
Chapter 1

Complex Numbers and Functions

1.1 Definition

We have learned several systems of numbers. They are

1. N = {1, 2, 3, . . . }, natural numbers.

2. Z = {0, 1,−1, 2,−2, 3,−3, . . . }, integers.

3. Q = {p/q : p ∈ Z, q ∈ N}, rational numbers.

4. R = {rationals and irrationals}, real numbers.

Their relations are N ⊂ Z ⊂ Q ⊂ R. Among them Q and R are called fields. This means that
there are operations in these sets a+ b, a− b, a · b, a/b (if b 6= 0), and there are special numbers
0 and 1 such that 0 + a = a and 1 · a = a.

We will learn a new field of numbers:

5 C = {x+ yi : x, y ∈ R}, complex numbers,

which extends R. The symbol i stands for a square root of −1, i.e.,

i2 = −1.

Since x2 ≥ 0 for every x ∈ R, i cannot be a real number. For z = x + yi ∈ C, x is called the
real part of z, and y is called the imaginary part of z. We write x = Re z and y = Im z.

There are several reasons why we need complex numbers

1. Fundamental theorem of algebra: every nonconstant complex polynomial has at least one
complex root. This is not true for real polynomial, e.g., x2 + 1 = 0 has no real root.

2. Linear algebra: every complex matrix has a complex eigenvalue.

3. The properties of familiar functions such as polynomials, ex, log(x), sin(x), cos(x).
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4. Compute definite integral and series such as
∫∞

0
sin(x)
x and

∑∞
n=1

1
n2 .

5. Harmonic functions in two dimensions.

6. The definition of Fourier transform.

7. The oscillation phenomena in differential equations.

We identify x+ 0i ∈ C with x ∈ R. In this way, we have

R ⊂ C.

The operations + and · on C are defined as follows.

1. (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i.

2. (x1 + y1i) · (x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

To understand the product formula, we may expand it and use i2 = −1:

(a1 + a2i) · (b1 + b2i) = a1b1 + a1b2i+ a2ib1 + a2ib2i = (a1b1 − a2b2) + (a1b2 + a2b1)i.

Note that when x1 + y1i ∈ R, i.e., y1 = 0, we have a scalar product

x1(x2 + y2i) = x1x2 + x1y2i.

The summation and multiplication satisfy commutative law, associative law, and distributive
law:

1. z1 + z2 = z2 + z1, (z1 + z2) + z3 = z1 + (z2 + z3);

2. z1z2 = z2z1, (z1z2)z3 = z1(z2z3);

3. (z1 + z2)z3 = z1z3 + z2z3.

Because of the commutative law, the complex number x+ yi may also be written as x+ iy or
yi + x. The two complex numbers 0, 1 ∈ R ⊂ C are special in the sense that 0 + z = z and
1z = z. For z = x+ yi, −z := (−x) + (−y)i = (−1)z. Then z + (−z) = 0. The subtraction is
defined to be z − w = z + (−w).

Let z = x + yi ∈ C. We define z to be x − yi, i.e., x + (−y)i. It is called the conjugate of
z. There are several simple properties:

1. z = z;

2. z = z if and only if z ∈ R;

3. z + z = 2 Re z, z − z = i2 Im z;

4. z ± w = z ± w;
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5. zw = z · w.

6. For z = x+ yi, zz = x2 + y2.

For z = x+ yi ∈ C, the absolute value of z is

|z| =
√
x2 + y2 ∈ R.

So we have |0| = 0, |z| > 0 if z 6= 0. A useful formula is zz = |z|2. Thus,

|zw|2 = (zw)zw = zwzw = |z|2|w|2.

Taking square root, we get
|zw| = |z||w|.

Since −z = (−1)z, we get | − z| = | − 1||z| = |z|. Since x2, y2 ≤ x2 + y2, taking square root, we
get

|Re z|, | Im z| ≤ |z|.
Because (−y)2 = y2, we have |z| = |z|.

To define the division, we first need to find z−1 = 1/z = 1
z with zz−1 = 1 for every

z ∈ C \ {0}. Since zz = |z|2 > 0, we see that

z−1 =
1

|z|2
z =

1

x2 + y2
(x− yi) =

x

x2 + y2
− i y

x2 + y2
.

The division z/w = z
w is defined to be zw−1 for w 6= 0. Since z = (z/w)w, we have | zw | =

|z|
|w| .

Now we define the integer power of a complex number. First, let z0 = 1 for all z ∈ C. This
includes 00 = 1. Second, for n ∈ N, let zn = z · · · z︸ ︷︷ ︸

n

for all z ∈ C. Third, for n ∈ Z with n < 0,

let zn = 1
z|n|

be defined for z ∈ C \ {0}. It is clear that |zn| = |z|n whenever zn is defined.
Now we come to the geometry. We may identify each complex number z = x + yi with a

point with coordinate (x, y) in the plane. Then the x-axis is composed of real numbers, and the
y-axis is composed of pure imaginary numbers: iy, y ∈ R. The conjugate is a reflection about
the x-axis. The addition follows the parallelogram rule. The distance between z = x+ yi and
0 is

√
(x− 0)2 + (y − 0)2 = |z|. The distance between z, w ∈ C is then |z − w|. From plane

geometry, we have the triangle inequality:

|z + w| ≤ |z|+ |w|.

Now we give a new proof using complex numbers:

|z + w|2 = (z + w)z + w = (z + w)(z + w) = zz + ww + wz + zw

= |z|2 + |w|2 + wz + wz = |z|2 + |w|2 + 2 Re(wz) ≤ |z|2 + |w|2 + 2|wz|
= |z|2 + |w|2 + 2|w||z| = |z|2 + |w|2 + 2|w||z| = (|z|+ |w|)2.

Using induction, we get
|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|.

Homework. I, §1: 2 (c,f), 8, 10 (b,d,f,h).
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1.2 Polar Form

For a complex number z, the expression z = x+ iy with x, y ∈ R is called the rectangular form
of z. Now we introduce the polar form of a complex number. A point (x, y) that corresponds
to z = x+ yi can be represented by polar coordinates (r, θ) such that r ≥ 0, θ ∈ R, and

x = r cos θ, y = r sin θ.

Since cos2 θ + sin2 θ = 1, we see
r =

√
x2 + y2 = |z|.

Now we find θ. The trivial case is z = 0, in which case r = 0 and θ can be any real number.
Now we assume that z 6= 0. Then r = |z| > 0. The θ satisfies

cos θ =
x

|z|
, sin θ =

y

|z|
.

Such θ exists but is not unique because cos(x) and sin(x) both have period 2π. We call θ an
argument of z and write arg z = θ. This expression is not accurate because if θ is an argument
of z, then for every n ∈ Z, θ+ 2nπ is also an argument of z. So arg z is a multivalued function.
One may understand that arg z belongs to the quotient group R/(2πZ).

Examples. arg 1 = 0, arg(−1) = π, arg i = π
2 , arg(−i) = 3π

2 , arg(−1 + i) = 3π
4 .

Now we introduce the principal argument Arg z of a complex number z 6= 0. There are two
different definitions in the literature:

1. Arg z is the unique argument of z that lies in the interval [0, 2π).

2. Arg z is the unique argument of z that lies in the interval (−π, π].

Lang’s book uses the first definition. The second definition is also frequently used.
We use eiθ as a shorthand for cos θ + i sin θ. The polar form of a complex number is

z = reiθ, r ≥ 0, θ ∈ R.

The polar form is useful because

1. Give a geometric explanation of complex multiplication.

2. Simplify the computations of powers and power roots.

3. Introduce the exponential function of complex numbers.

Theorem 1.2.1. For θ1, θ2 ∈ R,
eiθ1eiθ2 = ei(θ1+θ2).
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Proof.
eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2).

Thus, (r1e
iθ1)(r2e

iθ2) = (r1r2)ei(θ1+θ2). This means that arg(z1z2) = arg z1 + arg z2. Since
arg(1) = 0, we have arg(z1/z2) = arg(z1) − arg(z2). The addition and subtraction can be
understood as the operation in the group R/(2πZ).

Now we consider the power function and power roots. Induction shows that arg(zn) = n arg z
for any n ∈ Z. This gives a method to quickly compute zn in some cases because

zn = |z|nein arg z.

We may also use the polar form to find the n-th root of a complex number z, i.e., w ∈ C such
that wn = z. If z = 0, then w has to be 0. Now suppose z 6= 0 and θ = arg z. First, we
have |w| = |z|1/n. Second, let θ be an argument of z. If φ is an argument of w, then nφ is an
argument of z, which means that

nφ = θ + 2kπ, k ∈ Z.

Thus, we get a sequence of roots:

wk = |z|1/nei(θ+2kπ)/n, k ∈ Z.

This does not mean that we have infinitely many n-th roots of z. In fact, it is clear that
wk+n = wk. So there are totally n roots: w0, w1, . . . , wn−1. They lie on the circle centered at
0 with radius |z|1/n, and the angle between any two of them is 2π/n. So these roots are the
vertices of a regular n-polygon.

At the end of this section, we introduce the exponential function:

exp : C→ C

such that, for z = x+ yi ∈ C,

exp(z) = exeyi = ex(cos y + i sin y) = ex cos y + iex sin y.

The exp(z) is also written as ez. It has the following properties:

1. exp extends the real exponential function, i.e., if z = x ∈ R, then the value of exp(z)
agrees with that of exp(x) for real exponential function.

2. ez1ez2 = ez1+z2 . This follows from the previous theorem, and extends the similar equality
for real numbers.
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3. |ez| = eRe z > 0, which implies that ez 6= 0.

4. Im z is an argument of ez.

5. For any w ∈ C \ {0}, there exists z ∈ C such that w = ez. In fact, expressing w = reiθ

with r > 0, we may choose z = log r + iθ.

6. exp has period 2πi, i.e., exp(z + 2nπi) = exp(z) for any n ∈ Z. This means that the z
such that ez = w is not unique.

We now define the logarithm function log z for every z ∈ C \ {0} such that log z is the set
of w ∈ C with ew = z. From the above observation, we see that

log z = log |z|+ i arg z.

We may define the principal logarithm function by

Log z = log |z|+ iArg z.

The exact value depends on the choice of Arg z. Then Log z ∈ log z, and so eLog z = z.

Example. The principal value of log(1− i) has two possibilities:

log(1− i) = log(
√

2) + i
7

4
π, log(1− i) = log(

√
2)− i1

4
π,

depending on which definition we choose.

Homework. Chapter I, §1: 7; §2: 1 (a,c,d,h), 2 (b,c,f,g), 8, 11, 12
Additional problems

1. Compute the following principal logarithms using Arg z ∈ [0, 2π) and Arg z ∈ (−π, π],
respectively:

Log(−i), Log(
√

3 + i), Log(−1− i).

2. Find all z ∈ C in the rectangular form which solve z6+1 = 0. The trigonometric functions
must be evaluated.

3. Let n ∈ N with n ≥ 2 and z0 ∈ C \ {0}. Let w1, . . . , wn be the distinct n-th roots of z0.
Prove that

∑n
k=1wk = 0.

4. Let z1, z2, z3, z4 ∈ C be distinct. State conditions in terms of computation of complex
numbers, which make z1, z2, z3, z4 vertices of a square in the counterclockwise direction.
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1.3 Complex Valued Functions

Let S ⊂ C. A complex valued function defined on S is a function

f : S → C.

We have seen a number of complex valued functions such as Re z, Im z, z, |z|, zn, n ∈ N, and
exp(z), which are all defined on C. The function z−1 and z−n, n ∈ N, are defined on C \ {0}.
A complex valued function can be written in the rectangular form:

f(x+ yi) = u(x, y) + iv(x, y),

where u and v are real valued functions. For example,

1. f(z) = Im z: u(x, y) = y, v(x, y) = 0.

2. f(z) = z: u(x, y) = x, v(x, y) = −y.

3. f(z) = z2: u(x, y) = x2 − y2, v(x, y) = 2xy.

4. f(z) = ez: u(x, y) = ex cos y, v(x, y) = ex sin y.

5. f(z) = z−1: u(x, y) = x
x2+y2

, v(x, y) = − y
x2+y2

.

6. f(z) = Log z: u(x, y) = log |x + iy| = 1
2 log(x2 + y2) and v(x, y) = Arg(x + iy). Recall

that there are two definitions of the principal argument. If y > 0, then in both definitions
we have v(x, y) = arccot(x/y) = π

2 − arctan(x/y).

Now we define the complex hyperbolic functions. Recall that for x ∈ R,

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
, tanhx =

sinhx

coshx
, cothx =

coshx

sinhx
.

So we define for z ∈ C,

cosh z =
ez + e−z

2
, sinhx =

ez − e−z

2
, tanh z =

sinh z

cosh z
, coth z =

cosh z

sinh z
.

Surprisingly, we will also use complex exponential functions to define complex trigonometric
functions. First, we observe that, for θ ∈ R,

eiθ + e−iθ = (cos θ + i sin θ) + (cos θ − i sin θ) = 2 cos θ;

eiθ − e−iθ = (cos θ + i sin θ)− (cos θ − i sin θ) = 2i sin θ.

So cos θ = eiθ+e−iθ

2 and sin θ = eiθ−e−iθ
2i for θ ∈ R. This suggests us to define for z ∈ C,

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
, tan z =

sin z

cos z
, cot z =

cos z

sin z
.
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Most of the trigonometric identities still hold for these complex trigonometric functions. For
example,

cos2 z + sin2 z =
(eiz + e−iz)2

4
+

(eiz − e−iz)2

−4
=
e2iz + 2 + e−2iz

4
− e2iz − 2 + e−2iz

4
= 1.

But we may not use this equality to conclude that | cos z| ≤ 1 and | sin z| ≤ 1. In fact, cos and
sin are unbounded functions.

Homework. I, §3: 4 ( Add (c): The set of z with |z| ≥ 100.); II, §3: 4.
Additional problems.

1. Express sin z and cos z in the rectangular form.

1.4 Topology of Complex Numbers

In this section, we review some topology concepts on C.
The distance between z1 = x1 + iy1 and z2 = x2 + iy2 is

d(z1, z2) = |z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2.

One may easily check the triangle inequality:

d(z1, z2) + d(z2, z3) = |z1 − z2|+ |z2 − z3| ≥ |z1 − z3| = d(z1, z3).

So this distance is a metric space distance. The topology on C is generated by this distance.
Note that the distance agrees with the Euclidean distance on R2. So the topology on C is the
same as the topology on R2.

An open disc of radius r > 0 centered at z0 ∈ C is the set

D(z0, r) := {z ∈ C : |z − z0| < r}.

The closed disc is
D(z0, r) := {z ∈ C : |z − z0| ≤ r}.

In this course, a disc is always an open disc.
Let U ⊂ C. We say that U is open if for every α ∈ U , there is r > 0 such that

D(α, r) ⊂ U.

In general, r depends on α. We have the following examples.

1. C is open because we may always choose r = 1.

2. The empty set ∅ is open because there is nothing to check.
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3. The half plane H = {z ∈ C : Re z > 0} is open. For α ∈ H, we choose r = Reα. Note
that, if |z − α| < r, then |Re z − Reα| ≤ |z − α| < r, so Re z > Reα − r = 0. Similarly,
the half planes {Re z < 0}, {Im z > 0}, and {Im z < 0} are also open.

4. The open disc D(z0, R) is open. For α ∈ D(z0, R), we choose r = R−|α− z0|. Note that,
if |z − α| < r, then |z − z0| ≤ |z0 − α|+ |z − α| < |α− z0|+ r = R, so z ∈ D(z0, R).

5. For any R ≥ 0, the set S = {z ∈ C : |z − z0| > R} is open. For α ∈ S, we may choose
r = |α− z0| −R.

The open sets satisfy the following properties:

1. If Uλ, λ ∈ Λ, is a family of open sets, then
⋃
λ∈Λ Uλ is also open.

2. If U1, . . . , Un are open sets, then
⋂n
k=1 Uk is also open.

For example, the first quadrant {Re z > 0, Im z > 0} is the intersection of two half planes
{Re > 0} and {Im z > 0}, both of which are open, so it is open.

Let S ⊂ C. A boundary point of S is a point α (may or may not lie in S) such that for any
r > 0, D(α, r) intersects both S and C \ S. We use ∂S to denote the set of boundary points of
S. For example, ∂{Im z > 0} = R, ∂D(z0, r) = {z ∈ C : |z − z0| = r}.

The closure of S, denoted by S, is the union of S and ∂S. S is called closed if ∂S ⊂ S, i.e.,
S = S. We have the following facts:

1. z ∈ S if and only if for every r > 0, D(z, r) ∩ S 6= ∅.

2. S is closed for every S ⊂ C.

3. S is closed if and only if Sc := C \ S is open.

4. If Fλ, λ ∈ Λ, is a family of closed sets, then
⋂
λ∈Λ Fλ is also closed.

5. If F1, . . . , Fn are closed sets, then
⋃n
k=1 Fk is also closed.

We see that the whole plane C, empty set ∅, closed half plane {Re z ≥ 0}, and closed disc
D(z0, R) are closed because their complements are open. The same is true for a single point
set {z0} = D(z0, 0). Using a finite union, we see that any finite set {z1, . . . , zn} is closed.

We say that S is dense in C if its closure S equals to C, i.e., for every z ∈ C and r > 0,
D(z, r) ∩ S 6= ∅.

If zn, n ∈ N, is a sequence of complex numbers, and w ∈ C. We say that w is the limit of
zn or zn tends to w, and write

w = lim
n→∞

zn, or zn → w

if |zn −w| → 0, that is, for any ε > 0, there is N ∈ N such that if n ≥ N , then |zn −w| < ε. In
this case, we say that (zn) is a convergent sequence.
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For a nonempty S ⊂ C, every w ∈ S can be expressed as a limit of a sequence, which is
contained in S, and vice versa. Thus, S is closed if and only if it contains the limits of all
convergent sequences in S.

Since the topology on C is the same as the topology on Rn, we have the following theorem.

Theorem 1.4.1. zn → w if and only if Re zn → Rew and Im zn → Imw.

Using the theorem, it is easy to check that zn → z0 and wn → w0 imply that zn ± wn →
z0 ± w0, znwn → z0w0, and zn/wn → z0/w0 if wn and w0 are not zero.

For example, if zn = xn+iyn and wn = un+ivn, then znwn = (xnun−ynvn)+i(xnvn+ynun).
Since xnun − ynvn → x0u0 − y0v0 and xnvn + ynun → x0v0 + y0u0, we get znwn → (x0u0 −
y0v0) + i(x0v0 + y0u0) = z0w0.

A sequence of complex numbers (zn) is said to be a Cauchy sequence if, given ε > 0, there
exists N such that, if m,n ≥ N , then |zm − zn| < ε. The triangle inequality implies that a
convergent sequence is Cauchy. On the other hand, if (zn) is a Cauchy sequence, then (Re zn)
and (Im zn) are two real Cauchy sequences because, e.g., |Re zm − Re zn| = |Re(zm − zn)| ≤
|zm − zn|. From real analysis, they converge to two real numbers, say u and v. From the
previous theorem, w = u+vi is the limit of (zn). Thus, a Cauchy sequence of complex numbers
is convergent.

We say S ⊂ C is bounded if there is R > 0 such that S ⊂ D(0, R), i.e., |z| ≤ R for all z ∈ S.

Theorem 1.4.2. Every convergent sequence is bounded.

Proof. If (zn) is convergent, then (Re zn) and (Im zn) are convergent sequences of real numbers,
which have to be bounded. Since |zn| ≤ |Re zn|+ | Im zn|, (zn) is bounded as well.

The theorem below is a special case of a similar theorem for Rn.

Theorem 1.4.3. [Bolzano-Weierstrass] Every bounded sequence of complex numbers con-
tains a convergent subsequence.

Proof. Let (zn) be a bounded sequence of complex numbers. Let xn = Re zn and yn = Im zn,
n ∈ N. Since |Re z|, | Im z| ≤ |z|, (xn) and (yn) are two bounded sequences of real numbers.
Apply the B-W theorem for real numbers to (xn). We find a convergent subsequence (xnk) of
(xn). We now look at the subsequence (ynk), which may not be convergent, but is still bounded.
Apply the theorem again to (ynk). We find a convergent subsequence (ynkl ) of (ynk). Then we
come back to the x-sequence. As a subsequence of the convergent sequence (xnk), (xnkl ) is also
convergent. Thus, (znkl ) is a convergent subsequence of (zn).

Now we recall the definition of compact sets. There are three equivalent definitions.

Definition 1.4.1. A set S ⊂ C is said to be compact if the following is true. If {Uα α ∈ A}
is a family of open sets such that S ⊂

⋃
α∈A Uα, then there exists α1, . . . , αn ∈ A such that

S ⊂
⋃n
k=1 Uαk .
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Definition 1.4.2. A set S ⊂ C is said to be compact if every sequence in S contains a conver-
gent subsequence, whose limit lies in S.

Definition 1.4.3. A set S ⊂ C is said to be compact if it is bounded and closed.

The three definitions are equivalent for compact subsets of C. The first definition works for
all topology spaces, the second definition works for all metric spaces, and the third definition
only works for the finite dimensional Euclidean spaces Rn. Proving the equivalence between
these definitions require some work. We omit the proof here.

Theorem 1.4.4. Let (Sn)∞n=1 be a sequence of nonempty compact subsets of C with Sn ⊃ Sn+1

for any n ∈ N. Then the intersection of all Sn is not empty.

Proof. Choose zn ∈ Sn, n ∈ N.Then (zn) is a sequence in (S1). Since S1 is compact, (zn)
contains a convergent subsequence (znk). Call the limit v. Then v ∈ S1. Fix any m ∈ N. If
k ≥ m, then nk ≥ k ≥ m, so znk ∈ Snk ⊂ Sm. Thus, the subsequence (znk)k≥m is contained in
Sm. Since v is also the limit of this sequence, and Sm is closed, we have v ∈ Sm. Since this is
true for any m ∈ N, we find that v ∈

⋂
m∈N Sm.

Let A and B be nonempty subsets of C, the distance between A and B is defined to be

dist(A,B) := inf{|z − w| : z ∈ A,w ∈ B}.

