Homework Sets 11 – 16

	Class date	Section covered	HW assigned
\mathcal{O}			
Oct	Monday Sept 24	3.2	11bc, 12a, 18, 19ab, 23, and 24.
		3.3	1ac, 2ad, 4c, 6, 8ac, 13, 14, 19.
D'A	Wednesday Sept 26	3.3	Supplemental Problem 6 below
W		3.4	2ad (refers to 2ad in Section 3.3), 3abc, 4, 5abc, 7, 8, 11, 14a, 15
\mathcal{O}	/		For 7, take $a = 1$ and $b = c = 0$ to get a vector \mathbf{v}_1 , etc.
dr.	Friday Sept 28	3.5	1–4, Supplemental Problem 7 below.
Oct 10.	Monday Oct 1	3.5	5, 6, 9a, 10, Supplemental Problem 8 below.
Fui	Wednesday Oct 3	3.6	1, 3, 4ad, 6, 9 (use Rank-Nullity Theorem),
46			12 (use Theorems 3.61 & 3.61 for (a), give a 2×2 counterexample for (b),
			19 (assume that $\mathbf{y} = 0$ and show that this leads to a contradiction),
			26 (follow proof of Theorem 3.63a from class).

Supplemental Problems.

6. (a) Are the columns of $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$ linearly independent vectors in $V = \mathbb{R}^3$? (b) Are the columns of $\begin{pmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \end{pmatrix}$ linearly independent vectors in \mathbb{R}^3 ? Can you answer without doing any row

reduction?

- 7. Let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ be the standard basis of \mathbb{R}^2 , and $B = \{\mathbf{b}_1, \mathbf{b}_2\}$ be the basis $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.
 - (a) Find the transition matrices U_{EB} and U_{BE} .
 - (b) Use your answer to (a) to find the coordinates $[\mathbf{w}]_B$ of $\mathbf{w} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ in the *B*-basis.

8. Let $E = {\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3}$ be the standard basis of \mathbb{R}^3 , and let $B = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ be the basis

$$\mathbf{b}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \qquad \mathbf{b}_2 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \qquad \mathbf{b}_3 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}.$$

- (a) Find the transition matrices U_{EB} and U_{BE} .
- (b) Use your answer to (a) to find the coordinates $[\mathbf{w}]_B$ of $\mathbf{w} = \begin{pmatrix} 5\\ -2\\ 3 \end{pmatrix}$ in the *B*-basis.