hull of its extrem epoints.

Proof. Firstly we should mention what is the face of a convex set.

Definition 1.2. A nonemty set F is a face of A if whenever αx+(1−α)y =
z ∈ F , for some 0 ≤ α ≤ 1 and x, y ∈ A then x, y ∈ F .

We need a following auxiliary lemma:

Lemma 1.3. Take any element ` ∈ X∗ (continuous linear functional). We
claim that a set F` = {y ∈ A : `(y) = max

x∈A
`(x)} is a face.

Proof. Firstly, note that since A is compact and ` continuous therefore F` is
nonempty. Suppose αx+ (1− α)y = z ∈ F`. Then

max
x∈A

`(x) = `(z) = α`(x) + (1− α)`(y) ≤ αmax
x∈A

`(x) + max
x∈A

`(x) ≤ max
x∈A

`(x).

On the other hand we always have the equality which can be fullfield if and
only if `(y) = max

x∈A
`(x) and `(x) = max

x∈A
`(x). Thus x, y ∈ F`.

Now we return to the proof of the first part of the theorem. By Corns
lemma we do the following procedure: if A consists with only one point then
we are done. If there are two distinct points say x 6= y both belonging to A,
then by hahn-banach theorem there exists ` ∈ X∗ which strictly separates
these two points. In other words `(x) > `(y). Now we construct the face F`

surely it does not contain the point y. Then we look at F` and make the
same procedure. Thus we obtain the sequence of faces {F`}. It is linearly
ordered (ordered by inclusion) set. They are compact (As a closed (indeed)
subset of compact set) so they have an upper bound, for example intersecion
of compacts is not empty. We choose the minimal element. Note that a
minimal element is a face (easy). If it contains more that 1 point then
we make the same procedure which will bring us to the contradiction with
minimality. Thus we obtain the extreme point.

Now we are ready to prove the second part of the theorem. Let E be
a set of extreme points in A. Let CConvE be a closure of its convex hull.
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Firstly note that CConvE ⊆ A. We need to prove the convers inclusion.
From contrary, let x ∈ A \CConvE. Then we use the hahn-banach theorem
to the point x (as a compact set) and closed convex set CConvE. There
exists ` ∈ x∗ such that we have supy∈CConvE `(y) < `(y). Then we constract
the face F`. Surely it does not intersect the set CConvE and by the first
part of the theorem it has an extreme point. So we obtain the contradiction.
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