Since |z − w| is always nonnegative, dist(A,B) ≥ 0. If A ∩ B 6= ∅, then dist(A,B) = 0.
But dist(A,B) = 0 does not imply that A ∩ B 6= ∅. For example, A = {Re z > 0} and
B = {Re z < 0}.

Theorem 1.4.5. Let A and B be nonempty subsets of C. Suppose A is compact and B is
closed. Then there exist z0 ∈ A and w0 ∈ B such that |z0 − w0| = dist(A,B). In other words,
the minimum of the set {|z − w| : z ∈ A,w ∈ B} exists.

Proof. From the definition of dist(A,B), we may find a sequence (zn) in A and a sequence
(wn) in B such that |zn − wn| → dist(A,B). Since A is compact, it is bounded. So (zn) is
a bounded sequence. Since (|zn − wn|) is convergent, it is also a bounded sequence. From
|wn| ≤ |zn|+ |zn − wn| we see that (wn) is also a bounded sequence. Since A is compact, (zn)
contains a convergent subsequence (znk), whose limit, say z0 ∈ A. Applying B-W Theorem to
the bounded sequence (wnk), we find a convergent subsequence (wnkl ). Let w0 be the limit.
Since (wnkl ) is a sequence in B, and B is closed, we have w0 ∈ B. Since (znkl ) is a subsequence
of (znk), we know that znkl → z0. Finally, from znkl → z0 and wnkl → w0 we claim that
|z0 − w0| = lim |znkl − wnkl | = dist(A,B), which finishes the proof. To prove the claim, we use
the triangle inequalities

|znkl − wnkl | − |z0 − w0| ≤ |znkl − z0|+ |w0 − wnkl |,

|z0 − w0| − |znkl − wnkl | ≤ |z0 − znkl |+ |wnkl − w0|,

which imply that ||znkl − wnkl | − |z0 − w0|| ≤ |znkl − z0|+ |wnkl − w0| → 0.
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The above theorem implies that if A is compact, B is closed, and dist(A,B) = 0, then
A ∩ B 6= ∅. The theorem is not true if A and B are both closed. For example, A = N and
B = {n+ 1/n2 : n ∈ N}, dist(A,B) = 0 but A ∩B = ∅.

Homework.

1. Prove that, for z ∈ C, the sequence (zn)∞n=1 converges if and only if |z| < 1 or z = 1.

2. Let K be a nonempty compact subset of an open set U ⊂ C. Show that there is r > 0
such that D(z, r) ⊂ U for any z ∈ K. Note that the r does not depend on z ∈ K.

3. Let S ⊂ C. We say that z0 is an accumulation point of S if for every r > 0, the intersection
D(z0, r) ∩ S is an infinite set. Let U ⊂ C be an open set such that S ⊂ U . Suppose that
S does not have any accumulation point contained in U . Prove that for any compact set
K ⊂ U , the intersection S ∩K is finite.

Let S ⊂ C and α ∈ S. Let f : S → C. We say that

w = lim
z→α
z∈S

f(z).

if for every sequence zn in S that converges to α, we have f(zn) → w. Equivalently, for every
ε > 0, there is δ > 0 such that if z ∈ S and |z − α| < δ, then |f(z) − w| < ε. Here α may or
may not lie in S. If α ∈ S, then f(α) is defined. We say that f is continuous at α if

f(α) = lim
z→α
z∈S

f(z).

We say that f is continuous on S if it is continuous at every α ∈ S. The following theorem
obviously holds.

Theorem 1.4.6. 1. Let S ⊂ C. Let f : S → C and g : S → C be continuous. Then f + g,
f − g, and fg are continuous on S. If g 6= 0 on S, then f/g is continuous on S.

2. Let S, T ⊂ C. Let f : S → C and g : T → C be continuous such that f(S) ⊂ T . Then
g ◦ f is continuous on S.

Here are some examples.

1. Let C ∈ C. The function f(z) = C for all z ∈ C is called constant. It is continuous
because the if zn = C for all n, then zn → C. The function f(z) = z for all z ∈ C is
continuous because zn → α implies that f(zn) = zn → α = f(α).

2. Let a0, . . . , an ∈ C. The function

P (z) =
n∑
k=0

akz
k = a0 + a1z + · · · anzn

12



is called a complex polynomial, which is continuous from the above theorem. If all ak are
zero, then P is constant zero. Other wise, there is a biggest n0 such that an0 6= 0. Then
we only need to sum up k from 0 to n0. In this case, we say that the degree of P is n0,
and write deg(P ) = n0.

3. z 7→ Re z and z 7→ Im z are continuous. For example, let α ∈ C and fix ε > 0. Let
δ = ε > 0. If |z − α| < δ, then |Re z − Reα| = |Re(z − α)| ≤ |z − α| < δ = ε.

Homework. Let z0 ∈ C and f(z) = |z − z0|. Show that f is continuous on C.

Theorem 1.4.7. Let S ⊂ C be a compact. Let f : S → C be continuous. Then

(i) f(S) := {f(z) : z ∈ S} is also compact.

(ii) f is bounded on S, i.e., there exists R <∞ such that |f(z)| ≤ R for all z ∈ S.

Proof. (i) Let (wn) be a sequence in f(S). Then there is a sequence (zn) in S such that
wn = f(zn), n ∈ N. Since S is compact, (zn) contains a convergent subsequence (znk), whose
limit, say z0, lies in S. Since f is continuous at z0, we have wnk = f(znk) → f(z0). Thus,
(wnk) is a convergent subsequence of (wn), whose limit is f(z0) ∈ f(S). This shows that f(S)
is compact.

(ii) This follows immediately from (i) since the compact set f(S) is bounded.

Definition 1.4.4. Let U ⊂ S ⊂ C. We say that U is relatively open in S if for every z0 ∈ U ,
there is r > 0 such that

D(z0, r) ∩ S ⊂ U.

Equivalently, U is relatively open in S if there is an open set V ⊂ C such that U = V ∩ S. We
say that K ⊂ S is relatively closed in S if S \K is relatively open in S.

Note that, if S is open, then U is relatively open in S iff U ⊂ S and U is open. We have
the following theorem.

Theorem 1.4.8. Let S ⊂ C and f : S → T ⊂ C. Then f is continuous iff for any relatively
open set U in T , f−1(U) := {z ∈ S : f(z) ∈ U} is relatively open in S.

Note that an open real interval is a relatively open subset of R. So we get another way to
show that {z : |z−z0| < r} and {z : |z−z0| > r} is open. This follows from that f(z) = |z−z0|
is continuous, {z : |z− z0| < r} = f−1((−∞, r)) and {z : |z− z0| > r} = f−1((r,∞)). Similarly,
to show that the half-plane {z : Im z > 0} is open, we may consider f(z) = Im z.

Note that ∅ and S are relatively both open and closed in S.

Definition 1.4.5. A set S ⊂ C is called connected if the only relatively open and closed sets in
S are ∅ and S.

Definition 1.4.6. A set S ⊂ C is called path connected if for any z0, w0 ∈ S there exists a
continuous function γ : [0, 1]→ S with γ(0) = z0 and γ(1) = w0.
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Remark. A path connected set must be connected. The converse may not be true. However,
if S is open, then S is connected also implies that S is path connected.

Definition 1.4.7. A nonempty connected open set S ⊂ C is called a (complex) domain.

Examples of domains include discs, open half planes, and annulus {z ∈ C : r < |z−z0| < R},
where z0 ∈ C and R > r > 0. If two discs are disjoint, then the union of them is not a domain.

1.5 Branch of the Complex Logarithm

Definition 1.5.1. A branch of log z in an open set U ⊂ C \ {0} is a continuous function L(z)
defined on U such that L(z) ∈ log z, i.e., eL(z) = z for every z ∈ U .

Suppose L(z) = u(z) + iv(z) is branch of log z in U ⊂ C \ {0}. Then we have u(z) = log |z|,
which is continuous, and v(z) ∈ arg z. This means that, finding a branch of log z is equivalent
to finding a (continuous) branch of arg z.

Now we consider the principal argument Arg z for z 6= 0. If Arg z ∈ [0, 2π), then Arg is
continuous on U+ := C \ {x ∈ R : x ≥ 0}. If Arg z ∈ (−π, π], then Arg is continuous on
U− := C \ {x ∈ R : x ≤ 0}. So the principal arguments give branches of log z in U+ and U−.
Similarly, we may define branches of log z in C \ {xeiθ0 : x ≥ 0} for some fixed θ0 ∈ R. Here we
may choose v(z) to lie in [θ0, θ0 + 2π). The half line {xeiθ0 : x ≥ 0} is called a branch cut. We
may also have a branch cut other than a half line. It is impossible to find a branch of log z in
C \ {0}.

Once a branch is fixed, it may be denoted “log z” if no confusion can result. Then log z
becomes a single valued function. Different branches can give different values for the logarithm
of a particular complex number, however, so a branch must be fixed in advance in order for
“log z” to have a precise unambiguous meaning. For a fixed determination of the log on U and
a fixed α ∈ C, we may define the complex power function

zα = exp(α log z), z ∈ U.

Homework III, §6: 1(d,e)&2 (d,e).

1.6 Complex Differentiability

Let U be an open set, and let z0 ∈ U . Let f : U → C. We say that f is complex differentiable
at z0 if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. The limit is denoted by f ′(z0) or df/dz(z0). The symbol z → z0 means that z stays
in U \ {z0} and tends to z0. Note that if z = z0, the fractal has no meaning. An equivalent
definition is

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
,

14



if the limit exists. If f is differentiable at every z ∈ U , then we say that f is differentiable on U .
In this case, we also say that f is holomorphic on U . If S ⊂ C is not open, when we say that f
is holomorphic on S, it means that there is an open set U ⊃ S such that f is holomorphic on
U . We say that f is an entire function if it is holomorphic on C.

Examples.

1. Let w0 ∈ C. Let f(z) = w0 for all z ∈ C. Since f(z)−f(z0)
z−z0 = 0 for any z 6= z0 ∈ C, we see

that f ′(z) = 0 for all z ∈ C.

2. Let f(z) = z for all z ∈ C. Since f(z)−f(z0)
z−z0 = 1 for any z 6= z0 ∈ C, we see that f ′(z) = 1

for all z ∈ C.

The basic properties for derivatives of real valued functions still hold here. The proofs are
similar. Suppose f and g are both differentiable at z0. Then

1. f and g are also continuous at z0.

2. Sum Rule. f + g is also differentiable at z0 and (f + g)′(z0) = f ′(z0) + g′(z0).

3. Product Rule. fg is also differentiable at z0 and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).
A special case is when g is constant C, and we get (Cf)′(z0) = Cf ′(z0).

4. Quotient Rule. If g(z0) 6= 0, then f/g is differentiable at z0, and

(
f

g
)′(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

g(z0)2
.

A special case is when f is constant 1, and we get (1
g )′(z0) = −g′(z0)

g(z0)2
.

In addition, we have the Chain Rule. If f is differentiable at z0 and g is differentiable at
f(z0), then g ◦ f is differentiable at z0, and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

Thus, if f and g are holomorphic on U , and a ∈ C then f+g, af , and fg are also holomorphic
on U . If in addition, g 6= 0 on U , then f/g is holomorphic on U . If f is holomorphic on U , g is
holomorphic on V , and f(U) ⊂ V , then g ◦ f is holomorphic on U .

If f is holomorphic on U , then f ′ is a well-defined function on U . If f ′ is also holomorphic
on U , then we define f ′′ = (f ′)′. Similarly, we define f ′′′ = (f ′′)′ if f ′′ is holomorphic on U .
Another set of symbols is f (0) = f and f (n+1) = (f (n))′ if f (n) is well defined and is holomorphic
on U .

Examples.

1. Using induction, we see that d
dz z

n = nzn−1 for any n ∈ N.
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2. Every polynomial P (z) =
∑n

k=0 akz
k is an entire function, and we have

P ′(z) =
n∑
k=1

akkz
k−1,

which is also a polynomial. If deg(P ) = n ≥ 1, then deg(P ′) = n− 1. If deg(P ) = 0, then
P ′ ≡ 0. Thus, P (n+1) ≡ 0 if n = deg(P ).

3. Since zn 6= 0 if z 6= 0, we see that f(z) = z−n = 1
zn is holomorphic on C \ {0}. Using the

quotient rule, we get

f ′(z) =
−nzn−1

(zn)2
= −nz−n−1.

Thus, the formula d
dz z

n = nzn−1 holds for any n ∈ Z and z ∈ C \ {0}.

1.7 The Cauchy-Riemann Equations

Let U be an open set, and let z0 = x0 + iy0 ∈ U . Let f : U → C. Write f(x + iy) =
u(x, y) + iv(x, y). It is not always efficient to use the definition and the derivative rules to
determine whether f is complex differentiable at z0. We now introduce a new method.

Theorem 1.7.1. f is complex differentiable at z0 if and only if the following two conditions
hold.

(i) Both u and v are totally differentiable at (x0, y0);

(ii) The partial derivatives of u and v satisfy the Cauchy-Riemann equation at (x0, y0), i.e.,

ux(x0, y0) = vy(x0, y0), uy(x0, y0) = −vx(x0, y0).

In addition, we have f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Recall that we say that u is totally differentiable at (x0, y0) if there exist a, b ∈ R such that

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− a(x− x0)− b(y − y0)√
(x− x0)2 + (y − y0)2

= 0,

where (x, y)→ (x0, y0) means that
√

(x− x0)2 + (y − y0)2 → 0. The formula means that, near
(x0, y0), u(x, y) can be approximated by the function h(x, y) = u(x0, y0) +a(x−x0) + b(y−y0).
The graph of h is a plane that passes through the point (x0, y0, u(x0, y0)), which is a tangent

plane of the graph of u. Setting y = y0, we see that limx→x0
u(x,y0)−u(x0,y0)−a(x−x0)

|x−x0| = 0,

which implies that ux(x0, y0) = a. Similarly, uy(x0, y0) = b. In general, the existence of the
partial derivatives does not imply the totally differentiability. Recall the following proposition
in multi-variable calculus, which can help us to check the totally differentiability.
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Proposition 1.7.1. Let U be an open set in R2, and u be a real valued function defined on U .
Suppose ux and uy exist everywhere on U , and are continuous. Then u is totally differentiable
everywhere on U .

Proof of Theorem 1.7.1. First, we note that f is differentiable at z0 and w0 = f ′(z0) if and only
if

lim
z→z0

f(z)− f(z0)− w0(z − z0)

z − z0
= 0.

Since zn → 0 if and only if |zn| → 0, the above formula is equivalent to

lim
z→z0

f(z)− f(z0)− w0(z − z0)

|z − z0|
= 0.

Writing z = x+ yi and w0 = a+ bi, we find that z → z0 is the same as (x, y)→ (x0, y0), and

f(z)− f(z0)− w0(z − z0)

|z − z0|
=
u(x, y)− u(x0, y0)− a(x− x0) + b(y − y0)√

(x− x0)2 + (y − y0)2

+i
v(x, y)− v(x0, y0)− b(x− x0)− a(y − y0)√

(x− x0)2 + (y − y0)2
.

Thus, f ′(z0) = a+ bi if and only if

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− a(x− x0) + b(y − y0)√
(x− x0)2 + (y − y0)2

= lim
(x,y)→(x0,y0)

v(x, y)− v(x0, y0)− b(x− x0)− a(y − y0)√
(x− x0)2 + (y − y0)2

= 0,

which is equivalent to that u and v are totally differentiable at (x0, y0), and ux(x0, y0) =
vy(x0, y0) = a and −uy(x0, y0) = vx(x0, y0) = b. This finishes the proof.

Corollary 1.7.1. Suppose ux, uy, vx, vy are all continuous on U , and the Cauchy-Riemann
equation ux = vy and uy = −vx holds throughout U . Then f is holomorphic on U , and
f ′ = ux + ivx.

Examples.

1. If f is an entire function (U = C) that satisfies f ′ ≡ 0, then we can conclude that f is
constant. The reason is: from f ′ = ux+ ivx = vy− iuy we see that ux = uy = vx = vy ≡ 0.
From Real Analysis, we see that both u and v are constant. So f is constant. If U 6= C,
whether f ′ ≡ 0 implies that f is constant depends on the connectedness of U .
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2. Recall the exponential function exp(x + yi) = ex(cos y + i sin y) defined on C. We have
u(x, y) = ex cos y and v(x, y) = ex sin y. Computing their partial derivatives, we get

ux = ex cos y, uy = −ex sin y, vx = ex sin y, ex cos y.

All of these functions are continuous on R2. Thus, u and v are totally differentiable at
every (x, y) ∈ R2 Since u and v satisfy the C-R equation everywhere, exp is holomorphic
on C. Moreover, we have

exp′(z) = ux + ivx = ex cos y + iex sin y = exp(z).

3. Since cos z = eiz+e−iz

2 and sin z = eiz−e−iz
2i , they are both holomorphic on C, and

cos′ z =
ieiz − ie−iz

2
= − sin z, sin′ z =

ieiz − (−i)e−iz

2i
= cos z.

Similarly, cosh′ z = sinh z and sinh′ z = cosh z.

4. Since tan z = sin z
cos z and cot z = cos z

sin z , tan z is holomorphic on C \ {nπ+ 1/2π : n ∈ Z}, and
cot z is holomorphic on C \ {nπ : n ∈ Z}. From the quotient rule,

tan′ z =
sin′ z cos z − sin z cos′ z

cos2 z
=

cos2 z + sin2 z

cos2 z
=

1

cos2 z
;

cot′ z =
cos′ z sin z − cos z sin′ z

sin2 z
=
− sin2 z − cos2 z

sin2 z
= − 1

sin2 z
.

5. We will prove later that any branch of log z is holomorphic. In the homework, we will
consider the principal logarithm.

Homework.

1. Let Log z be the principal logarithm function defined using Arg z ∈ (−π, π]. Prove that
Log is holomorphic on C \ {x ∈ R : x ≤ 0}, and d

dz Log z = 1
z . Hint: Apply the C-R

equations to U1 = {Im z > 0}, U2 = {Re z > 0}, and U3 = {Im z < 0} separately.

2. (i) Let f and g be two entire functions such that f ′(z) = g′(z) for all z ∈ C. Show that
there is a constant C ∈ C such that f = g+C. (ii) Let f be an entire function and n ∈ N.
Suppose that f (n) ≡ 0. Show that f is a polynomial of degree no more than n− 1.

3. Let f be an entire function. Suppose that |f | is constant. Prove that f is constant. Hint:
f ≡ C implies that u2 + v2 ≡ C2. Take partial derivatives and apply the C-R equations.

4. Let f be an entire function. Suppose that f ′(z) = f(z) for all z ∈ C. Prove that there is
a constant C ∈ C such that f(z) = Cez.
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Chapter 2

Power Series

Let (an)∞n=0 be a sequence of complex numbers, we will study the following power series

∞∑
n=0

anz
n := lim

n→∞

n∑
k=0

akz
k = a0 + a1z + a2z

2 + a3z
3 + · · · .

Recall that 00 = 1. Since 0n = 0 for n ≥ 1, the series always converge at 0, and the sum is a0.
We are interested in two questions:

1. For what z ∈ C does the series converge/diverge?

2. If we define f(z) =
∑∞

n=0 anz
n, what property does f have?

The following two theorems answer these questions.

Theorem 2.0.2. [Main Theorem 1] Let

R =
1

lim supn→∞ |an|1/n
. (2.1)

Then the series converges if |z| < R, and diverges if |z| > R.

Such R is called the radius of convergence, or simply radius. Since lim sup takes value in
[0,∞], R ∈ [0,∞] as well. Here we use the convention that 1

0 = ∞ and 1
∞ = 0. If R = 0, the

series converges only at z = 0. If R =∞, the series converges for all z ∈ C. If R ∈ (0,∞), the
series may converge or diverge when |z| = R.

We may use (2.1) to calculate the radius of convergence. Here are some tests, which work
for particular cases.

Root Test. If lim |an|1/n exists, then lim supn→∞ |an|1/n equals to this limit, so R is the
reciprocal of the limit.

Ratio Test. If lim |an|
|an+1| exists, then R equals the limit.
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The ratio test is valid because for a sequence of positive numbers (rn), if lim rn+1/rn exists,

then lim r
1/n
n also exists, and the two limits are equal. This is a result in real analysis.

In the following examples, we will compute the radius of convergence of some power series.
Recall that R = 1/ lim |an|1/n or R = lim |an|/|an+1| if either limit exists.

Examples.

1. The radius of
∑
zn is 1 because 11/n → 1. From a homework problem, the limit is 1

1−z .

2. The radius of
∑
n!zn is 0 because n!/(n+ 1)! = 1/(n+ 1)→ 0.

3. The radius of
∑ zn

n! is ∞ because 1
n!/

1
(n+1)! = n+ 1→∞.

4. The radius of
∑ n!

nn z
n is e because n!

nn /
(n+1)!

(n+1)n+1 = (n+1
n )n → e.

5. For α ∈ C, consider the binomial series
∑∞

n=0

(
α
n

)
zn, where

(
α
0

)
= 1 and(

α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
, n ≥ 1.

The radius is ∞ if α ∈ Z and α ≥ 0 because in this case
(
α
n

)
= 0 for n ≥ α + 1. If

α 6∈ {0, 1, 2, . . . }, then
(
α
n

)
never vanishes, and |

(
α
n

)
/
(
α
n+1

)
| = | n+1

α−n | → 1, which implies
that R = 1.

Remark. The binomial series in the last example converges to the complex power function
(1 + z)α, where the branch of log(1 + z) in U = {|z| < 1} is chosen such that log(1) = 0.

Homework. II, §2: 4 (a,c,f,g), 10.
Additional Problem:
Let

∑
anz

n be a power series with radius R. Answer the following questions with explanation.

(i) If the series diverges at z = 3− 4i, what can you say about R?

(ii) If the series converges for every z ∈ D(0, 1), what can you say about R?

(iii) What is the radius of
∑
anz

2n?

Theorem 2.0.3. [Main Theorem 2] Suppose R ∈ (0,∞]. Then f(z) :=
∑∞

n=0 anz
n is

holomorphic on D(0, R). Moreover, f ′(z) =
∑∞

n=1 nanz
n−1, whose radius is also R.

Note that since f ′ is also the sum of a power series in D(0, R), it is also holomorphic and
f ′′ is still the sum of a power series. Repeating this argument, we find that f is infinitely many
times complex differentiable.

One important example is the power series

∞∑
n=0

zn

n!
.
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We have seen that R = ∞. Applying Theorem 2.0.3, we see that f(z) =
∑∞

n=0
zn

n! is an entire
function, and

f ′(z) =

∞∑
n=1

nzn−1

n!
=

∞∑
n=1

zn−1

(n− 1)!
=

∞∑
k=0

zk

k!
= f(z).

From a homework problem, we see that f(z) = Cez for some C ∈ C. Since f(0) = a0 = 1 = e0,
we see C = 1. Thus, the function ez has a power series expansion:

ez =
∞∑
n=0

zn

n!
= 1 + z +

z2

2
+
z3

6
+
z4

24
+ · · · , z ∈ C.

For any r ∈ C, the function erz also has a power series expansion:

erz =
∞∑
n=0

(rz)n

n!
=
∞∑
n=0

rn

n!
zn, z ∈ C.

From the definition of cos z an sin z, we get

cos z =
1

2

( ∞∑
n=0

in

n!
zn +

∞∑
n=0

(−i)n

n!
zn
)

=
∞∑
n=0

1 + (−1)n

2
· i
n

n!
zn =

∞∑
k=0

i2k

(2k)!
z2k

=
∞∑
k=0

(−1)k

(2k)!
z2k = 1− z2

2
+
z4

24
− z6

720
+ · · · , z ∈ C.

The third “=” holds because (1 + (−1)n)/2 = 0 when n is odd, = 1 when n is even, and
we change the index using n = 2k. Since the series converges for every z ∈ C, its radius of
convergence is ∞. In this case, we can not use the ratio test because an = 0 if n is odd.
Similarly,

sin z =
1

2i

( ∞∑
n=0

in

n!
zn −

∞∑
n=0

(−i)n

n!
zn
)

=

∞∑
n=0

1− (−1)n

2
· i
n−1

n!
zn =

∞∑
k=0

i2k

(2k + 1)!
z2k+1

=
∞∑
k=0

(−1)k

(2k + 1)!
z2k+1 = z − z3

6
+

z5

120
− z7

7!
+ · · · , z ∈ C.

Here we change the index using n = 2k + 1. The radius of convergence of this power series is
also ∞, and an = 0 if n is even.

2.1 Series of Complex Numbers

Let (zn) be a sequence of complex numbers. Consider the series

∞∑
n=1

zn.
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We define the partial sum

sn =

n∑
k=1

zk = z1 + · · ·+ zn.

We say that the series converges if there is w ∈ C such that

lim
n→∞

sn = w,

in which case we say that w is equal to the sum of the series, that is

w =
∞∑
n=1

zn.

If (sn) diverges, we say that the series diverges.
If
∑
αn and

∑
βn are two convergent series, and C ∈ C, then

∑
Cαn and

∑
(αn + βn) also

converge, and ∑
Cαn = C

∑
αn;∑

(αn + βn) =
∑

αn +
∑

βn.

If a series
∑
zn converges, then zn → 0. In fact, let (sn) be the partial sum sequence. Then

(sn) and (sn−1) both converge to the same limit, which implies that zn = sn − sn−1 converges
to 0. This means that, if (zn) diverges or does not tend to 0, then

∑
zn diverges.

Let
∑
αn be a series of complex numbers. We say that this series converges absolutely if

the non-negative series ∑
|αn|

converges. We claim that if a series converges absolutely, then it converges in the usual sense.
Indeed, let sn =

∑n
k=1 αk and tn =

∑n
k=1 |αk|, n ∈ N. For m ≤ n we have

sn − sm = αm+1 + · · ·+ αn.

Hence
|sn − sm| ≤ |αm+1|+ · · ·+ |αn| = tn − tm.

Assuming the absolute convergence, (tn) is a Cauchy sequence, which implies that (sn) is also
a Cauchy sequence from the above inequality. Thus, (sn) converges.

From calculus, we have the comparison test for convergence.

Comparison Test. Let
∑
αn be a series of complex numbers. Let

∑
cn be a convergent series

of nonnegative real numbers. If |αn| ≤ cn for all n, then the series
∑
αn converges absolutely.
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2.2 Sequence and Series of functions

Let S ⊂ C. Let fn : S → C, n ∈ N. We say that the sequence (fn) converges pointwise on
S if for every z ∈ S, the sequence of numbers (fn(z)) converges. We now define uniformly
convergence. For f : S → C, the Sup norm of f on S is defined to be

‖f‖S = ‖f‖ = sup
z∈S
|f(z)|.

We see that ‖f‖ ≥ 0; ‖f‖ = 0 if and only if f is constant 0; for any C ∈ C, ‖Cf‖ = |C|‖f‖;
and the following triangle inequality holds:

‖f + g‖ ≤ ‖f‖+ ‖g‖.

To prove the triangle inequality, note that for every z ∈ S,

|f(z) + g(z)| ≤ |f(z)|+ |g(z)| ≤ ‖f‖+ ‖g‖,

and then take the supremum over z ∈ S.
We say that (fn) converges uniformly on S if there is f : S → C such that

lim
n→∞

‖fn − f‖S = 0.

An equivalent definition is: for every ε > 0, there is N ∈ N, such that if n > N , then
‖fn − f‖S < ε. Since for each z ∈ S, |fn(z) − f(z)| ≤ ‖fn − f‖S , we see that the uniformly
convergence implies the pointwise convergence.

Theorem 2.2.1. Let (fn) be a sequence of continuous functions on S, which converges uni-
formly to f on S. Then f is also continuous on S.

Proof. We will use the so-called ε/3-argument. Let z0 ∈ S. Let ε > 0. Since ‖fn − f‖S → 0,
there is N ∈ N such that ‖fN − f‖S < ε/3. Since fN is continuous on S, there is δ > 0 such
that if z ∈ S and |z − z0| < δ, then |fN (z)− fN (z0)| < ε/3, which then implies that

|f(z)− f(z0)| ≤ |f(z)− fN (z)|+ |fN (z)− fN (z0)|+ |fN (z0)− f(z0)| < ε/3 + ε/3 + ε/3 = ε.

So f is continuous at z0. This shows that f is continuous on S.

We say that (fn) is a uniformly Cauchy sequence, if given ε > 0 there exists N such that if
m,n ≥ N , then ‖fn − fm‖ < ε.

Theorem 2.2.2. A sequence of functions (fn) on S is uniformly Cauchy on S if and only if it
converges uniformly on S.
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Proof. First, suppose fn → f uniformly on S. Let ε > 0. There is N such that n ≥ N implies
that ‖fn − f‖S < ε/2. If n,m ≥ N , then

‖fn − fm‖ ≤ ‖fn − f‖+ ‖fm − f‖ < ε/2 + ε/2 = ε.

Thus, (fn) is uniformly Cauchy on S.
Now suppose that (fn) is uniformly Cauchy on S. Then it converges pointwise on S because

for each z ∈ S, |fn(z) − fm(z)| ≤ ‖fn − fm‖ < ε if m,n ≥ N , which implies that (fn(z)) is a
Cauchy sequence of complex numbers. Let f : S → C be the pointwise limit of (fn). There
exists N such that if m,n ≥ N , then ‖fn−fm‖ < ε/2, which implies that |fn(z)−fm(z)| < ε/2
for all z ∈ S. From triangle inequality, we get

|fn(z)− f(z)| ≤ |fn(z)− fm(z)|+ |fm(z)− f(z)| < ε/2 + |fm(z)− f(z)|.

Fix n ≥ N and let m → ∞. Since fm(z) → f(z), we get |fn(z) − f(z)| ≤ ε/2 < ε. This holds
for any z ∈ S and n ≥ N . So (fn) converges to f uniformly on S.

Consider a series of functions,
∑
fn, where each fn is defined on S. Let sn =

∑n
k=1 fk : S →

C be the partial sum. We say that the series converges pointwise/uniformly if the sequence of
functions (sn) converges pointwise/uniformly. A series

∑
fn is said to converge absolutely if

the series
∑
|fn| converges pointwise. For example, if

∑
fn converges uniformly to f on S, and

each fn is continuous on f , then the partial sums sn are all continuous, so f is also continuous.
We have the following comparison test.

Theorem 2.2.3. Let (cn) be a sequence of nonnegative real numbers, and assume that
∑
cn

converges. Let (fn) be a sequence of functions on S such that ‖fn‖ ≤ cn for all n. Then
∑
fn

converges uniformly and absolutely.

Proof. To prove that
∑
fn converges absolutely, note that for each z ∈ S, |fn(z)| ≤ ‖fn‖ ≤ cn.

So we can apply the comparison test for the series of complex numbers. To prove that
∑
fn

converges uniformly, it suffices to show that the partial sum sequence sn =
∑n

k=1 fk, n ∈ N, is
a uniformly Cauchy sequence. In fact, for n ≥ m,

‖sn − sm‖ = ‖
n∑

k=m+1

fk‖ ≤
n∑

k=m+1

‖fk‖ ≤
m∑

k=n+1

ck,

which tends to 0 as n,m→∞. Thus, (sn) is a uniformly Cauchy sequence.

2.3 Radius of Power series

Now we come back to the power series

∞∑
n=0

anz
n,
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where (an)∞n=0 is a sequence of complex numbers. Before proving Main Theorem 1, let’s recall
the definition of lim sup.

The limsup of a sequence of real numbers (xn) is defined to be the infimum of the following
decreasing sequence:

Un = sup{xk : k ≥ n}, n ∈ N.

If L > lim supxn, then there is some Un such that L > Un, which implies that xk < L for
k ≥ n. If L < lim supxn, then Un > L for each n, which implies that for every n ∈ N there is
k ≥ n such that xk > L.

We are now ready to prove Main Theorem 1. In fact, we can prove a little bit more.

Theorem 2.3.1. Consider the power series
∑
anz

n. Suppose 1
R = lim sup |an|1/n. Then

(i) The series diverges for |z| > R.

(ii) The series converges absolutely for |z| < R.

(iii) If R > r > 0, then the series converges uniformly on {|z| ≤ r}.

Proof. (i) Suppose |z| > R. Then 1/|z| < 1/R = lim sup |an|1/n. Thus, for every n ∈ N there
is k ≥ n such that |ak|1/k > 1/|z|, which then implies that |akzk| > 1. Thus the sequence
(anz

n) does not converge to 0, and the series
∑
anz

n must diverge. This finishes the proof of
(i). If R = 0 then (ii) and (iii) must hold because there is nothing to check. Suppose R > 0.
Let r ∈ (0, R), and let L ∈ (r,R). Since L < R, 1/L > 1/R = lim sup |an|1/n. So there is
N ∈ N such that for n ≥ N , |an|1/n < 1/L, which implies that |anLn| < 1. Thus, the sequence
(anL

n)∞n=0 is bounded. Suppose for some C < ∞, |anLn| ≤ C for all n. Let x = r/L ∈ (0, 1).
Then

|an|rn = |anLn|xn ≤ Cxn, n ≥ 0.

From real analysis,
∑
xn converges. Thus,

∑
|an|rn converges from the comparison test. Since

for |z| ≤ r, |anzn| ≤ |an|rn, From the previous theorem,
∑
anz

n converges absolutely and
uniformly on {|z| ≤ r}. This finishes the proof of (iii). Finally, since

∑
|anzn| converges

pointwise on {|z| ≤ r} for every r ∈ (0, R), it must converge pointwise on {|z| < R}. This
finishes the proof of (ii).

If R > 0, and we define f(z) =
∑∞

n=0 anz
n, then from (iii) we conclude that f is continuous

on {|z| ≤ r} for any 0 < r < R, which then implies that f is continuous on {|z| < R}. In
general, the series may or may not converge uniformly on {|z| < R}.
Homework.

1. Prove that the series
∑∞

n=0 z
n does not converge uniformly on D(0, 1).
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2.4 Differentiation of Power Series

We now come to the proof of Main Theorem 2. Although we know that d
dz z

0 = 0 and d
dz z

n =

nzn−1 for n ≥ 1, we can not conclude immediately that d
dz

∑∞
n=0 anz

n =
∑∞

n=1 nanz
n−1.

Lemma 2.4.1. The series
∑∞

n=0 anz
n and

∑∞
n=1 nanz

n−1 have the same radius of convergence.

Proof. Since
∑∞

n=1 nanz
n−1 and

∑∞
n=1 nanz

n converge for the same z, they have the same
radius of convergence. Since limn1/n = 1 ∈ (0,∞), we get

lim sup |nan|1/n = limn1/n lim sup |an|1/n = lim sup |an|1/n.

So
∑∞

n=1 nanz
n and

∑∞
n=0 anz

n have the same radius of convergence.

Proof of Main Theorem 2. Let f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=1 nanz

n−1 on D(0, R). We
will show that f ′(z0) = g(z0) for every z0 ∈ D(0, R). Fix z0 ∈ D(0, R). We need to show that
f(z)−f(z0)

z−z0 − g(z0)→ 0 as z → z0. We find that

f(z)− f(z0)

z − z0
− g(z0) =

∞∑
n=1

an

(zn − zn0
z − z0

− nzn−1
0

)

=

∞∑
n=1

an(zn−1 + zn−2z0 + · · ·+ zzn−2
0 + zn−1

0 − nzn−1
0 )

=
∞∑
n=2

an

n−1∑
k=1

(zk − zk0 )zn−1−k
0 = (z − z0)

∞∑
n=2

an

n−1∑
k=1

zn−1−k
0

k−1∑
j=0

zjzk−1−j
0

= (z − z0)
∞∑
n=2

an

n−1∑
k=1

k−1∑
j=0

zjzn−2−j
0 .

Choose L ∈ (|z0|, R). Let ε = L− |z0|. If |z − z0| < ε, then |z|, |z0| < L, and so∣∣∣ ∞∑
n=2

an

n−1∑
k=1

k−1∑
j=0

zjzn−2−j
0

∣∣∣ ≤ ∞∑
n=2

|an|
n−1∑
k=1

k−1∑
j=0

Ln−2

=
∞∑
n=2

|an|
(n− 1)(n− 2)

2
Ln−2.

Applying the previous lemma twice, we find that
∑

n=2 an(n − 1)(n − 2)zn−2 has the same
radius of convergence as

∑∞
n=0 anz

n. Since L ∈ (0, R), the series
∑∞

n=2 an(n − 1)(n − 2)Ln−2

converges absolutely. Thus, C :=
∑∞

n=2 |an|
(n−1)(n−2)

2 Ln−2 <∞. So we get the inequality∣∣∣f(z)− f(z0)

z − z0
− g(z0)

∣∣∣ ≤ C|z − z0|, |z − z0| < ε/2.

This shows that limz→z0
f(z)−f(z0)

z−z0 − g(z0) = 0 as desired.
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We now see that, if f is the sum of a power series with radius R > 0, then f is holomorphic,
and f ′ is the sum of another power series, which also have radius R. We may further differentiate
f ′. So we see that f is infinitely many times complex differentiable.

On the other hand, the Main Theorem 2 also gives a method to find a holomorphic function
F on D(0, R), whose derivative is f(z) =

∑∞
n=0 anz

n. Such F is expressed by a power series:
F (z) = C +

∑∞
n=0

an
n+1z

n+1, which also have radius R.
Differentiating the power series m times, we get

f (m)(z) =
( d
dz

)m ∞∑
n=0

anz
n =

∞∑
n=m

n(n− 1) · · · (n−m+ 1)anz
n−m.

Since the value of f (m)(0) is the coefficients of the constant term, we get f (m)(0) = m!am. Thus,

an =
f (n)(0)

n!
, n = 0, 1, 2, . . . .

This means that we can recover the coefficients an from the n-th derivative of f at 0.
We will often consider series of the form

∞∑
n=0

an(z − z0)n.

We call it a power series centered at z0. If 1
R = lim sup |an|1/n, then the series converges for

|z− z0| < R and diverges for |z− z0| > R. If R > 0, then the series converges to a holomorphic
function f on D(z0, R), which is infinity times complex differentiable, and we have

an =
f (n)(z0)

n!
, n = 0, 1, 2, . . . . (2.2)

This means that we may rewrite the series as

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

Homework. II, §5: 1, 4, 6(a).

2.5 Analytic Functions and Uniqueness Theorem

Definition 2.5.1. Let U be an open set and f : U → C. We say that f is analytic on U if for
every z0 ∈ U , there is r > 0 and a sequence of complex numbers (an)∞n=0 such that D(z0, r) ⊂ U
and f(z) =

∑∞
n=0 an(z − z0)n on D(z0, r).
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From the differentiability of power series we see that, if f is analytic on U , then it is
holomorphic on U , and its derivative is still analytic on U . So such f is infinitely many times
complex differentiable on U . Moreover, at every z0 ∈ U , the coefficients an of the power series

expansion of f centered at z0 can be calculated using an = f (n)(z0)
n! , n = 0, 1, 2, · · · .

In the next chapter, we will show that a holomorphic function is also analytic. Thus, if
a function is complex differentiable on an open set, then it is infinitely many times complex
differentiable. There is no such phenomena in real analysis.

Let f be analytic in U . A zero of f is some z ∈ U such that f(z) = 0. Fix z0 ∈ U . Let an,
n ≥ 0, be the coefficients of the power series expansion of f at z0. This means that for some
r > 0, D(z0, r) ⊂ U and f(z) =

∑∞
n=0 an(z − z0)n on D(z0, r). There are three cases about the

behavior of the zeros of f near z0.

1. If a0 6= 0, then f(z0) 6= 0. Since f is continuous, there is r1 ∈ (0, r) such that D(z0, r1)
contains no zero of f .

2. If a0 = 0 but not all an’s are 0, then there is some smallest m ∈ N such that am 6= 0.
Then there is r > 0 such that f(z) = (z − z0)mg(z) and g(z) =

∑∞
k=0 ak+m(z − z0)k on

D(z0, r). Since g(z0) = am 6= 0, there is r1 ∈ (0, r) such that D(z0, r1) contains no zero
of g. Since (z − z0)m = 0 if and only if z = z0, we find that D(z0, r1) contains only one
zero of f , which is z0.

3. If all an’s are 0, then f is constant 0 on D(z0, r). In this case, every z ∈ D(z0, r) is a zero
of f .

Let S ⊂ C and z0 ∈ C. Recall that z0 is an accumulation point of S if for every r > 0,
D(z0, r) contains infinitely many elements in S. Note that this implies that z0 lies in the closure
of S: S. However, z0 ∈ S may not be an accumulation point of S. For example, any finite set is
closed, but has no accumulation point; the set {1/n : n ∈ N} has only one accumulation point,
which is 0.

Lemma 2.5.1. z0 is an accumulation point of S if and only if there is a sequence (zn) in
S \ {z0} such that zn → z0.

Proof. If z0 is an accumulation point of S, then for any n ∈ N, there is zn ∈ S∩(D(z0,
1
n)\{z0}).

Then (zn) is a sequence in S \ {z0}. From |zn − z0| < 1
n we see that zn → z0. This proves the

“only if” part. On the other hand, suppose (zn) is a sequence in S \ {z0}, which tends to z0.
If z0 is not an accumulation point of S, then there exists r > 0 such that D(z0, r) ∩ S is finite,
which then implies that D(z0, r) ∩ {zn : n ∈ N} is finite. This shows that infn∈N |zn − z0| > 0,
which contradicts that zn → z0. This proves the “if” part.

Theorem 2.5.1 (Uniqueness Theorem). Let U be a domain.

(i) Suppose f is analytic in U , and is not constant 0. Then the set of zeros of f has no
accumulation point in U .
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(ii) Suppose both f and g are analytic on U , and there is S ⊂ U with an accumulation point
in U such that f(z) = g(z) for z ∈ S, then f ≡ g in U .

Proof. (i) Let Z denote the zeros of f . Let A denote the set of accumulation points of Z that
lie in U . Since Z is a relatively closed subset of U , and f is not constantly zero, we have
A ⊂ Z $ U . First we show that A is relatively closed in U . Suppose (zn) is a sequence in A
that tends to z0 ∈ U . If z0 equals some zn, then z0 ∈ A; if zn 6= z0 for any n, then (zn) is a
sequence in Z \ {z0} that tends to z0, which implies that z0 is an accumulation point of Z, i.e.,
z0 ∈ A. Thus, A is relatively closed in U . Now we prove that A is open. Recall that for any
z0 ∈ U , there is r > 0 such that one of the following three cases occur: 1. D(z0, r) contains
no zero; 2. D(z0, r) contains only one zero, which is z0; 3. every point in D(z0, r) is a zero.
In the first two cases z0 is not an accumulation point of the zeros. Thus, if z0 ∈ A, then the
third case happens for some r > 0, which then implies that every point in D(z0, r) is also an
accumulation point of the zeros, i.e., D(z0, r) ⊂ A. Thus A is an open set. So A is relatively
open in U . Since U is connected and A $ U , we must have A = ∅. The proof is done.

(ii) Let h = f − g. Then h is analytic in U , and S is a subset of the zeros of h. Since S has
an accumulation point in U , from (i) we see that h is constant 0, so f = g on U .

Remarks.

1. We will show later that a holomorphic function is also analytic. So the above theorem
also works for holomorphic functions.

2. Uniqueness theorem tells us that if f is analytic on a domain U , and S is a subset of U
that contains an accumulation point in U , then the values of f on S determine the whole
f .

3. The theorem shows that there is only one way to extend the function ex from R to C such
that the new function is holomorphic. Let f(z) = ez. Suppose g is another holomorphic
function on C that satisfies g(x) = ex for x ∈ R. Then f = g on R. Since R has an
accumulation point in C, the theorem implies that f = g on C.

4. The above argument also works for the trigonometric functions such as sin z and cos z.
If a trigonometric equality holds for real numbers, then it usually also holds for complex
numbers. For example, we now have another method to show that cos2 z + sin2 z = 1.
Note that f(z) := cos2 z + sin2 z is an entire function, and equals g(z) := 1 for z ∈ R.
The theorem shows that f = g on C.

Homework.

1. Let f be an analytic function in an open set U . Let V = {z ∈ C : z ∈ U}. Define g on
V by g(z) = f(z). Show that g is analytic on V . Note: So far it is not sufficient to show
that g is holomorphic because we haven’t proved that holomorphic implies analytic.
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2. Let U be a nonempty connected open set such that for every z ∈ U , z ∈ U . (i) Show that
U ∩R contains an open interval. (ii) Let f be analytic on U . Suppose f(x) ∈ R for every
x ∈ U ∩ R. Prove that f(z) = f(z) for any z ∈ U .

3. Prove that there does not exist a function f , which is analytic in C, and satisfies f( 1
n) =

| 1
n3 | for any n ∈ Z \ {0}.
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Chapter 3

Cauchy’s Theorem

3.1 Curves

A curve γ is a continuous function γ : [a, b] → C, where [a, b] is a real interval. We call γ(a)
the beginning point, and γ(b) the end point of the curve. The set {γ(t) : a ≤ t ≤ b} is called
the image of γ. Sometimes a curve may refer to its image set. The reverse of γ is a curve
γ− : [a, b] → C defined by γ−(t) = γ(a + b − t), which has the same image as γ, but the
beginning point and end point are swapped. A curve is called closed if its beginning point is
the same as its end point.

We say that a curve γ is C1 if its real part Re γ and imaginary part Im γ both have continuous
derivatives (at the endpoints of the interval we consider one-sided derivatives). The derivative
of γ is defined by

γ′(t) = (Re γ)′(t) + i(Im γ)′(t).

A curve γ defined on [a, b] is called piecewise C1 if there is a partition a = x0 < x1 < · · · < xn = b
such that the restriction of γ to every subinterval [xk−1, xk], 1 ≤ k ≤ n, is C1. At the partition
points, γ has one-sided derivatives in both directions, which may not agree.

From now on, a curve is always assumed to be piecewise C1 unless otherwise stated. Let γ
be a (piecewise C1) curve. The length of γ is defined by

L(γ) =

∫ b

a
|γ′(t)|dt =

n∑
k=1

∫ xk

xk−1

|γ′(t)|dt.

The Riemann integral is well defined although |γ′| may not be defined at the partition points.
We have L(γ−) = L(γ) since

L(γ−) =

∫ b

a
| − γ′(a+ b− t)|dt =

∫ b

a
|γ′(a+ b− t)|dt =

∫ b

a
|γ′(t)|dt = L(γ).

Examples.
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1. Let z0, w0 ∈ C. Let γ(t) = (1− t)z0 + tw0, 0 ≤ t ≤ 1. The beginning point is γ(0) = z0,
and the end point is γ(1) = w0. We have γ′(t) = w0 − z0, 0 ≤ t ≤ 1. The image of γ is
a line segment connecting z0 and w0. The length of γ is

∫ 1
0 |γ

′(t)|dt = |w0 − z0|. We use
[z0, w0] to denote this curve. Its reverse is [w0, z0].

2. For z0 ∈ C and r > 0, define γ(t) = z0 + reit, 0 ≤ t ≤ 2π. It is a closed curve since
γ(0) = γ(2π) = z0 + r. We have γ′(t) = ireit, 0 ≤ t ≤ 2π. The image of γ is a circle:
{|z − z0| = r}. The length of γ is

∫ 2π
0 |γ

′(t)|dt = 2πr. Later when we view {|z − z0| = r}
as a curve, it always means the above γ.

Suppose two (piecewise C1) curves γ : [a, b]→ C and η : [c, d]→ C satisfy that the endpoint
of γ agrees with the initial point of η, i.e., γ(b) = η(c). Define γ ⊕ η on [a+ c, b+ d] such that
γ ⊕ η(t) = γ(t − c), a + c ≤ t ≤ b + c; and γ ⊕ η(t) = η(t − b), b + c ≤ t ≤ b + d. Then γ ⊕ η
is also a (piecewise C1) curve. The beginning point of γ ⊕ η is the beginning point of γ; the
end point of γ ⊕ η is the end point of η; the image of γ ⊕ η is the union of the two images; and
the length of γ⊕ η is the sum of the two lengths. The composition satisfies the associative law,
so we may define γ1 ⊕ γ2 ⊕ · · · ⊕ γn if the endpoint of γk agrees with the initial point of γk+1,
1 ≤ k ≤ n− 1.

Example.

1. If two curves γ and η have the same beginning point and the same end point, then γ⊕η−
is a closed curve.

2. Let z0, z1, . . . , zn ∈ C. Then [z0, z1]⊕ [z1, z2] · · · ⊕ [zn−1, zn] is a curve called a polygonal
curve. It is closed if zn = z0.

Let γ be a curve defined on [a, b]. Let ψ : [c, d] → [a, b] be continuously differentiable such
that ψ′ > 0, ψ(c) = a, and ψ(d) = b. Then γ ◦ ψ is also a curve, and

(γ ◦ ψ)′(t) = γ′(ψ(t))ψ′(t).

We say that γ ◦ ψ is a reparametrization of γ. Note that γ ◦ ψ and γ have the same beginning
point, the same end point, the same image, and the same length. Indeed,∫ d

c
|(γ ◦ ψ)′(t)|dt =

∫ d

c
|γ′(ψ(t))||ψ′(t)|dt =

∫ b

a
|γ′(t)|dt.

For example, there are different definitions of γ ⊕ η in the literature, but they are just
reparametrization of each other.

Finally, suppose γ lies in an open set U , and f is holomorphic on U , then f ◦ γ : [a, b]→ C
is also a curve, and

(f ◦ γ)′(t) = f ′(γ(t))γ′(t).

Recall that a domain D is a nonempty connected open set, and every two points z, w ∈ D
can be connected by a continuous curve in D. This result can be improved. It is not hard to
prove that there is a C1 curve in D, whose beginning point is z, and whose end point is w.
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Theorem 3.1.1. Suppose f is holomorphic on a domain U such that f ′ = 0 on U . Then f is
a constant.

Proof. It suffices to show that for any z0, w0 ∈ U , f(z0) = f(w0). Since U is connected, there is a
C1 curve γ : [a, b]→ U , which starts from z0 and ends at w0. Then (f ◦γ)′(t) = f ′(γ(t))γ′(t) = 0
for a ≤ t ≤ b, which implies that f(z0) = f(γ(a)) = f(γ(b)) = f(w0).

If f is a function on an open set U and g is a holomorphic function on U such that g′ = f ,
then we say that g is a primitive of f on U . The above theorem implies that, if U is connected,
a primitive of f is unique up to a constant. That is, if g1 and g2 are both primitives of f , then
g1 − g2 is a constant because (g1 − g2)′ = g′1 − g′2 = 0.

3.2 Integrals over curves

Let F : [a, b]→ C be continuous. Write F (t) = u(t) + iv(t), where u(t) and v(t) are real valued
functions. The integral of F on [a, b] is defined by∫ b

a
F (t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt,

where the integrals on the righthand side are the usual Riemann integral for real functions.
One may also use the limit of Riemann sums to define the integral of F .

It is easy to check the linear property of the above integral. Suppose F and G are complex
valued continuous function on [a, b], and C ∈ C. Then∫ b

a
(F +G)(t)dt =

∫ b

a
F (t)dt+

∫ b

a
G(t)dt;

∫ b

a
CF (t)dt = C

∫ b

a
F (t)dt.

Let L =
∫ b
a F (t)dt. Writing L in its polar form, we can find C ∈ C with |C| = 1 such that

CL = |L|, which implies that
∫ b
a CF (t)dt = |L|. Thus,

|L| =
∫ b

a
CF (t)dt = Re

∫ b

a
CF (t)dt =

∫ b

a
Re(CF (t))dt ≤

∫ b

a
|CF (t)|dt =

∫ b

a
|F (t)|dt.

This implies that ∣∣∣ ∫ b

a
F (t)dt

∣∣∣ ≤ ∫ b

a
|F (t)|dt.

Let f be a continuous function on an open set U . Let γ : [a, b] → U be a (piecewise C1)
curve. We define the integral of f over γ to be∫

γ
f =

∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

n∑
k=1

∫ xk

xk−1

f(γ(t))γ′(t)dt.
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There a = x0 < x1 < · · · < xn = b are partition points such that γ is C1 on [xk−1, xk].

Example.

1. Compute
∫
{|z|=r} z.

Recall that {|z| = r} is the curve γ(t) = reit, 0 ≤ t ≤ 2π, and γ′(t) = ireit. Thus,∫
{|z|=r}

z =

∫ 2π

0
γ(t)γ′(t)dt =

∫ 2π

0
re−itireitdt = 2πir2.

2. Compute
∫

[1,1+i]
1
z dz.

Recall that [1, 1 + i] is the curve γ(t) = 1 + it, 0 ≤ t ≤ 1, and γ′(t) = i. So we have∫
[1,1+i]

1

z
dz =

∫ 1

0

i

1 + it
dt =

∫ 1

0

t+ i

1 + t2
dt

=

∫ 1

0

t

1 + t2
dt+ i

∫ 1

0

1

1 + t2
dt =

1

2
log(1 + t2)

∣∣∣1
0

+ i arctan(t)
∣∣∣1
0

=
1

2
log(2) + i

π

4
.

At this moment we can not write
∫

[1,1+i]
1
z dz = log(z)|1+i

1 because log is multi-valued.

We have the following two simple facts.

1. The integral over a curve does not change if the curve is reparameterized. Suppose γ is
defined on [a, b] and ψ : [c, d]→ [a, b] is a C1 function with ψ(c) = a and ψ(d) = b. Then∫

γ◦ψ
f =

∫ d

c
f(γ(ψ(t)))(γ ◦ ψ)′(t)dt

=

∫ d

c
f(γ(ψ(t)))γ′(ψ(t))ψ′(t)dt =

∫ b

a
f(γ(s))γ′(s)ds =

∫
γ
f.

2. The integral over the reversal of a curve is the opposite of the original integral. In fact,∫
γ−
f =

∫ b

a
f(γ−(t))(γ−)′(t)dt =

∫ b

a
f(γ(a+ b− t))(−γ′(a+ b− t))dt

=

∫ a

b
f(γ(s))γ′(s)ds = −

∫ b

a
f(γ(s))γ′(s)ds = −

∫
γ
f.

3.
∫
γ1⊕γ2⊕···⊕γn f =

∑n
k=1

∫
γk
f .

Theorem 3.2.1. Let f be continuous on an open set U , and suppose that f has a primitive g
in U . Let γ be a curve in U , which starts from α and ends at β. Then∫

γ
f = g(β)− g(α).
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Proof. Suppose γ is defined on [a, b]. Then∫
γ
f =

∫ b

a
f(γ(t))γ′(t)dt =

∫ b

a
g′(γ(t))γ′(t)dt =

∫ b

a
(g ◦ γ)′(t)dt

= (g ◦ γ)(b)− (g ◦ γ)(a) = g(β)− g(α).

This theorem provides a simpler way to calculate the integral if a premitive is known. In
particular, if a premitive exists, then

∫
γ f = 0 whenever γ is closed. If the premitive does not

exist, or is unknown, we still have to use the definition to compute the integral.

Examples.

1. Let U = C \ {0}, γ(t) = {|z| = 1} ⊂ U , and f(z) = zn, n ∈ Z. If n 6= −1, then f has a

primitive in U , which is zn+1

n+1 . Since γ is a closed curve in U , we get
∫
γ f = 0. If n = −1,

we calculate ∫
γ
f =

∫ 2π

0

1

eit
ieit dt =

∫ 2π

0
idt = 2πi 6= 0.

So 1
z has no primitive in C \ {0}.

Theorem 3.2.2. Let f be continuous on a domain U . Then the following are equivalent.

(i) f has a primitive in U .

(ii) If γ1 and γ2 are curves in U that have the same beginning point and the same end point,
then

∫
γ1
f =

∫
γ2
f .

(iii) If γ is a closed curve in U , then
∫
γ f = 0.

Proof. That (i) implies (iii) follows from the above theorem. Now we show that (iii) implies
(ii). Note that γ1 ⊕ γ−2 is a closed curve in U . So

0 =

∫
γ1⊕γ−2

f =

∫
γ1

f +

∫
γ−2

f =

∫
γ1

f −
∫
γ2

f.

Finally, we show that (ii) implies (i). Fix z0 ∈ U . Since U is connected, for every z ∈ U we
may find a curve γz in U from z0 to z. Define g on U by

g(z) =

∫
γz

f,

From (ii) we know that the value of g(z) does not depend on the choice of γz. Suppose [z, w] ⊂ U .
Let γz be a curve in U from z0 to z. Then γz ⊕ [z, w] is a curve in U from z0 to w. So we get

g(w)− g(z) =

∫
γz⊕[z,w]

f −
∫
γz

f =

∫
[z,w]

f.

The proof is finished by the following lemma.
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Lemma 3.2.1. Let f and g be defined on an open set U . Suppose f is continuous, and∫
[z,w] f = g(w)− g(z) whenever [z, w] ⊂ U . Then g is a primitive of f in U .

Proof. If [w, z] ⊂ U , we have

g(w)− g(z) =

∫
[z,w]

f =

∫ 1

0
f(z + t(w − z))(w − z)dt,

which implies that, if w 6= z, then

g(w)− g(z)

w − z
− f(z) =

∫ 1

0
[f(z + t(w − z))− f(z)]dt.

Fix z ∈ U . Since U is open, there is R > 0 such that D(z,R) ⊂ U . Since f is continuous at
z, for any ε > 0, there is δ ∈ (0, R) such that if |w − z| < δ, then |f(w) − f(z)| < ε. Now if
|w − z| < δ and t ∈ [0, 1], then |z + t(w − z)− z| = t|w − z| ≤ |w − z| < δ, which implies that
|f(z + t(w − z))− f(z)| < ε, and so∣∣∣ ∫ 1

0
(f(z + t(w − z))− f(z))dt

∣∣∣ ≤ ∫ 1

0
|f(z + t(w − z))− f(z)|dt ≤ ε.

This implies that limw→z
g(w)−g(z)
w−z = f(z).

Recall the sup norm of f on γ is ‖f‖γ = supz∈γ |f(z)|.

Lemma 3.2.2. If f is continuous on a curve γ, then |
∫
γ f | ≤ ‖f‖γL(γ).

Proof. We have∣∣∣ ∫
γ
f
∣∣∣ =

∣∣∣ ∫ b

a
f(γ(t))γ′(t)dt

∣∣∣ ≤ ∫ b

a
|f(γ(t))γ′(t)|dt ≤

∫ b

a
‖f‖γ |γ′(t)|dt = ‖f‖γL(γ).

Remark. For the f in the lemma, we do not have |
∫
γ f | ≤

∫
γ |f |. In fact,

∫
γ |f | may not even

be a real number. Also do not confuse this lemma with the inequality |
∫ b
a f(t)dt| ≤

∫ b
a |f(t)|dt,

where f is a continuous complex function defined on [a, b].

Theorem 3.2.3. (i) Let (fn) be a sequence of continuous functions on U converging uniformly
to f . Let γ be a curve in U . Then

lim
n→∞

∫
γ
fn =

∫
γ
f.

(ii) If
∑
fn is a series of continuous functions converging uniformly on U , then∫

γ

∑
fn =

∑∫
γ
fn.
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Proof. (i) First, f is continuous because it is the uniform limit of continuous functions. So
∫
γ f

makes sense. The first statement is immediate from the inequality∣∣ ∫
γ
fn −

∫
γ
f
∣∣∣ =

∣∣ ∫
γ
(fn − f)

∣∣∣ ≤ ‖fn − f‖γL(γ) ≤ ‖fn − f‖UL(γ).

Note that L(γ) is a finite real number. From ‖fn − f‖ → 0, we get
∫
γ fn →

∫
γ f . (ii) This

clearly follows from (i) because now the partial sum sequence converges uniformly.

Now we get another proof of the differentiability of a power series. Suppose
∑∞

n=0 anz
n has

radius R > 0. Define f and g on D(0, R) such that

f(z) =
∞∑
n=0

anz
n, g(z) =

∞∑
n=1

nanz
n−1.

Let fn(z) = anz
n and gn = f ′n for n ≥ 0. Note that g0 ≡ 0 and gn(z) = nanz

n−1 for n ≥ 1.
Fix r ∈ (0, R). Let z0, w0 ∈ D(0, r), and γ be a curve in D(0, r) from z0 to w0. Then∫

γ
gn = fn(w0)− fn(z0), n ≥ 0.

Since
∑
fn and

∑
gn converge to f and g, respectively, uniformly on D(0, r), applying the

above theorem, we get
∫
γ g = f(w0) − f(z0). Since this holds for any z0, w0 ∈ D(0, r), we

conclude that f ′ = g on D(0, r). Since this holds for any r ∈ (0, R), we see that f ′ = g on
D(0, R).

Homework. III, §2: 4 (b,c), 6;
Additional problems:

1. Let a, b ∈ C and c ∈ [a, b]. Let f be continuous on [a, b]. Use the definition to show that∫
[a,b]

f =

∫
[a,c]

f +

∫
[c,b]

f.

Note: You should stick to the definition, which gives, e.g.,
∫

[a,b] f =
∫ 1

0 f(a + t(b − a)) ·
(b− a)dt.

3.3 Goursat’s Theorem and Local Primitives

Let S ⊂ C be nonempty. We define the diameter of S to be

diam(S) := sup{|z − w| : z, w ∈ S} ≥ 0.

Note that diam(S) <∞ if S is bounded.
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In the theorem below, if ∆ is a triangle with vertices A,B,C such that ABCA surrounds
∆ in the counterclockwise direction, then we write∫

∂∆
=

∫
[A,B]

+

∫
[B,C]

+

∫
[C,A]

.

Theorem 3.3.1. [Goursat’s Theorem] Let f be holomorphic on a closed triangle ∆. This
means that f is holomorphic on an open set U that contains ∆. Then

∫
∂∆ f = 0.

Proof. Decompose ∆ into four triangles of similar shape: ∆j , 1 ≤ j ≤ 4, using the middle
points of its sides. Then we have ∫

∂∆
f =

4∑
j=1

∫
∂∆j

f.

Let C = |
∫
∂∆ f | ≥ 0. From triangle inequality, there is j0 ∈ {1, 2, 3, 4} such that∣∣∣ ∫

∂∆j0

f
∣∣∣ ≥ 1

4

∣∣∣ ∫
∂∆

f
∣∣∣ =

C

4
.

Let ∆(1) denote this triangle. Similarly, we may decompose ∆(1) into four triangles of the

similar shape: ∆
(1)
j , 1 ≤ j ≤ 4, using the middle points of the sides of ∆(1). One of them must

satisfy ∣∣∣ ∫
∂∆

(1)
j

f
∣∣∣ ≥ 1

4

∣∣∣ ∫
∂∆(1)

f
∣∣∣ ≥ |C|

42
.

Let this triangle be denoted by ∆(2). Repeating this sequence, we obtain a sequence of triangles
(∆(n))∞n=1 such that

1. ∆ ⊃ ∆(1) ⊃ ∆(2) ⊃ · · · ⊃ ∆(n) ⊃ ∆(n+1) ⊃ · · · .

2. L(∂∆(n)) = 1
2nL(∂∆), diam(∆(n)) = 1

2n diam(∆), n ∈ N.

3. |
∫
∂∆(n) f | ≥ |C|4n , n ∈ N.

Since all ∆(n) are nonempty compact sets, we conclude that
⋂∞
n=1 ∆(n) is nonempty.

Let z0 ∈
⋂∞
n=1 ∆(n). Then z0 ∈ ∆. So f is differentiable at z0. Define

h(z) =

{
f(z)−f(z0)

z−z0 − f ′(z0), z 6= z0;

0, z = z0.

Then h is continuous on ∆ and

f(z) = f(z0) + f ′(z0)(z − z0) + h(z)(z − z0).
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Let P (z) = f(z0) + f ′(z0)(z − z0). Then P is a polynomial, which has a primitive in C. So we
have

∫
∂∆(n) P = 0, n ∈ N. Thus,∫

∂∆(n)

f =

∫
∂∆(n)

h(z)(z − z0)dz, n ∈ N.

Since z0 ∈ ∆(n), we have |z − z0| ≤ diam(∆(n)) for each z ∈ ∂∆(n). Thus,∣∣∣ ∫
∂∆(n)

h(z)(z − z0)dz
∣∣∣ ≤ ‖h‖∂∆(n) diam(∆(n))L(∂∆(n)) ≤ ‖h‖∆(n)

diam(∆)

2n
L(∂∆)

2n
.

Recall that ‖h‖S = supz∈S |h(z)|. Since |
∫
∂∆(n) f | ≥ |C|4n , we should have

‖h‖∆(n)diam(∆)L(∂∆) ≥ |C|, n ∈ N.

Since limz→z0 h(z) = h(z0) = 0, and ∆(n) ⊂ D(z0, diam(∆(n))), where diam(∆(n))→ 0, we have
‖h‖∆(n) → 0, which forces |C| = 0, i.e., C = 0.

Definition 3.3.1. Let U be a nonempty open set. We call U a convex domain if for any
z, w ∈ U , [z, w] ⊂ U . We call U a star domain if there is z0 ∈ U such that for every z ∈ U ,
the line segment [z0, z] lies in U . We call z0 a center of U .

Note that

1. Every convex domain is a star domain, where every point can act as a center. So a star
domain may have more than one centers.

2. If U is a star domain with a center z0, and if z1, z2 ∈ U satisfy that [z1, z2] ⊂ U , and
z0, z1, z2 do not lie on the same line, then the triangle ∆ with vertices z0, z1, z2 are con-
tained in U . This is because ∆ =

⋃
z∈[z1,z2][z0, z].

Theorem 3.3.2. If f is holomorphic on a star domain U , then f has a primitive in U .

Proof. Let z0 be a center of U . First, we show that for any z1, z2 ∈ U with [z1, z2] ⊂ U , we
have ∫

[z1,z2]
f +

∫
[z2,z0]

f +

∫
[z0,z1]

f = 0. (3.1)

Since U is a star domain, the integrals all make sense. If z0, z1, z2 form a triangle ∆, which
must be contained in U from the above remark. The equality follows from Goursat theorem
because the left hand side is equal to either

∫
∂∆ f or −

∫
∂∆ f . If they lie on the same line, then

one of them, say z1, lie on the line segment connecting the other two points. From a homework
problem, we get ∫

[z0,z2]
f =

∫
[z0,z1]

f +

∫
[z1,z2]

f,

which again implies (3.1). The other cases are similar.
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Now define g on U such that

g(z) =

∫
[z0,z]

f.

Then g is well defined because [z0, z] ⊂ U . From (3.1) we find that for any z, w ∈ U with
[z, w] ⊂ U ,

g(z)− g(w) =

∫
[z0,z]

f −
∫

[z0,w]
f =

∫
[w,z]

f.

From Lemma 3.2.1 we proved before, we see that g is a primitive of f in U .

Corollary 3.3.1. If f is holomorphic on a star domain U , then
∫
γ f = 0 for any closed curve

γ in U .

We will often apply the above theorem to the open discs. If f is holomorphic on an open
set U , although we may not have a primitive of f in U , if we restrict f to any open disc D
contained in U , then the above theorem implies that there is g holomorphic on D such that
g′ = f on D. We call such g a local primitive of f .

3.4 Cauchy’s Theorem for Jordan Curves

A continuous curve γ : [a, b]→ C is called simple if for any a ≤ t1 < t2 ≤ b, γ(t1) 6= γ(t2). It is
called simple closed if the above condition is satisfied except that γ(a) = γ(b). A simple closed
curve is also called a Jordan curve.

Theorem 3.4.1. [Jordan Curve Theorem] Let γ be a Jordan curve. Then C \ γ is a
disjoint union of two domains. One of these domains is bounded (the interior) and the other is
unbounded (the exterior), and γ is the boundary of each domain.

The theorem is named after Camille Jordan, who found its first proof. The proof is quite
complicated. The interior of a Jordan curve is called the Jordan domain bounded by γ, and is
denoted by Int(γ).

We say that a Jordan curve has positive/negative orientation if it is oriented counterclock-
wise/clockwise. If one travels along the Jordan curve with positive/negative orientation, the
interior domain of the curve always lies on his left/right. For example, the circle {|z− z0| = r}
parameterized by γ(t) = z0 + reit, 0 ≤ t ≤ 2π, has positive orientation.

From now on, a simple curve or Jordan curve is assumed to be piecewise C1 so that the
integrals can be well defined.

Theorem 3.4.2. [Cauchy’s Theorem for Jordan Curves] Let J be a Jordan curve. Sup-
pose f is holomorphic on Int(J) ∪ J . Then

∫
J f = 0.

Proof. We may assume that J is positively oriented. For otherwise, J− is a positively oriented
Jordan curve, and

∫
J = −

∫
J− . Let U denote the open set on which f is holomorphic. By

assumption, Int(J) ∪ J ⊂ U . Note that Int(J) ∪ J is compact because it is both closed and
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bounded. From a homework problem, there is r > 0 such that D(z0, r) ⊂ U for any z0 ∈
Int(J) ∪ J . We may use horizontal lines and vertical lines to divide Int(J) into finitely many
domains, each of which is bounded by a Jordan curve with diameter less than r, say J1, . . . , Jn.
Suppose each Jk is also positively oriented. Then

∫
J f =

∑n
k=1

∫
Jk
f . We now prove that∫

Jk
f = 0 for each k. Fix zk ∈ Jk. Since diam(Jk) < r, we have Jk ⊂ D(zk, r) ⊂ U . Since f is

holomorphic on D(zk, r), which is a star domain, f has a primitive in D(zk, r). Since Jk is a
closed curve in D(zk, r), we have

∫
Jk
f = 0. This finishes the proof.

Note that Goursat’s Theorem is a special case of Cauchy’s Theorem. But the proof of
Cauchy’s Theorem relies on a corollary of Goursat Theorem.

Definition 3.4.1. A domain U is called a simply connected domain if for any Jordan curve
J ⊂ U , we have Int(J) ⊂ U .

Intuitively, a simply connected domain is a domain with no holes. Every Jordan domain
or star domain (and also convex domain) is simply connected. An annulus A = {z ∈ C : r <
|z − z0| < R} is not simply connected.

Theorem 3.4.3. If f is holomorphic on a simply connected domain U , then f has a primitive
in U .

Proof. Fix z0 ∈ U . For every z ∈ U , we may find a simple polygonal curve γz in U that starts
from z0 and ends at z. We define g(z) =

∫
γz
f . we now show that the value of g(z) does not

depend on the choice of γz. This means that, if γ1 and γ2 are two simple polygonal curves in
U that both start from z0 and end at z, we need to prove that

∫
γ1
f =

∫
γ2
f . First, we consider

a special case when γ1 and γ2 only meet at z0 and z. Then J := γ1 ⊕ γ−2 is a Jordan curve
in U . Since U is simply connected, Int(J) ⊂ U . So f is holomorphic on Int(J) ∪ J . From the
previous theorem,

0 =

∫
J
f =

∫
γ1

f −
∫
γ2

f.

Now consider the general cases. We may always find z0, z1, . . . , zn = z on γ1∩γ2, which appear
on both curves in the order from z0 to z, such that for each 1 ≤ k ≤ n, the subcurves γ1[zk−1, zk]
and γ2[zk−1, zk] either overlap, or meet only at zk−1 and zk. In both cases, we get∫

γ1[zk−1,zk]
f =

∫
γ1[zk−1,zk]

f.

In fact, if two subcurves overlap, then the equality holds trivially; if they meet at only two
points, then the equality follows from the above argument. Thus, we have∫

γ1

f =

n∑
k=1

∫
γ1[zk−1,zk]

f =

n∑
k=1

∫
γ2[zk−1,zk]

f =

∫
γ2

f.

So g is well defined. From Lemma 3.2.1, it now suffices to show that, whenever [z, w] ⊂ U , we
have g(w)− g(z) =

∫
[z,w] f . In fact, there is a simple curve γ in U that starts from z0 and ends
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at z, which intersects [z, w] only at z. Then the combination β = γ⊕ [z, w] is a simple curve in
U , which starts from z0 and ends at w. Thus,

g(w)− g(z) =

∫
β
f −

∫
γ
f =

∫
[z,w]

f.

Homework.

1. Prove that Cauchy’s theorem for Jordan curves follows from Green’s theorem if we assume
that f ′ is continuous.
Remark: In the definition of holomorphic functions, there is no assumption that f ′ is
continuous. The statement of Cauchy’s Theorem is weaker with this assumption.

2. Let γ be a positively oriented Jordan curve. Use Green’s Theorem to compute
∫
γ zdz.

3.5 Cauchy’s Formula

Suppose Jk, 0 ≤ k ≤ n, are disjoint Jordan curves such that Int(Jk) ∪ Jk, 1 ≤ k ≤ n, are
mutually disjoint, and all contained in Int(J0). Then these curves bound a domain U , which is
obtained by removing Int(Jk) ∪ Jk, 1 ≤ k ≤ n, from Int(J0). In other words, U lies inside J0

and outside Jk, 1 ≤ k ≤ n.

Theorem 3.5.1. Suppose every Jk has positive orientation. If f is holomorphic on U =
U ∪

⋃n
k=0 Jk, then ∫

J0

f =

n∑
k=1

∫
Jk

f.

Proof. We may divide U into two domains bounded by Jordan curves C1 and C2 with positive
orientation. One may check that∫

C1

+

∫
C2

=

∫
J0

+
n∑
k=1

∫
J−k

=

∫
J0

−
n∑
k=1

∫
Jk

.

From Cauchy’s theorem for Jordan curves,
∫
Cj
f = 0, j = 1, 2, which finishes the proof.

Theorem 3.5.2. [Cauchy’s Formula for Jordan Curves] Let J be a positively oriented
Jordan curve. Suppose f is holomorphic on Int(J) ∪ J . Then

f(w) =
1

2πi

∫
J

f(z)

z − w
dz, w ∈ Int(J). (3.2)
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Proof. Fix w ∈ Int(J). Note that g(z) := f(z)
z−w is not holomorphic on Int(J) ∪ J , so we can

not apply Cauchy’s Theorem to conclude that
∫
J g = 0. However, we may apply the previous

theorem. Let R > 0 be such that D(w,R) ⊂ Int(J). If r ∈ (0, R), then {|z − w| = r} is
a Jordan curve that lies inside J , and g is holomorphic on these two Jordan curves and the
domain bounded by them. From a previous theorem, we have∫

J
g =

∫
|z−w|=r

g =

∫
|z−w|=r

f(z)− f(w)

z − w
dz +

∫
|z−w|=r

f(w)

z − w
dz.

Note that the equality holds for any r ∈ (0, R), and
∫
J g does not depend on r. So

∫
J g is equal

to the limit of the righthand side as r → 0. First, using the parametrization γ(t) = w + reit,
0 ≤ t ≤ 2π, we find that∫

|z−w|=r

f(w)

z − w
dz =

∫ 2π

0

f(w)

reit
ireitdt = 2πif(w).

Second, since limz→w
f(z)−f(w)

z−w = f ′(w), there exist δ,M > 0 such that |f(z)−f(w)
z−w | ≤ M if

|z − w| ≤ δ. Thus, if r ≤ δ, then∣∣∣ ∫
|z−w|=r

f(z)− f(w)

z − w
dz
∣∣∣ ≤ML({|z − w| = r}) = M2πr,

which tends to 0 as r → 0. This shows that
∫
J g = 2πif(w), which proves (3.2).

Theorem 3.5.3. Let J and f be as in the previous theorem. Then for any w0 ∈ Int(J),

f(w) =
∞∑
n=0

(w − w0)n
1

2πi

∫
J

f(z)

(z − w0)n+1
dz, |w − w0| < dist(w0, J). (3.3)

In particular, f is analytic in Int(J), and we have the following Cauchy’s Formula:

f (n)(w0) =
n!

2πi

∫
J

f(z)

(z − w0)n+1
dz, w0 ∈ Int(J), n ∈ N ∪ {0}. (3.4)

Proof. Fix w0 ∈ Int(J). Let R = dist(w0, J) > 0. If |w − w0| < R ≤ |z − w0|, then

f(z)

z − w
=

f(z)

(z − w0)− (w − w0)
=

f(z)/(z − w0)

1− (w − w0)/(z − w0)
=

f(z)

z − w0

∞∑
n=0

(w − w0)n

(z − w0)n
.

From (3.2) we see that, if w ∈ D(w0, R), then w ∈ Int(J), and

f(w) =
1

2πi

∫
J

∞∑
n=0

f(z)

(z − w0)n+1
(w − w0)n dz. (3.5)
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For z ∈ J , we have ∣∣∣ f(z)

(z − w0)n+1
(w − w0)n

∣∣∣ ≤ ‖f‖J |w − w0|n

Rn+1
.

Since J is compact and f is continuous on J , we have ‖f‖J <∞. Since |w−w0| < R, we have

∞∑
n=0

‖f‖J
|w − w0|n

Rn+1
<∞.

Thus,
∑∞

n=0
f(z)

(z−w0)n+1 (w − w0)n converges uniformly on J , which together with (3.5) implies

(3.3). Thus, f is analytic in Int(J). Finally, since f (n)(w0) = n!an if f(w) =
∑∞

n=0 an(w−w0)n

near w0, we get (3.4).

Remark. If w0 lies on the exterior of J , then the right hand side of (3.4) is equal to 0 because

the function f(z)
(z−w0)n+1 is holomorphic on Int(J) ∪ J , and we may apply Cauchy’s Theorem.

Corollary 3.5.1. If f is holomorphic on an open set U , then f is analytic in U . Moreover, f
is infinitely many times complex differentiable, and for every z0 ∈ U ,

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n, (3.6)

holds for any z ∈ D(z0, R̃), where R̃ =∞ if U = C; or R̃ = dist(z0, ∂U) if U $ C.

Proof. The statement follows from the previous theorem by choosing J = {|z − z0| = r} where
r ∈ (0, R), and letting r → R.

Homework. Compute
∫
γ

e3z

(z−2)3
dz for (i) γ = {|z| = 3} and (ii) γ = {|z| = 1}.

Theorem 3.5.4. [Morera’s Theorem] Suppose f is continuous on a domain U , and satisfies
that for any closed curve γ in U ,

∫
γ f = 0. Then f is analytic.

Proof. From a theorem we studied, f has a primitive F in U . Such F is holomorphic, which is
also analytic. So f = F ′ is also analytic in U .

Remarks.

1. So far we have seen that holomorphic is equivalent to analytic. Thus, if f is complex
differentiable in an open set, then it is infinitely many times complex differentiable in
that set. This phenomena does not exist in Real Analysis. In the rest of this course, we
will use the words “analytic” and “holomorphic” interchangeably.

2. The corollary tells us that the radius of the power series
∑∞

n=0
f (n)(z0)

n! (z − z0)n, say R, is

greater than or equal to R̃ = dist(z0, ∂U) if U $ C. The equality may not hold since f
could be a restriction of a holomorphic function defined on a bigger domain.
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3. If U = C, i.e., f is an entire function, then R = R̃ =∞ for any z0. So we have

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n, z0, z ∈ C.

4. Now we give a case when we can say that the radius R = R̃ = dist(z0, ∂U). Note that if
R > R̃, then f |

D(z0,R̃)
is the restriction of a holomorphic function on D(z0, R) to D(z0, R̃).

Since D(z0, R̃) is a compact subset of D(z0, R), we then conclude that f is bounded on
D(z0, R̃). Thus, if there is a point z1 ∈ ∂D(z0, R̃) such that |f(z)| → ∞ as z → z1, then
we must have R = R̃ = dist(z0, ∂D).

Theorem 3.5.5. [Liouville’s Theorem] Every bounded entire function is constant.

Proof. Let f be an entire function. Suppose that there is M ∈ R such that |f(z)| ≤M for any
z ∈ C. Then for any z ∈ C and R > 0

f ′(z) =
1

2πi

∫
|w−z|=R

f(w)

(w − z)2
dw.

For w ∈ {|w − z| = R}, | f(w)
(w−z)2 | =

|f(w)|
R2 ≤ M

R2 . Thus,

|f ′(z)| ≤ 1

2π

M

R2
L({|z − w| = R}) =

1

2π
· M
R2
· 2πR =

M

R
.

Since this holds for any R > 0, we get f ′(z) = 0 for any z ∈ C. Thus, f is constant.

Theorem 3.5.6. [Fundamental Theorem of Algebra] Every non-constant complex poly-
nomial has a zero in C.

Proof. Let P (z) = a0 +a1z+ · · ·+anz
n be a non-constant polynomial with an 6= 0. Suppose P

has no zero in C. Then Q(z) = 1/P (z) is holomorphic on C. We will show that Q is bounded
on C. This requires a careful estimation. We find that

P (z)

anzn
= 1 +

an−1

an
z−1 + · · ·+ a0

zn
→ 1,

as |z| → ∞. Thus, as |z| → ∞, |P (z)| → ∞, which implies that Q(z) → 0. So there is R > 0
such |Q(z)| ≤ 1 if |z| > R. Since Q is continuous on the compact set D(0, R), it is bounded on
this set. So there is M0 > 0 such that |Q(z)| ≤ M0 if |z| ≤ R. Let M = max{M0, 1}. Then
|Q(z)| ≤ M for any z ∈ C. So Q is a bounded entire function. Applying Liouville’s theorem,
we see that Q is constant, which implies that P is constant, which is a contradiction.

We may apply FTA to conclude that every polynomial can be factorized into C
∏n
k=1(z−zk).

Suppose z1 is a zero of P (z), then

P (z) = P (z)− P (z1) =
n∑
k=0

ak(z
k − zk1 ) = (z − z1)

n∑
k=1

ak(z
k−1 + · · · zk−1

1 ) =: (z − z1)Q(z).
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Note that Q is a polynomial of degree n− 1. If deg(Q) = 0, then Q is constant; if deg(Q) ≥ 1,
we may find a zero of Q and factorize Q. The conclusion follows from an induction.

At the end, we give a quick review of the development of recent important theorems. All
magics begin with Goursat’s Theorem, which is about the integral of a holomorphic function
over the boundary of a triangle. In the proof we divide the triangle into 4 smaller triangles
of similar shapes using middle points, and choose one of them to divide into even smaller
triangles. Repeating this process, we get a decreasing sequence of triangles, and then we look
at the intersection of them. Goursat’s Theorem is then used to prove a corollary about the
existence of local primitive of a holomorphic function. Later we prove the Cauchy’s Theorem for
Jordan curves, which is about the integral of a holomorphic function over a Jordan curve. In the
proof we divide the Jordan domain into several Jordan domains of small diameters and apply
the corollary of Goursat’s Theorem. Cauchy’s Theorem is then used to prove Cauchy’s formula,
where we consider the integral of f(z)

z−w over a small circle centered at w, and let the radius tend
to 0. Then we use Cauchy’s formula to prove that a holomorphic function is analytic, and
also derive integral expressions of the derivatives of f . Cauchy’s formula is also used to prove
Liouville’s Theorem, which is then used to prove the Fundamental Theorem of Algebra.

Homework III, §7: 3
Additional problems:

1. What is the radius of the power series
∑∞

n=0
tanh(n)(0)

n! zn? Justify your answer.
Remark. Since tanh restricted to R is a real analytic function, one may ask this question
with only Real Analysis. However, it is hard to answer without Complex Analysis.

2. Let f be an entire function. Suppose that there exists r > 0 such that |f(z)| ≥ r for every
z ∈ C. Prove that f is constant.

3. Let f be an entire function. Suppose that f has two periods a, b ∈ C, which are R-linearly
independent. This means that f(z+ a) = f(z+ b) = f(z) for any z ∈ C, and ax+ by 6= 0
for any x, y ∈ R which are not both zero. Prove that f is constant.

3.6 Differentiability of the Logarithm Function

Let U be an open set with 0 6∈ U . Recall that L(z) is called a branch of log z in U , if it is
continuous in U , and satisfies eL(z) = z for any z ∈ U . In this section, we will show that a
branch of log z is not only continuous, but also holomorphic, and its derivative is the function
1/z.

Theorem 3.6.1. Suppose f is a primitive of 1/z in a domain U . Then there is some C ∈ C
such that f + C is a branch of log z in U .

Proof. Let g(z) = ef(z)

z . Then g is holomorphic on U . We compute

g′(z) =
ef(z)f ′(z)

z
− ef(z)

z2
=
ef(z)

z2
− ef(z)

z2
= 0, z ∈ U.
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Since U is connected, g is constant C0, which is not 0. Thus, ef(z) = C0z for any z ∈ U . Let
C ∈ C be such that eC = 1/C0. Then ef(z)+C = z in U . Since f is holomorphic on U , f +C is
continuous in U , and so is a branch of log z in U .

Theorem 3.6.2. Let U ⊂ C \ {0} be a simply connected domain. Then there is a branch of
log z in U , which is a primitive of 1/z in U .

Proof. Since 1/z is holomorphic on U , which has a primitive in U as U is simply connected. Let
f denote this primitive. From the above theorem, there is a constant C such that g := f + C
is a branch of log z. The g is what we need since g′ = f ′ = 1/z in U .

Lemma 3.6.1. If f is a continuous function on a domain U such that f(z) ∈ Z for every
z ∈ U , then f is constant.

Proof. Let z0 ∈ U and n0 = f(z0) ∈ Z. Let A = f−1({n0}) 3 z0. Since f is continuous
on U , A is relatively closed in U . On the other hand, since f only takes integer values,
A = f−1((n0 − 1/2, n0 + 1/2)). Since f is continuous on U , A is relatively open in U . Since U
is connected, and A is not empty, we have A = U . So f is constant n0.

Theorem 3.6.3. If L is a branch of log z in an open set U ⊂ C \ {0}, then L is a primitive of
1/z in U .

Proof. Let z0 ∈ U . Let r > 0 be such that D(z0, r) ⊂ U . Since D(z0, r) is simply connected,
from Theorem 3.6.2, there is a branch M(z) of log z in D(z0, r), which is a primitive of 1/z in
that disc. Since L(z) and M(z) are both branches of log z in D(z0, r), we find that f(z) :=
(L(z) − M(z))/(2πi) is an integer valued continuous function on the disc. From the above
lemma, f is constant. So L′ = M ′ = 1/z in D(z0, r). Since z0 ∈ U is arbitrary, we conclude
that L is a primitive of 1/z in U .

Let f be an analytic function in an open set U , which does not take value 0. We say that g is
a branch of log f in U , if g is continuous and satisfies that eg = f . Note that if g is holomorphic,
then egg′ = f ′, which gives g′ = f ′

f . Using similar proofs, we can prove the following statements
in the order:

1. Suppose h is a primitive of f ′

f in a domain U . Then there is some C ∈ C such that h+C
is a branch of log f in U . For this statement, note that

d

dz

eh(z)

f(z)
=
eh(z)h′(z)

f(z)
− eh(z)f ′(z)

f(z)2
= 0.

2. If U is a simply connected domain, then there exists a branch of log f , which is also a
primitive of f ′

f .

3. For general U , if g is a branch of log f , then g is a primitive of f ′

f .
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Homework. Chapter III, §6: 6.
Additional problems.

1. Fix α ∈ C. The function (1 + z)α in D(0, 1) is defined as eαL(z), where L is a branch of
log(1 + z) that satisfies L(0) = 0. Prove that (1 + z)α is holomorphic on D(0, 1), and

(1 + z)α =
∞∑
n=0

(
α

n

)
zn, z ∈ D(0, 1),

where
(
α
n

)
was defined earlier.

2. Let g be holomorphic on a simply connected domain U . Show that there is f , which is
holomorphic on U without zero, such that g = f ′

f in U .

3.7 The Maximum Modulus Principle

Theorem 3.7.1. [Mean Value Theorem] Let f be holomorphic on a closed disc D(z0, r).
Then

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ)dθ;

f(z0) =
1

πr2

∫ ∫
|z−z0|≤r

f(z)dxdy. (3.7)

Proof. From Cauchy’s Formula,

f(z0) =
1

2πi

∫
|z−z0|=r

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθdθ =

1

2π

∫ 2π

0
f(z0 + reiθ)dθ.

This is also true if r is replaced by any s ∈ (0, r). Thus,

2πsf(z0) =

∫ 2π

0
f(z0 + seiθ)sdθ, 0 ≤ s ≤ r.

Integrating s from 0 to r, we get

πr2f(z0) =

∫ 2π

0

∫ r

0
f(z0 + seiθ)sdsdθ =

∫ ∫
|z−z0|≤r

f(z)dxdy,

where in the last step we used rdrdθ = dxdy.

Theorem 3.7.2. Let f be holomorphic on D(z0, r). Suppose |f(z0)| ≥ |f(z)| for any z ∈
D(z0, r). Then f is constant on D(z0, r).
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Proof. First, we show that |f | is constant on D(z0, r). If not, there is z1 ∈ D(z0, r) such that
|f(z1)| < |f(z0)|. Let ε = |f(z0)| − |f(z1)| > 0. Since |f | is continuous, we may find r1 > 0
such that D(z1, r1) ⊂ D(z0, r) and |f(z)| ≤ |f(z1)|+ ε/2 = |f(z0)| − ε/2 for z ∈ D(z1, r1). Let
D0 = D(z0, r) and D1 = D(z1, r1). From (3.7), we get

πr2|f(z0)| ≤
∫ ∫

D0

|f(z)|dxdy =

∫ ∫
D1

|f(z)|dxdy +

∫ ∫
D0\D1

|f(z)|dxdy

≤
∫ ∫

D1

(|f(z0)| − ε/2)dxdy +

∫ ∫
D0\D1

|f(z0)|dxdy =

∫ ∫
D0

|f(z0)|dxdy − ε

2
πr2

1 < πr2|f(z0)|,

which is a contradiction. Thus, |f | is constant in D(z0, r). Using a homework problem, we then
conclude that f is constant in D(z0, r).

Corollary 3.7.1. Let f be holomorphic on a domain U . Suppose |f | attains local maximum
at some z0 ∈ U , i.e., there is r > 0 such that |f(z0)| ≥ |f(z)| for any z ∈ D(z0, r). Then f is
constant in U .

Proof. From the previous two theorems, we see that f is constant in D(z0, r). This means that
z0 is an accumulation point of the zeros of f − f(z0). Since U is a connected, f − f(z0) is
constant 0 in U . So f is constant in U .

Theorem 3.7.3. [Maximum Modulus Principle] Let U be a bounded domain and U be its
closure. Suppose f is a continuous on U , and holomorphic on U . Then there is z0 ∈ ∂U such
that |f(z0)| ≥ |f(z)| for any z ∈ U . In short, the maximum of |f | is attained at the boundary.

Proof. Since U is bounded, U is a compact set. Since |f | is continuous on U , it attains its
maximum at some w0 ∈ U . If w0 ∈ ∂U , then the proof is done by taking z0 = w0. If w0 ∈ U ,
then from the above corollary, f is constant in U . From the continuity, that f is also constant
in U . In this case, any z0 ∈ ∂U works.

Corollary 3.7.2. Let U be a bounded domain. Suppose that both f and g are continuous on
U , and holomorphic on U . If f = g on ∂U , then f = g in U .

Proof. Let h = f − g. Then h is continuous on U , and holomorphic on U . If f = g on ∂U , then
|h| = 0 on ∂U . The above corollary implies that h = 0 in U , i.e., f = g in U .

Remark. The condition that f is a continuous on U and holomorphic on U is often satisfied
when f is holomorphic on U , i.e., f is holomorphic on another open set U ′ with U ′ ⊃ U .

Homework III, §1: 2, 3
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3.8 Harmonic Functions

Let U ⊂ Rn be an open set. Let f : U → C. If f is C2 on U , and satisfies the Laplace equation

∆f(x) :=
n∑
k=1

∂2f

∂x2
k

(x) = 0, x ∈ U,

then we say that f is a harmonic function on U . The symbol ∆ is called the Laplace operator.
In this course, we focus on the case n = 2, and identify R2 with C. The Laplace equation

becomes

∆f(z) =
∂2f

∂x2
(z) +

∂2f

∂y2
(z) = 0, z ∈ U.

Note that a complex function is harmonic if and only if both of its real part and imaginary part
are harmonic.

Theorem 3.8.1. Let f be holomorphic on an open set U ⊂ C. Then f is harmonic on U .

Proof. Let f = u+iv. We have seen that f is infinitely many times complex differentiable, which
implies that u and v are infinitely many times real differentiable. From the Cauchy-Riemann
equation, we get ux = vy and uy = −vx in U . Thus,

uxx + uyy = vyx − vxy = 0, vxx + vyy = −uyx + uxy = 0,

which implies that both u and v are harmonic, and so is f .

From now on, we assume that a harmonic function is always real valued.

Lemma 3.8.1. Let u be a real valued C2 function defined in an open set U . Then u is harmonic
on U if and only if ux − iuy is holomorphic on U .

Proof. Suppose u is harmonic on U . Then ux, uy ∈ C1 and (ux)x = (−uy)y and (ux)y =
−(−uy)x. Cauchy-Riemann equation is satisfied by ux and −uy. So ux − iuy is holomorphic.
On the other hand, if ux− iuy is holomorphic, then the Cauchy-Riemann equation implies that
(ux)x = (−uy)y, i.e., uxx + uyy = 0. So u is harmonic.

Definition 3.8.1. Let u be a harmonic function in a domain D. If a real valued function v
satisfies that u + iv is holomorphic on D, then we say that v is a harmonic conjugate of u in
D.

A harmonic conjugate must also be a harmonic function because it is the imaginary part of a
holomorphic function. If v and w are both harmonic conjugates of u in U , then vx = −uy = wx
and vy = ux = wy in U . Since U is connected, we get v − w is constant. This means that, the
harmonic conjugates of a harmonic function, if it exists, are unique up to an additive constant.
Also note that if v is a harmonic conjugate of u, then −u (instead of u) is a harmonic conjugate
of v. This is because −i(u+ iv) = v − iu is holomorphic.
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Theorem 3.8.2. Let u be a harmonic function in a simply connected domain D. Then there
is a harmonic conjugate of u in D.

Proof. Let f = ux − iuy in D. From the above lemma, f is holomorphic on D. Since D is
simply connected, f has a primitive in D, say F . Write F = ũ+ iṽ. Then

ux − iuy = f = F ′ = ũx − iũy.

Thus, ux = ũx and uy = ũy in U . Since D is connected, we see that ũ−u is a real constant. Let
C = ũ − u ∈ R. Then F − C = u + iṽ is holomorphic on D. Thus, ṽ is a harmonic conjugate
of u.

Remarks.

1. The theorem does not hold if we do not assume that U is simply connected. Here is
an example. Let D = C \ {0}. Let u(z) = ln |z| = 1

2 ln(x2 + y2). Then ux = x
x2+y2

and uy = y
x2+y2

. So ux − iuy = 1
x+iy is holomorphic on D. From the above lemma,

u is harmonic. If v is a harmonic conjugate of u in D, then u + iv is a primitive of
ux − iuy = 1

z in D. However, we already know that 1
z has no primitive in C \ {0}. Recall

that
∫
|z|=1

dz
z = 2πi 6= 0. Thus, u has no harmonic conjugates in D.

2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U ,
then for any disk D(z0, r) ⊂ U , there is f , which is holomorphic on D(z0, r) and satisfies
that Re f = u. Since such f is infinitely many times complex differentiable, we see that u
is infinitely many times real differentiable in D(z0, r). Since D(z0, r) ⊂ U can be chosen
arbitrarily, we see that every harmonic function is infinitely many times real differentiable.

Homework.
Find all real-valued C2 differentiable functions h defined on (0,∞) such that u(x, y) = h(x2+y2)
is harmonic on C \ {0}.

If U is simply connected, we may use the following method to find a harmonic conjugate
of u. Here is an example. Let u(x, y) = x2 + 2xy − y2. Then uxx + uyy = 2 − 2 = 0. So u is
harmonic on R2. We now find a harmonic conjugate of u. If v is a harmonic conjugate, then
vy = ux = 2x + 2y. Thus, v = 2xy + y2 + h(x), where h(x) is a differentiable function in x.
From −uy = vx, we get 2y− 2x = 2y+ h′(x). So we may choose h(x) = −x2. So one harmonic
conjugate of u is 2xy + y2 − x2.

Theorem 3.8.3. [Mean Value Theorem for Harmonic Functions] Let u be harmonic on
D(z0, R). Then for any r ∈ (0, R),

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ)dθ;

u(z0) =
1

πr2

∫
|z−z0|≤r

u(z)dxdy.
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Proof. Since D(z0, R) is simply connected, there is f holomorphic on D(z0, R) such that u =
Re f . From the Mean Value Theorem for holomorphic functions, the two formulas hold with f
in place of u. Then we can obtain the formulas for u by taking the real parts.

Corollary 3.8.1. With the above setup, if u attains its maximum at z0, then u is constant in
D(z0, R).

Proof. We have seen a similar proposition, which says that if f is holomorphic on D(z0, R),
and |f | attains its maximum at z0, then |f | is constant in D(z0, R). A similar proof can be
used here.

Here is another proof. Let f be analytic such that u = Re f . Then ef is also analytic, and
|ef | = eu. Since u attains its maximum at z0, |ef | also attains its maximum at z0. An earlier
proposition shows that |ef | is constant, which implies that u = log |ef | is constant.

Theorem 3.8.4. [Maximum Principle for Harmonic Functions] Let u be harmonic on
a domain D.

(i) Suppose that u has a local maximum at z0 ∈ D. Then u is constant.

(ii) If D is bounded, and u is continuous on D, then there is z0 ∈ ∂D such that u(z0) =
max{u(z) : z ∈ D}.

(iii) The above statements also hold if “maximum” is replaced by “minimum”.

Proof. (i) From the above corollary, there is r0 > 0 such that u is constant in D(z0, r0). Let
w ∈ D. Since D is connected, we may find a finite sequence of disks Dk = D(zk, rk), 0 ≤ k ≤ n,
in D, such that w ∈ Dn and Dk−1 ∩Dk 6= ∅, 1 ≤ k ≤ n. Since each Dk is simply connected,
there is fk holomorphic on Dk such that u = Re fk in Dk. We already see that u is constant in
D0. So Re f1 = u is constant in D0 ∩D1. From C-R equations, we see that f1 is constant in
D0 ∩D1. From the Uniqueness Theorem, we see that f1 is constant in D1. Thus, u = Re f1 is
constant in D1. Using induction, we see that u is constant in every Dk. Since Dk−1 ∩Dk 6= ∅,
u is constant in

⋃n
k=0Dk. Thus, f(w) = f(z0) as w ∈ Dn and z0 ∈ D0.

(ii) Since D is bounded, D is compact. Since u is continuous on D, it attains its maximum
at some w0 ∈ D. If w0 ∈ ∂D, we may let z0 = w0. If w0 ∈ D, then (i) implies that u is constant
on D. The continuity then implies that u is constant in D. We may take z0 to be any point on
∂D.

(iii) Note that −u is also harmonic, and when −u attains its maximum, u attains its
minimum.

Corollary 3.8.2. Suppose u and v are both harmonic on a bounded domain D and continuous
on D. Suppose that u = v on ∂D. Then u = v on D.

Proof. Let h = u− v. Then h is harmonic on D, continuous on D, and h ≡ 0 on ∂U . From the
above theorem, h attains its maximum and minimum in D at ∂D. So h has to be 0 everywhere
in D, i.e., u = v on U .
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The above corollary says that, if u is harmonic on a bounded domain D and continuous on
D, then the values of u on D are determined by the values of u on ∂D.

We introduce the differential operators

∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
.

This mean that, if f = u+ iv, then

fz :=
∂f

∂z
=

1

2
(ux + ivx)− i

2
(uy + ivy) =

ux + vy
2

+ i
vx − uy

2
;

fz :=
∂f

∂z
=

1

2
(ux + ivx) +

i

2
(uy + ivy) =

ux − vy
2

+ i
vx + uy

2
.

So the Cauchy-Riemann equation is equivalent to fz = 0; and if f is holomorphic, then fz =
ux + ivx = f ′. Moreover, it is clear that

∂

∂z

∂

∂z
=

∂

∂z

∂

∂z
=

1

4
∆.

Thus, if f is holomorphic, then ∆f = 0, from which we see again that f is harmonic. If u is
harmonic, then from ∂z∂zu = 1

4∆u = 0 we see that ∂zu is holomorphic, which is used in a proof
a theorem.

Remark. The smoothness, mean value theorem and the maximum principle also hold for
harmonic functions in Rn for n ≥ 3. But the technique of complex analysis can not be used.
For example, the mean value theorem follows from the divergence theorem.

Homework. Chapter VIII, §1: 7 (a,b,c,e).

1. Prove that any positive harmonic function in R2 is constant. Hint: If f is an entire
function with Re f > 0, then consider e−f .
Remark: This statement does not hold for Rd with d ≥ 3.

2. Let u be a nonconstant harmonic function on C. Show that for any c ∈ R, u−1(c) is
unbounded. Hint: {|z| > R} is connected for any R > 0.

3.9 Winding Numbers

Let γ be a closed curve, and α ∈ C \ γ. The winding number or index of γ with respect to α is

W (γ, α) =
1

2πi

∫
γ

1

z − α
dz.

Example. Suppose γ is a Jordan curve. If α lies in the exterior of γ, then applying Cauchy’s
Theorem to f(z) = 1

z−α , we get W (γ, α) = 0. If α lies in the interior of γ, then applying
Cauchy’s Formula to f(z) = 1, we get W (γ, α) = 1 or −1, where the sign depends on the
orientation of γ.
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Lemma 3.9.1. W (γ, α) ∈ Z.

Proof. Suppose γ is defined on [a, b]. Define F (t) =
∫ t
a

γ′(s)
γ(s)−αds, a ≤ t ≤ b. Then F is

continuous on [a, b], F (a) = 0, F (b) = 2πiW (γ, α), and F ′(t) = γ′(t)
γ(t)−α for t ∈ [a, b] other than

the partition points, say a = x0 < x1 < · · · < xn = b.We now compute

d

dt
e−F (t)(γ(t)− α) = e−F (t)γ′(t)− e−F (t)F ′(t)(γ(t)− α) = 0, t ∈ [a, b] \ {x0, . . . , xn}.

Hence there is a constant C ∈ C such that C(γ(t)−α) = eF (t), a ≤ t ≤ b. Since γ is closed, we
have eF (b) = eF (a) = e0 = 1, which implies that F (b) ∈ 2πiZ. So W (γ, α) = 1

2πiF (b) ∈ Z.

Remark. Let θ0 be an argument of the C in the above proof. From γ(t)− α = CeF (t) we see
that ImF (t)+θ0 is an argument of γ(t)−α for a ≤ t ≤ b. Now suppose h is a continuous function
on [a, b] such that h(t) is an argument of γ(t)−α for a ≤ t ≤ b, then (h(t)− ImF (t)−θ0)/(2πi)
is an integer-valued continuous function on [a, b], which must be constant. Thus,

W (γ, α) =
F (b)− F (a)

2πi
=
i ImF (b)− i ImF (a)

2πi
=
h(b)− h(a)

2π
.

This means that 2πW (γ, α) equals to the total increment of arg(z − α) along γ.

Lemma 3.9.2. The map α 7→W (γ, α) is continuous on C \ γ.

Proof. Fix α0 ∈ C \ γ. Let (αn) be a sequence that converges to α0. It suffices to show that
1

z−αn →
1

z−α0
uniformly on z ∈ γ. Let r = dist(α0, γ) > 0. For n big enough, we have

|αn − α0| < r/2, which implies that dist(αn, γ) ≥ r/2. For those n, we have∣∣∣ 1

z − αn
− 1

z − α0

∣∣∣ =
|αn − α0|

|z − αn||z − α0|
≤ |αn − α0|

r2/2
, z ∈ γ.

Thus, ‖ 1
z−αn −

1
z−α0
‖γ ≤ |αn−α0|

r2/2
when n is big enough, which implies that 2πiW (γ, αn) =∫

γ
1

z−αndz →
∫
γ

1
z−α0

dz = 2πiW (γ, α0).

Corollary 3.9.1. W (γ, ·) is constant on each connected component of C \ γ.

Proof. This follows from the above two lemmas and the fact that a continuous integer valued
function is constant on a domain.

Corollary 3.9.2. W (γ, α) = 0 if α lies on the unbounded component of C \ γ.

Proof. Since γ is bounded, there is M ∈ (0,∞) such that |z| ≤ M for all z ∈ γ. Suppose

|α| > 2M . Then |z − α| ≥ |α| − |z| ≥ |α|2 for z ∈ γ. Thus, | 1
z−α | ≤

2
|α| if |α| > 2M . Thus, | 1

z−α |
tends to 0 as α → ∞ uniformly on z ∈ γ. Thus, W (γ, α) → 0 as α → ∞. Since W (γ, ·) is
constant on the the unbounded component of C \ γ, the constant has to be 0.

54



We define a contour γ to be a “sum” of finitely many closed curves γk, 1 ≤ k ≤ n, which
may or may not have intersections. The repetitions in γk’s are allowed. The integral along a
contour is defined to be

∫
γ =

∑n
k=1

∫
γk

. The winding number of a contour γ with respect to

α ∈ C \ γ = C \
⋃n
k=1 γk is W (γ, α) =

∑n
k=1W (γk, α). The above propositions also hold for

contours.

Examples.

1. The winding numbers of a trefoil knot in 5 different domains.

Observe that the winding number increases by 1 if we cross the contour from its right to its
left; decreases by 1 if we cross the contour from its left to its right.

Theorem 3.9.1. [The General Cauchy’s Theorem] Let f be holomorphic on a domain U .
Let γ be a contour in U such that W (γ, α) = 0 for every α ∈ C \ U . Then

∫
γ f = 0.

The interested reader may refer to Chapter IV, § 3 of Lang’s book for a proof. The condition
that W (γ, α) = 0 for every α ∈ C\U means that every component of C\γ such that the winding
number of γ is not zero must be contained in U . For example, if γ is a Jordan curve, then
we need that Int(γ) ⊂ U . Suppose now the contour γ is the sum of mutually disjoint Jordan
curves γk, 0 ≤ k ≤ n, such that Int(γk), 1 ≤ k ≤ n, are mutually disjoint, and are all contained
in Int(γ0). Suppose further that γ0 is positively oriented, and γk, 1 ≤ k ≤ n, are negatively
oriented. Then the W (γ, α) 6= 0 iff α ∈ D := Int(γ0) \ ∪nk=1(Int(γk) ∪ γk). Then the condition
of the above theorem becomes D ⊂ U .

Theorem 3.9.2. [The General Cauchy’s Formula] Let f be holomorphic on a domain U .
Let γ be a contour in U such that for every α ∈ C \ U , W (γ, α) = 0. Let z0 ∈ U \ γ. Then

1

2πi

∫
γ

f(z)

z − z0
dz = W (γ, z0)f(z0).

Proof. Assuming the general Cauchy’s Theorem, the proof of this theorem is not difficult. Let
r > 0 be such that D̄(z0, r) ⊂ U . Define a contour η to be γ + (−W (γ, z0)){|z− z0| = r}. Here
if W (γ, z0) = 0, then η = γ; if W (γ, z0) > 0, this should be understood as η = γ+W (γ, z0){|z−
z0| = r}−. Let U ′ = U \{z0}. Then for any α ∈ C\U ′, W (η, α) = 0. Since f(z)

z−z0 is holomorphic
on U ′, from the general Cauchy’s Theorem,

0 =
1

2πi

∫
η

f(z)

z − z0
dz =

1

2πi

∫
γ

f(z)

z − z0
dz − W (γ, z0)

2πi

∫
|z−z0|=r

f(z)

z − z0
dz

=
1

2πi

∫
γ

f(z)

z − z0
dz −W (γ, z0)f(z0),

where the last equality follows from the Cauchy’s Formula for Jordan curves.

Homework. Find the winding numbers for a given closed curve. See the course webpage.
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Chapter 4

Calculus of Residues

4.1 Laurent Series

The Laurent series (centered at 0) is of the form

f(z) =
∞∑

n=−∞
anz

n,

where an, n ∈ Z, are complex numbers. It converges iff the following two series both converges:

∞∑
n=0

anz
n,

−1∑
n=−∞

anz
n.

The first is a power series. The second can also be transformed into a power series:

−1∑
n=−∞

anz
n =

∞∑
n=1

a−n(1/z)n.

Suppose the radius of
∑
anz

n is R+, and the radius of
∑
a−nw

n is R−. Then
∑∞

n=−∞ anz
n

converges when |z| < R+ and |1/z| < R−, i.e., 1/R− < |z| < R+. Suppose that 1/R− < R+.
Let R = R+, r = 1/R−, and let A be the annulus {r < |z| < R}. Let f+(z) =

∑∞
n=0 anz

n,
g−(w) =

∑∞
n=1 a−nw

n, and f−(z) = g−(1/z). Then f+ is holomorphic on D(0, R+) = D(0, R)
and g− is holomorphic on D(0, R−). So f− is holomorphic on {|z| > 1/R−} = {|z| > r}, and
f = f+ + f− is holomorphic on A.

Moreover, we have f ′+(z) =
∑∞

n=0 nanz
n−1 and g′−(w) =

∑∞
n=1 na−nw

n−1. Using chain rule,
we get

f ′−(z) = g′−(
1

z
) · −1

z2
=
∞∑
n=1

−na−nz−n−1 =
−1∑

k=−∞
kakz

k−1.
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Thus, the derivative of f = f+ + f− is

f ′(z) =

∞∑
n=−∞

nanz
n−1.

Theorem 4.1.1. Let r < R ∈ [0,∞]. Suppose that f is holomorphic on A = {z : r < |z| < R}.
Then f has a Laurent expansion:

f(z) =
∞∑

n=−∞
anz

n, z ∈ A,

where

an =
1

2πi

∫
|z|=t

f(z)

zn+1
dz, n ∈ Z, r < t < R. (4.1)

In the proof we will use the Laurent series expansion of a particular function f(z) = 1
z−z0 ,

where z0 ∈ C \ {0} is fixed. Let r = |z0|. Note that f is holomorphic on the disc {|z| < r} and
the annulus {r < |z| <∞}. In the disc, we have |z/z0| < 1, so

f(z) =
−z0

1− z/z0
= −z0

∞∑
n=0

( z
z0

)n
=

∞∑
n=0

−zn

zn+1
0

.

This means that an = 0 if n < 0; an = −1/zn+1
0 if n ≥ 0. In the annulus, we have |z0/z| > 1,

so

f(z) =
1/z

1− z0/z
=

1

z

∞∑
n=0

(z0

z

)n
=
∞∑
n=0

zn0
zn+1

=
−1∑

m=−∞

zm

zm+1
0

.

That is, an = 0 if n ≥ 0, an = 1/zn+1
0 if n < 0.

The above method can be used to derive the Laurent series of more complicated functions.
For example, f(z) = 1

(z−1)(z−2) . Note that, we can write f(z) = 1
z−2 −

1
z−1 . We have the

Laurent series expansions of 1
z−1 in the two regions: {|z| < 1} and {|z| > 1}, and the Laurent

series expansions of 1
z−2 in the two regions: {|z| < 2} and {|z| > 2}. Putting them together, we

can then derive the Laurent series of f in the regions: {|z| < 1}, {1 < |z| < 2}, and {|z| > 2},
respectively.

Proof. First, from Cauchy’s theorem, the value of each an does not depend on t. Let z0 ∈ A.
Pick s < S ∈ (r,R) such that s < |z0| < S. Let ε = min{|z0| − s, S − |z0|}/2 > 0. Let
J1 = {|z| = S}, J2 = {|z| = s}, and J3 = {|z − z0| = ε}. Then J2 and J3 lie inside J1. The

function f(z)
z−z0 is holomorphic on J1, J2, J3, and the domain bounded by these circles. From

Cauchy’s Theorem and Cauchy’s formula,∫
J1

f(z)

z − z0
dz −

∫
J2

f(z)

z − z0
dz =

∫
J3

f(z)

z − z0
dz = 2πif(z0).

57



Now we expand 1
z−z0 using

1

z − z0
=

1/z

1− z0/z
=
∞∑
n=0

zn0
zn+1

, z ∈ J1.

1

z − z0
=
−1/z0

1− z/z0
=
∞∑
k=0

−zk

zk+1
0

=
−1∑

k=−∞

−zn0
zn+1

, z ∈ J2.

The first holds because |z0/z| < 1 for z ∈ J1. The second holds because |z/z0| < 1 for z ∈ J2.
Thus,

2πif(z0) =

∫
J1

f(z)

z − z0
dz −

∫
J2

f(z)

z − z0
dz

=

∫
J1

∞∑
n=0

f(z)zn0
zn+1

dz +

∫
J2

−1∑
n=−∞

f(z)zn0
zn+1

dz.

If the infinite sums exchange with the integrals, we have

2πif(z0) =
∞∑
n=0

(∫
J1

f(z)

zn+1
dz
)
zn0 +

−1∑
n=−∞

(∫
J2

f(z)

zn+1
dz
)
zn0 =

∞∑
n=−∞

2πianz
n
0 . (4.2)

It remains to show that the two series inside the integrals converge uniformly on the curves.
Note that, for z ∈ J1, ∣∣∣f(z)zn0

zn+1

∣∣∣ ≤ ‖f‖J1 |z0|n

Rn+1
,

and from |z0|/R < 1, we find that

∞∑
n=0

‖f‖J1
|z0|n

Rn+1
=
‖f‖J1
R

∞∑
n=0

( |z0|
R

)n
<∞.

From comparison principle, we see that
∑∞

n=0
f(z)zn0
zn+1 converges uniformly over z ∈ J1. For

z ∈ J2, ∣∣∣f(z)zn0
zn+1

∣∣∣ ≤ ‖f‖J2 |z0|n

rn+1
,

and from |z0|/r > 1, we find that

−1∑
n=−∞

‖f‖J2
|z0|n

rn+1
=
‖f‖J2
r

∞∑
k=1

( r

|z0|

)k
<∞.

From comparison principle, we see that
∑−1

n=−∞
f(z)zn0
zn+1 converges uniformly over z ∈ J2. The

proof is now finished.
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Remark. We will not use the above theorem to calculate the coefficients an. Instead, we will
find the an using other methods, and then use this theorem to calculate the value of integrals.
We will prove in a homework problem that the Laurent series expansion is unique. So we may
use the known Laurent series to compute the integrals

∫
|z|=t

f(z)
zn+1 dz for n ∈ Z.

For example, the Laurent series expansion of e1/z is

∞∑
n=0

(1/z)n

n!
=

0∑
−∞

zn

(−n)!
.

So an = 0 if n > 0 and an = 1/(−n)! if n ≤ 0. A similar example is e−1/z2 =
∑∞

n=0 (−1/z2)nn!.
Then we have ∫

|z|=1
e1/zdz = 2πia−1 = 2πi.

Similarly, if f is holomorphic on A = {r < |z−z0| < R}, then f has a unique Laurent series
expansion in A:

∞∑
n=−∞

an(z − z0)n,

where

an =
1

2πi

∫
|z−z0|=t

f(z)

(z − z0)n+1
dz, n ∈ Z, r < t < R.

Homework. Chapter V §2: 8
Additional:

1. Suppose that f is holomorphic on A = {r < |z| < R}, where 0 ≤ r < R ≤ ∞. Suppose
that there are two series of complex numbers (an)n∈Z and (bn)n∈Z such that

f(z) =
∞∑

n=−∞
anz

n =
∞∑

n=−∞
bnz

n, z ∈ A.

Show that an = bn for all n ∈ Z. This means that the Laurent series expansion is unique.
Hint: It suffices to show that if f ≡ 0, then an = 0 for all n. Use

∑∞
n=0 anz

n =∑−1
n=−∞−anzn to construct a bounded entire function.

2. Suppose f is holomorphic on {r < |z| < R}. Prove that for any s ∈ (r,R),∫
|z|=s

f ′(z)

zn
dz = n

∫
|z|=s

f(z)

zn+1
dz, n ∈ Z.
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4.2 Isolated Singularities

Suppose f is holomorphic on U , z0 6∈ U , but there is r > 0 such that D(z0, r) \ {z0} ⊂ U .
Then we say that z0 is an isolated singularity of f . Then f has a Laurent expansion in
{0 < |z − z0| < r}:

∞∑
n=−∞

an(z − z0)n, (4.3)

where

an =
1

2πi

∫
|z−z0|=t

f(z)

(z − z0)n+1
dz, n ∈ Z, t ∈ (0, r). (4.4)

Definition 4.2.1. The series
∑−1

n=−∞ an(z − z0)n is called the principal part at z0 of f .

Case 1: a−n = 0 for all n ∈ N, i.e., the principal part vanishes. Then (4.3) becomes the usual
power series

∑∞
n=0 an(z − z0)n, which converges to a holomorphic function in {|z − z0| < r}.

Thus, if we define f(z0) = a0, then f is holomorphic on U ∪ {z0}. In this case, we call z0 a
removable singularity.

Case 2: Not all a−n, n ∈ N, equal to 0, and there are only finitely many nonzero a−n.
We may find m ∈ N such that a−m 6= 0 and a−n = 0 for n > m. In this case, we call z0 a
pole of f of order m. We find that z0 is a removable singularity of g(z) := (z − z0)mf(z), and
g(z0) = a−m 6= 0. A pole of order 1 is called a simple pole.

Case 3: There are infinitely many nonzero a−n, n ∈ N. In this case, we call z0 an essential
singularity of f . For any m ∈ N, z0 is still a (essential) singularity of (z − z0)mf(z).

Examples.

1. Suppose f is holomorphic on an open set U , and z0 ∈ U . Now we remove the definition
of f at z0. Then z0 becomes a removable singularity of f .

2. 0 is pole of order 1 of f(z) = 1
z . In fact, 1

z is already a Laurent series of f at 0.

3. Since the Laurent series expansion of e1/z at 0 is
∑0

n=−∞
zn

(−n)! , there are infinitely many

n < 0 such that an 6= 0. So 0 is an essential singularity of e1/z.

Suppose there is m ∈ Z such that am 6= 0 and for all n < m, an = 0. This means that z0 is
either a removable singularity or a pole, and f is not constant 0 near z0. In this case, we say
that the order of f at z0 is m, and write

ordz0 f = m.

We see that ordz0 f = m if and only if there is a holomorphic function g in D(z0, r) with
g(z0) 6= 0 such that f(z) = (z − z0)mg(z). If m ≥ 0, z0 is removable. If m ≥ 1, z0 is a zero
of f after removing the singularity, and we say that z0 is a zero of f of order m. A zero of
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order 1 is called a simple zero. Since an = f (n)(z0)
n! , z0 is a zero of order m iff f (k)(z0) = 0 for

0 ≤ k ≤ m− 1 and f (m)(z0) 6= 0. If m < 0, z0 is a pole of f of order |m|.
Note that if f and g are holomorphic at z0, and if f(z0), g(z0) 6= 0, then h1 = fg and h2 =

f/g are both holomorphic at z0, and h1(z0), h2(z0) 6= 0. This means that ordz0 f = ordz0 g = 0
implies that ordz0(fg) = ordz0(f/g) = 0. Now if ordz0 f = m and ordz0 g = n, then there are
F and G, which are holomorphic at z0 with F (z0), G(z0) 6= 0, such that f(z) = (z − z0)mF (z)
and g(z) = (z − z0)nG(z). Then we get

f(z)g(z) = (z − z0)m+nF (z)G(z), f(z)/g(z) = (z − z0)m−nF (z)/G(z).

Thus, we have

ordz0(f · g) = ordz0 f + ordz0 g, ordz0(f/g) = ordz0 f − ordz0 g.

Examples.

1. We have ordz0 1 = 0 for any z0 ∈ C, ord0 z = ord0 sin z = 1 (because the derivative of z
and sin z does not vanish at 0). Thus, ord0 1/z = ord0 1/ sin z = −1, which implies that
0 is a simple pole of 1/z and 1/ sin z. From ord0 sin z/z = ord0 sin z − ord0 z = 0, we see
that 0 is a removable singularity of sin z/z. After removing the singularity 0, we extend
sin z/z to an entire function.

Definition 4.2.2. Let U be an open set. Suppose that S is a relatively closed subset of U . If
f is holomorphic on U \ S, and each z0 ∈ S is a pole of f , then we say that f is meromorphic
on U .

Suppose f and g are holomorphic on a domain U such that g is not constant 0. Then f/g
is meromorphic on U after removing those removable singularities.

The quotient of two entire functions is meromorphic on C. This includes the quotient of two
polynomials, which is called a rational function. The functions tan z = sin z

cos z and cot z = cos z
sin z

are also meromorphic in C. For tan z, since the zeroes of cos z are kπ + π/2, k ∈ Z, which are
simple because cos′ z = − sin z 6= 0 at kπ+π/2, and since sin(kπ+π/2) 6= 0, we find that every
kπ + π/2 is a simple pole of tan z. Similarly, cot z is also a meromorphic function in C, whose
poles are kπ, k ∈ Z, and every pole is simple.

Now we describe the behavior of f near an isolated singularity of each kind. We will always
assume that z0 is a singularity of f , and f is holomorphic on D(z0, r) \ {z0}.

Theorem 4.2.1. The following are equivalent

(i) z0 is a removable singularity of f ;

(ii) limz→z0 f(z) converges;

(iii) there is r′ ∈ (0, r) such that f is bounded in D(z0, r
′) \ {z0}.
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Proof. That (i) implies (ii) is obvious because after the analytic extension, limz→z0 f(z) =
f(z0) ∈ C. Suppose (ii) holds, and let w0 = limz→z0 f(z) ∈ C. Then there is r′ ∈ (0, r) such
that |f(z) − w0| < 1 for z ∈ D(z0, r

′), which implies that |f(z)| ≤ |w0| + 1 in D(z0, r
′) \ {z0}.

So we get (iii)
Finally, we show that (iii) implies (i). Suppose |f(z)| ≤ M < ∞ on D(z0, r

′) \ {z0}. From
(4.4), we see that, for any t ∈ (0, r′),

|an| ≤
1

2π
Mt−n−1L({|z − z0| = t}) ≤Mt−n, n ∈ Z.

If n ≤ −1, then t−n → 0 as t→ 0, which implies that an = 0 for n ≤ −1. So we get (i).

Theorem 4.2.2. z0 is a pole of f ⇔ limz→z0 |f(z)| =∞.

Proof. z0 is a pole of f ⇔ z0 is a zero of 1/f ⇔ limz→z0 |1/f(z)| = 0 ⇔ limz→z0 |f(z)| = ∞.
Here that limz→z0 |1/f(z)| = 0 implies z0 is a zero of 1/f follows from the above theorem: we
first conclude that z0 is a removable singularity of 1/f using the boundedness of 1/f near z0,
and then use the limit to see that the extended value of 1/f at z0 is 0.

Recall that S ⊂ C is dense in C if S = C, which is equivalent to the following: for any
w0 ∈ C and r > 0, D(w0, r) ∩ S 6= ∅.

Theorem 4.2.3. z0 is an essential singularity of f ⇔ for any t ∈ (0, r), f(D(z0, t) \ {z0}) is
dense in C.

Proof. We first prove the⇐ part. Assume that f(D(z0, t)\{z0}) is dense in C for any t ∈ (0, r).
If z0 is a removable singularity, then limz→z0 f(z) exists. So there is t ∈ (0, r) such that
f(D(z0, t) \ {z0}) is contained in a disc, so it can not be dense in C. If z0 is a pole, then
limz→z0 |f(z)| =∞. Then there is t ∈ (0, r) such that f(D(z0, t) \ {z0}) ⊂ {|z| > 1}, which also
can not be dense in C. So z0 must be an essential singularity.

Then we prove the⇒ part. Assume that z0 is an essential singularity, but f(D(z0, t)\{z0})
is not dense in C for some t ∈ (0, r). Then there exist w0 ∈ C and ε > 0 such that |f(z)−w0| ≥ r
for every z ∈ D(z0, t) \ {z0}. Let g(z) = 1

f(z)−w0
. Then g is holomorphic and bounded in U . So

z0 is a removable singularity of g. Since f(z) = w0 + 1
g(z) for z ∈ U , we see that z0 is either a

removable singularity (if g(z0) 6= 0) or a pole (if g(z0) = 0) of f , which is a contradiction.

Remark. Actually, it is known that the f(D(z0, t) \ {z0}) in the above theorem is either
the whole C or C without a single point. Using a homework problem, one can show that, if
f(z) = e1/z, then for any r > 0, f(D(0, r) \ {0}) = C \ {0}.

Homework
Let f be an entire function that satisfies lim|z|→∞ |f(z)| =∞. Prove that f is a polynomial.

Hint: Consider g(z) := f(1/z).
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4.3 The Residue Formula

Let z0 be an isolated singularity of f , and let
∑∞

n=−∞ an(z− z0)n be the Laurent series of f in
0 < |z − z0| < r for some r > 0. We call a−1 the residue of f at z0, and write

Resz0 f = a−1.

Lemma 4.3.1. For any t ∈ (0, r). Then∫
{|z−z0|=t}

f = 2πia−1 = 2πiResz0 f.

Proof. Recall that for any n ∈ Z,

an =
1

2πi

∫
{|z−z0|=t}

f(z)

(z − z0)n+1
dz.

Taking n = −1, we get the desired equality.

Theorem 4.3.1. f has a primitive in D(z0, r) \ {z0} iff Resz0 f = 0.

Proof. If f has a primitive in D(z0, r)\{z0}, then
∫
C f = 0 for C = {|z−z0| = t}, which implies

that a−1 = 0. If a−1 = 0, then a primitive of f can be represented by

−2∑
n=−∞

an
n+ 1

(z − z0)n+1 +
∞∑
n=0

an
n+ 1

(z − z0)n+1.

Theorem 4.3.2. [Residue Formula for Jordan Curves] Let J be a positively oriented
Jordan curve. Suppose that f is holomorphic on Int(J) ∪ J except at a finite number of points
z1, . . . , zn ∈ Int(J). Then ∫

J
f = 2πi

n∑
j=1

Reszj f.

Proof. Choose r > 0 such that the closed discs D(zk, r), 1 ≤ k ≤ n, are mutually disjoint, and
all contained in the interior of J . From Cauchy’s Theorem and the previous lemma, we get∫

J
f =

n∑
k=1

∫
|z−zk|=r

f = 2πi
n∑
k=1

Reszk f.
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Remark. The Cauchy’s theorem and Cauchy’s formula can be viewed as special cases of
Residue formula. Take Cauchy’s formula for example. We have∫

J

f(z)

(z − w)m+1
dz = 2πiResw

f(z)

(z − w)m+1
.

Now we calculate the residue of f(z)
(z−w)n+1 at w. Recall that f has a power series expansion near

w:

f(z) =
∞∑
n=0

f (n)(w)

n!
(z − w)n, |z − w| < r.

Thus,

f(z)

(z − w)m+1
=
∞∑
n=0

f (n)(w)

n!
(z − w)n−m−1, 0 < |z − w| < r.

For the residue, we look for the coefficients that corresponds to the term (z − w)−1, i.e., when
n = m. So we get

Resw
f(z)

(z − w)m+1
=
f (m)(w)

m!
.

Thus, ∫
J

f(z)

(z − w)m+1
dz = 2πi

f (m)(w)

m!
.

Moving 2πi and m! to the left, we get the Cauchy’s formula.
To apply the Residue Formula, we need to know how to find residues. The most general

method is to find the Laurent series. As we have seen above, if f is holomorphic at z0, and
g(z) = f(z)

(z−z0)m , then we may use the power series expansion of f to find the Laurent series

of g at z0, and so find Resz0 g. In fact, if f(z) =
∑∞

n=0 an(z − z0)n near z0, then g(z) =∑∞
n=0 an(z− z0)n−m near z0, and Resz0 g = am−1 because n = m− 1 corresponds to (z− z0)−1

in the expansion of g.

Examples.

1. Find the residue of sin z
z6

at 0. If sin z =
∑∞

n=0 anz
n, then Res0

sin z
z6

= a5. We may compute

a5 by a5 = sin(5)(0)
5! = sin′(0)

120 = 1
120 . So the residue is 1

120 .

2. Find the residue of f(z) = z2

(z+1)(z−1)2
at 1. Let g(z) = z2

z+1 . Then g is holomorphic at 1,

and f(z) = g(z)
(z−1)2

. If the power series of g at 1 is

∞∑
n=0

an(z − 1)n,
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then the Laurent series of f at 1 is

a0

z2
+
a1

z
+ higher terms.

So the residue is a1. The value of a1 can be computed by a1 = g′(1). Since

g′(z) =
2z

z + 1
− z2

(z + 1)2
,

we have a1 = g′(1) = 3
4 . So the residue is 3

4 .

3. Let f(z) = z2

(z+1)(z−1)2
. Find

∫
|z−1|=1 f . Note that f is meromorphic in C with two poles

−1 and 1. Since −1 lies outside {|z − 1| = 1}, and 1 lies inside {|z − 1| = 1}, by Residue
formula, we have ∫

|z−1|=1
f = 2πiRes1 f = 2πi · 3

4
.

Lemma 4.3.2. Let f and g be holomorphic at z0. Suppose f(z0) = 0 and f ′(z0) 6= 0, i.e.,
ordz0 f = 1. Then

Resz0

( g
f

)
=

g(z0)

f ′(z0)
.

Proof. We may write f(z) = F (z)(z−z0), where F is holomorphic at z0, and F (z0) = f ′(z0) 6= 0.
Then

g(z)

f(z)
=

1

z − z0

g(z)

F (z)
.

Since g and F are both holomorphic at z0, and F (z0) 6= 0, we see that g
F is holomorphic at z0.

From the above displaced formula, we conclude that

Resz0

( g
f

)
=
g(z0)

F (z0)
=

g(z0)

f ′(z0)
.

Examples.

1. Find the residue of cot z at kπ, k ∈ Z.

We have cot z = cos z
sin z . Since sin(kπ) = 0 and sin′(kπ) = cos(kπ) 6= 0, kπ is a simple zero

of sin z. From the above lemma,

Reskπ cot z =
cos(kπ)

sin′(kπ)
=

cos(kπ)

cos(kπ)
= 1.

Now we can compute
∫
|z|=5 cot z dz.
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It is easy to see that the poles of cot z that lie inside |z| = 5 are 0, π, and −π. From
Residue Formula,∫

|z|=5
cot z dz = 2πi(Res0 cot z + Resπ cot z + Res−π cot z) = 6πi.

2. Find the residue of ez

sin z at 0.

Since sin(0) = 0 and sin′(0) = cos(0) = 1 6= 0, 0 is a simple zero of sin z. From part (b),

we get Res0
ez

sin z = e0

sin′(0)
= 1.

3. Let f(z) = z2 − 2z + 3. Let R = {x + iy : −1 ≤ x ≤ 3,−2 ≤ y ≤ 2} and C = ∂R with
positive orientation. Find

∫
C

1
f .

Since f(z) = (z − 1)2 + 2, we see that f has two zeros 1 + i
√

2 and 1 − i
√

2. Since
f ′(z) = 2z − 2, we see that f ′(1± i

√
2) 6= 0. So 1 + i

√
2 and 1− i

√
2 are simple zeros of

f . Applying the lemma, we get

Res1+i
√

2

1

f
=

1

f ′(1 + i
√

2)
=

1

i2
√

2
, Res1−i

√
2

1

f
=

1

f ′(1− i
√

2)
=

1

−i2
√

2
.

Since 1 + i
√

2 and 1− i
√

2 both lie inside C, we get∫
C

1

f
= 2πi(Res1+i

√
2

1

f
+ Res1−i

√
2

1

f
) = 2πi(

1

i2
√

2
+

1

−i2
√

2
) = 0.

Theorem 4.3.3. [The General Residue Formula] Let γ be a contour in a domain U such
that W (γ, α) = 0 for every α ∈ C \ U . Suppose that f is holomorphic on U except at a set S,
which has no accumulation point in U , and does not intersect γ. Then∫

γ
f = 2πi

∑
w∈S

W (γ,w) Resw f.

Proof. Let S′ denote the set of w ∈ S that does NOT lie on the unbounded component of C\γ.
Since S has no accumulation point in U , S′ is finite. Note that W (γ,w) = 0 for w ∈ S \S′. So it
suffices to prove the displayed formula with S′ in place of S. We may then consider the contour
η = γ −

∑
w∈S′W (γ, z){|z − w| = r}, where r > 0 is small such that D(w, r), w ∈ S′, are

contained in U and mutually disjoint. From the general Cauchy’s Theorem, we have
∫
η f = 0.

The proof is finished by applying the above residue formula.

Homework Chapter VI §1: 12, 14, 15, 18, 20, 26(a,d)
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4.4 Rouché’s Theorem

Suppose ordz0 f = m, i.e., f(z) = (z − z0)mg(z), where g is holomorphic at z0 and g(z0) 6= 0.
Then

f ′(z) = m(z − z0)m−1g(z) + (z − z0)mg′(z),

which implies that
f ′(z)

f(z)
=

m

z − z0
+
g′(z)

g(z)
.

Since g′ and g are holomorphic at z0, and g(z0) 6= 0, we see that

Resz0
f ′

f
= ordz0 f (4.5)

.

Theorem 4.4.1. Let f be meromorphic on U . Let γ be a positively oriented Jordan curve in
U such that γ does not pass through any zero or pole of f , and the interior of γ is contained in
U . Then we have ∫

γ

f ′

f
= 2πi

n∑
j=1

ordzj f,

where z1, . . . , zn are the zeros or poles of f that lie inside γ.

Proof. We know that f ′/f is meromorphic on U , whose pole is either a zero or a pole of f . The
conclusion follows from (4.5) and the Residue Formula.

If z0 is a zero of order m of f , we now say that f has m zeros at z0 counting multiplicities.
If z0 is a pole of order m of f , we now say that f has m poles at z0 counting multiplicities. The
total number of zeros of f that lie inside γ (c.m.) is the sum of ordzj f over those zeros of f
inside C. The total number of poles of f that lie inside γ (c.m.) is the sum of − ordzj f over
those poles of f inside C. The conclusion of the above theorem can be written as

1

2πi

∫
γ

f ′

f
= #{zeros of f inside γ} −#{poles of f inside γ}.

In particular, if f is holomorphic on Int(γ)∪γ such that no zeros of f lie no γ, then 1
2πi

∫
γ f

is equal to the number of zeros of f (c.m.) inside γ. If the value of the integral is 0, then f has
no zeros inside γ. If the value is positive, then f has zeros inside γ. If the value is 1, then f
has exactly one zero, which is simple, inside γ.

Theorem 4.4.2. [Rouché’s Theorem] Let J be a Jordan curve. Let f and g be analytic on
J and its interior. Suppose that

|f(z)− g(z)| < |f(z)|, z ∈ J.

Then f and g have the same number of zeros (c.m.) inside J .
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Proof. It suffices to show that
∫
J
g′

g =
∫
J
f ′

f . The idea is to change continuously from f to g.
Let h = g − f and gt = f + th, 0 ≤ t ≤ 1. Then g0 = f and g1 = g. Since |h| < |f | on J , we
see that gt 6= 0 on J for 0 ≤ t ≤ 1. Let

m(t) =
1

2πi

∫
J

g′t
gt

=
1

2πi

∫
J

f ′ + th′

f + th
, 0 ≤ t ≤ 1.

Then m(t) equals to the number of zeros (c.m.) of gt inside J . In particular, m(0) is the number
of zeros of f inside J , and m(1) is the number of zeros of g inside J . We see that m(t) ∈ Z
for 0 ≤ t ≤ 1. One may also show that m(t) is continuous in t. So m(t) has to be a constant.
Then m(0) = m(1), as desired.

Example. Let P (z) = z8−5z3 +z−2. We want to find the number of zeros (c.m.) of P inside
{|z| < 1}. We compare it with f(z) = −5z3. Then on {|z| = 1},

|P (z)− f(z)| = |z8 + z − 2| ≤ |z|8 + |z|+ |2| = 1 + 1 + 2 = 4 < 5 = | − 5z3| = |f(z)|.

From Rouché’s Theorem, we see that P and f have the same number of zeros inside {|z| < 1}.
Since 0 is the only zero of f , which has order 3, we conclude that P has 3 zeros (c.m.) in
{|z| < 1}.

Next, we want to find the number of zeros (c.m.) of P inside {|z| < 2}. We compare it with
f(z) = z8. Then on {|z| = 2},

|P (z)− f(z)| = | − 5z3 + z − 2| ≤ 5|z|3 + |z|+ |2| = 5 ∗ 23 + 2 + 2 = 44 < 28 = |z8| = |f(z)|.

From Rouché’s Theorem, we see that P and f have the same number of zeros inside {|z| < 2}.
Since 0 is the only zero of f , which has order 8, we conclude that P has 8 zeros (c.m.) in
{|z| < 2}.

Combining the above two results, we can conclude that P has 5 zeros (c.m.) in {1 ≤ |z| < 2}.
For polynomials, we have a method to determine whether all of its zeros are simple. In

fact, if P has a multiple zero at z0, then z0 is also a zero of P ′. This means that the greatest
common divisor (P, P ′), which is also a polynomial, has a zero at z0. Thus, if (P, P ′) has a
low degree, then we may find all multiple zeros of P . For example, if P (z) = z8 − 5z3 + z − 2,
then P ′(z) = 8z7 − 15z2 + 1. On can calculate that (P, P ′) = 1, which has no zero. So all
zeros of P are simple zeros. The conclusions in the previous paragraph hold without counting
multiplicities.

Example. We may use Rouché’s theorem to get another proof of Fundamental Theorem of
Algebra. Let P (z) =

∑n
k=0 akz

k be a polynomial of degree n. So an 6= 0. Compare P (z) with
f(z) = anz

n. The only zero of f is 0, which has order n. We have

|P (z)− f(z)|
|f(z)|

≤
n−1∑
k=0

|ak|
|an|
|z|k−n → 0, as|z| → ∞.
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So we may find N > 0 such that, if |z| > N , then |P (z)−f(z)|
|f(z)| < 1, which implies that |P (z) −

f(z)| < |f(z)| on {|z| = R} for any R > N . From Rouché’s theorem, we conclude that P has
n zeros (c.m.) in {|z| < R} if R > N . Thus, P has n zeros (c.m.) in C.

Homework Chapter VI §1: 31, 32, 35.

4.5 The Open and Inverse Mapping Theorem

Theorem 4.5.1. [Open Mapping Theorem] Let f be analytic in an open set U such that
f is not constant in any open disc. Then f(U) = {f(z) : z ∈ U} is open.

Proof. Let w0 ∈ f(U), we will show that there is ε > 0 such that D(w0, ε) ⊂ f(U). Let z0 ∈ U
be such that f(z0) = w0. Suppose that the power series of f at z0 is

∞∑
n=0

an(z − z0)n.

Then a0 = w0. Now z0 is a zero of f − w0. Let m = ordz0(f − w0) ∈ N, which is well defined
since f is not constant near z0. Then am 6= 0 and an = 0 for 1 ≤ n ≤ m−1. When z is near z0,

f(z) = w0 +
∞∑
n=m

an(z − z0)n.

Let
g(z) = w0 + am(z − z0)m;

h(z) =
f(z)− g(z)

(z − z0)m
=

∞∑
n=m+1

an(z − z0)n−m.

Then h is analytic at z0, and h(0) = 0. Pick r > 0 such thatD(z0, r) ⊂ U and ‖h‖|z−z0|=r <
|am|

2 .

Let ε = |am|
2 rm > 0. Fix any w ∈ D(w0, ε). Let fw(z) = f(z) − w and gw(z) = g(z) − w. We

will apply Rouché’s Theorem and show that w ∈ f(D(z0, r)), which is equivalent to that fw
has a zero in D(z0, r). Note that gw(z) = 0 iff (z− z0)m = w−w0

am
. Thus, gw has m zeros (c.m.),

whose distance from z0 are all equal to ( |w−w0|
|am| )1/m, which is less than ( ε

|am|)
1/m < r. Thus, gw

has m zeros in {|z − z0| < r}.
For z ∈ {|z − z0| = r},

|gw(z)| = |w0 + am(z − z0)m − w| ≥ |am(z − z0)m| − |w0 − w| > |am|rm − ε ≥
|am|rm

2
,

and

|fw(z)− gw(z)| = |f(z)− g(z)| = rm|h(z)| ≤ rm‖h‖|z−z0|=r <
|am|rm

2
< |gw(z)|, |z − z0| = r.

From Rouché’s theorem, fw also has m zeros (c.m.) in D(z0, r). Thus, w ∈ f(U) for every
w ∈ D(w0, ε), i.e., D(w0, ε) ⊂ f(U).
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Remark. If U is a domain, then the condition in the theorem is equivalent to that f is not
constant. We have seen before that if a holomorphic function f defined on a domain U satisfies
that |f | is constant or 3 Re f + 2 Im f = 0, then f is constant. Now we see such kind of results
all follow easily from the open mapping theorem.

Definition 4.5.1. An analytic function f defined on U is called an analytic isomorphism if
there is an analytic function g defined on f(U) such that g(f(z)) = z for every z ∈ U . If f is
an analytic isomorphism defined on U such that f(U) = U , then we say that f is an analytic
automorphism of U . We say that f is a local analytic isomorphism at a point z0 if there exists
an open set U containing z0 such that f is an analytic isomorphism on U .

Homework

1. Suppose f1 is an analytic isomorphism defined on U , and f2 is an analytic isomorphism
defined on f1(U). Prove that f−1

1 and f2 ◦ f1 are also analytic isomorphisms.

It is clear that an analytic isomorphism f must be injective. The following theorem states
that the converse is also true.

Theorem 4.5.2. Let f be holomorphic and injective on an open set U . Then f is an analytic
isomorphism.

Proof. Define g = f−1 on f(U). Since f is injective, g is well defined. It suffices to show that g
is holomorphic. Since f is injective, it is not constant in any open disc. From the open mapping
theorem, for any open set O ⊂ U , g−1(O) = f(O) is open. This shows that g is continuous.

Let Z denote the set of zeros of f ′ in U . Then Z has no accumulation point in U . Let
U ′ = U \ Z. Then U ′ is also open. Fix w0 ∈ f(U ′). Let z0 = g(w0) ∈ U ′. Then w0 = f(z0).
Since g and g−1 = f are both continuous, we see that w → w0 iff g(w)→ g(w0). Thus,

lim
w→w0

g(w)− g(w0)

w − w0
= lim

g(w)→g(w0)

g(w)− g(w0)

f(g(w))− f(g(w0))
=

1

f ′(z0)
,

where in the last step we used that f ′(z0) 6= 0 as z0 6∈ Z. Thus, g′(w0) exists. So g is
holomorphic on f(U ′).

Now we restrict g to f(U ′) = f(U) \ f(Z). Then every w0 ∈ f(Z) is a singularity of
g|f(U ′). Since g is continuous on f(U), for any w0 ∈ f(Z), limw→w0 g(w) = g(w0). Thus, every
w0 ∈ f(Z) is a removable singularity of g|f(U ′). If we extend g|f(U ′) to a holomorphic function
on f(U), then we must get the function g, because g is already continuous on f(U). So g is
holomorphic on f(U).

If f and g are both holomorphic, and g = f−1, then from Chain rule, g′(f(z))f ′(z) = 1 for
z ∈ U , which implies that f ′(z) 6= 0 for z ∈ U . Thus, if f is a local analytic isomorphism at z0,
then f ′(z0) 6= 0. On the other hand, f ′(z) 6= 0 for z ∈ U does not imply that f is an analytic
isomorphism. One example is f(z) = ez. Note that (ez)′ = ez 6= 0 for all z ∈ C, but ez is not
injective on C.
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Theorem 4.5.3. [Inverse Mapping Theorem] If f is holomorphic at z0, and f ′(z0) 6= 0,
then f is a local analytic isomorphism at z0.

Proof. We repeat the proof of the open mapping theorem. Let w0 = f(z0) and m = ordz0(f −
w0). Since f ′(z0) 6= 0, m = 1. In that proof, we find r, ε > 0 such that for any w ∈ D(w0, ε),
fw = f−w has m zeros (c.m.) in D(z0, r). Since m = 1, this means that, for every w ∈ D(w0, ε),
there is exactly one z ∈ D(z0, r) such that f(z) = w. Let U0 = f−1(D(w0, ε)) ∩D(z0, r). Then
f is injective on U0, which is open and contains z0. From the previous theorem, f |U0 is an
analytic isomorphism.

Homework Chapter V, §3: 7. Additional:

1. Suppose f is analytic on D(z0;R) \ {z0}, and z0 is a pole of f . Prove that for any
r ∈ (0, R), there is M ∈ (0,∞) such that f(D(z0; r) \ {z0}) ⊃ {z ∈ C : |z| > M}.

2. Let f be analytic on a domain U , z0 ∈ U , and w0 = f(z0). Suppose that ordz0(f −w0) =
m ∈ N. Prove that there is an open set U0 with z0 ∈ U0 ⊂ U such that f−1(w0)∩U0 = {z0}
and f−1(w) ∩ U0 contains exactly m elements (without repetition) for w ∈ f(U0) \ {w0}.
This means that f |U0 is m-to-1 except at z0.

4.6 Evaluation of Definite Integrals

We are going to apply the Residue theorem to compute definite integral∫ ∞
−∞

f(x)dx := lim
R→∞

∫ 0

−R
f(x)dx+ lim

R→∞

∫ R

0
f(x)dx.

Suppose that f is holomorphic on the closed upper half plane {Im z ≥ 0} except for finitely
many isolated singularities: zk, 1 ≤ k ≤ n, in the open upper half plane {Im z > 0}. Choose
R > 0 such that |zk| < R for 1 ≤ k ≤ n. Note that∫

[−R,R]
f =

∫ 1

0
f(−R+ t(R− (−R)))(R− (−R))dt =

∫ R

−R
f(x)dx.

Let SR denote the semicircle with radius R: γ(t) = Reit, 0 ≤ t ≤ π. Then Γ := [−R,R] ⊕ SR
is a positively oriented Jordan curve. From Residue formula, we get∫ R

−R
f(x)dx+

∫
SR

f =

∫
Γ
f = 2πi

n∑
k=1

Reszk f.

If we know that limR→∞
∫
SR
f = 0, then we get

lim
R→∞

∫ R

−R
f(x)dx = 2πi

n∑
k=1

Reszk f. (4.6)
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The limit limR→∞
∫ R
−R f(x)dx is called the principal value integral, and is denoted by

P.V.

∫ ∞
−∞

f(x)dx.

It is slightly different from
∫∞
−∞ f(x)dx. Their relations are:

1. If
∫∞
−∞ f(x)dx exists, then P.V.

∫∞
−∞ f(x)dx exists and is equal to

∫∞
−∞ f(x)dx.

2. If P.V.
∫∞
−∞ f(x)dx exists,

∫∞
−∞ f(x)dx may or may not exist. One counterexample is

f(x) = x. Since
∫ R
−R xdx = 0 for all R, P.V.

∫∞
−∞ xdx = 0. But

∫∞
−∞ xdx does not exist

since
∫∞

0 xdx = +∞ and
∫ 0
−∞ xdx = −∞.

3. If f(x) is nonnegative or an even function on R, then the existence of P.V.
∫∞
−∞ f(x)dx

implies the existence of
∫∞
−∞ f(x)dx, which must be equal.

Moreover, if f is even, and
∫∞
−∞ f(x)dx exists, then∫ ∞

0
f(x)dx =

∫ 0

−∞
f(x)dx =

1

2

∫ ∞
−∞

f(x)dx.

Example. We want to calculate
∫∞
−∞

dx
x4+1

. Let f(z) = 1
z4+1

. Then f is meromorphic in C
with 4 poles: z1 = 1√

2
+ i√

2
, z2 = − 1√

2
+ i√

2
, z3 = − 1√

2
− i√

2
, z4 = 1√

2
− i√

2
, among which z1

and z2 lie in {Im z > 0}. Since (z4 + 1)′ = 4z3 does not equal to 0 at zj , 1 ≤ j ≤ 4, we get

Reszj f =
1

4z3
j

=
1

4
· zj
z4
j

= −zj
4
.

To estimate
∫
SR
f , we note that |f(z)| ≤ 1

R4−1
on SR since |z4 + 1| ≥ |z4| − 1 = R4 − 1 > 0 on

SR, which implies that∣∣∣ ∫
SR

f
∣∣∣ ≤ L(SR)‖f‖SR ≤

πR

R4 − 1
→ 0, R→∞.

Since f is even, we get∫ ∞
−∞

f(x)dx = 2πi(Resz1 f + Resz2 f) = −πi
2

(z1 + z2) =
π√
2
.

Example. Compute
∫∞

0
sinx
x dx.

Although we know that sin z
z extends to an entire function, this does not help use compute

the integral. In fact, we will integrate the function f(z) := eix

x . Note that f has exactly one pole
in C, which is 0. The pole lies on R, so the above method does not apply. Suppose R > ε > 0.
Let SR be as in the last example. We consider a contour (closed curve):

Γ = [ε,R]⊕ SR ⊕ [−R,−ε]⊕ S−ε .
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Note that f is holomorphic on and inside Γ. From Cauchy’s Theorem,

0 =

∫
Γ
f =

∫
SR

f −
∫
Sε

f +

∫ R

ε
f(x)dx+

∫ −ε
−R

f(x)dx.

Note that ∫ R

ε
f(x)dx =

∫ R

ε

cosx

x
dx+ i

∫ R

ε

sinx

x
dx;∫ −ε

−R
f(x)dx =

∫ −ε
−R

cosx

x
dx+ i

∫ −ε
−R

sinx

x
dx.

Since cosx
x is odd and sinx

x is even, we get∫ R

ε
f(x)dx+

∫ −ε
−R

f(x)dx = 2i

∫ R

ε

sinx

x
dx.

Thus,

lim
R→∞

lim
ε→0

(∫ R

ε
f(x)dx+

∫ −ε
−R

f(x)dx
)

= 2i

∫ ∞
0

sinx

x
dx.

We will show that limR→∞
∫
SR
f = 0, and evaluate limε→0

∫
Sε
f .

First, we have ∫
SR

f =

∫ π

0

eiRe
it

Reit
iReitdt =

∫ π

0
ieiRe

it
dt.

So ∣∣∣ ∫
SR

f
∣∣∣ ≤ ∫ π

0
e−R sin tdt = 2

∫ π/2

0
e−R sin tdt.

The last equality holds because sin(π − t) = sin t.

Lemma 4.6.1. sin t ≥ 2t
π for 0 ≤ t ≤ π/2.

Proof. Since sin′′(t) = − sin t ≤ 0 on [0, π2 ], sin t is a concave function on [0, π2 ]. Note that y = 2t
π

is the equation of a straight line that passes through (0, 0) and (π2 , 1). Since the curve y = sin t
also passes through these two points, the concaveness of sin on [0, π2 ] implies that sin t ≥ 2t

π for
0 ≤ t ≤ π/2.

From the lemma∫ π/2

0
e−R sin tdt ≤

∫ π/2

0
e−2Rt/πdt ≤

∫ ∞
0

e−2Rt/πdt =
π

2R
,

which tends to 0 as R→∞.
Now we evaluate limε→0

∫
Sε

eiz

z . For ε > 0 and θ ∈ (0, 2π], let γε,θ denote the curve

γε(t) = εeit, 0 ≤ t ≤ θ. Note that if θ = 2π, we get the circle {|z| = ε}, and θ = π corresponds
to the semicircle Sε.
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Lemma 4.6.2. Suppose f has a simple pole at 0. Then

lim
ε→0+

∫
γε,θ

f = iθRes0 f.

Proof. Let a = Res0 f . We may write f(z) = a
z + h(z) such that h is holomorphic at 0. We

compute ∫
γε,θ

a

z
dz =

∫ θ

0

a

εeit
iεeitdt =

∫ θ

0
iadt = iθa.

Since h is bounded near 0, and L(γε,θ) = εθ → 0 as ε→ 0, we get
∫
γε,θ

h→ 0 as ε→ 0+. Thus,

limε→0+
∫
γε
f = iθa = iθRes0 f .

Since Res0
eiz

z = 1, from the lemma we get limε→0

∫
Sε

eiz

z dz = iπ. Thus,∫ ∞
0

sinx

x
dx =

1

2i
lim
ε→0

∫
Sε

eiz

z
dz =

π

2
.

Example. Compute
∫∞
−∞

cos(ax)
1+x2

dx for a ∈ R.

First we assume that a ≥ 0. Let f(z) = eiaz

1+z2
. Let R > 1. Let Γ be the contour [−R,R]⊕SR.

Using Residue formula, we get∫ R

−R
f(x)dx+

∫
SR

f = 2πiResi f = 2πi
eiai

2i
= e−aπ.

Note that ∫ R

−R
f(x)dx =

∫ R

−R

cos(ax)

1 + x2
dx+ i

∫ R

−R

sin(ax)

1 + x2
=

∫ R

−R

cos(ax)

1 + x2
dx.

The second term vanishes because sin(ax)
1+x2

is odd.

For z ∈ SR, Im z ≥ 0, so Re(iaz) ≤ 0. Thus, |eiaz| = eRe(iaz) ≤ 1 on SR. So ‖f‖SR ≤ 1
R2−1

,
which implies that

‖
∫
SR

f‖ ≤ ‖f‖SRL(SR) ≤ πR

R2 − 1
→ 0,

as R→∞. Thus, letting R→∞ and using the fact that cos(ax)
1+x2

is even, we conclude that∫ ∞
−∞

cos(ax)

1 + x2
dx = e−aπ.

Now we consider the case a < 0. The above argument does not work because |eiaz| ≥ 1 on SR.
You may work on a lower semi circle, and repeat the above argument. There is a simple way
to do this. Using the fact that cos is even, we get∫ ∞

−∞

cos(ax)

1 + x2
dx =

∫ ∞
−∞

cos(−ax)

1 + x2
dx = eaπ,
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where the second equality holds because −a > 0. Thus, we get∫ ∞
−∞

eiax

1 + x2
dx = e−|a|π, a ∈ R.

Remark. The Fourier Transformation of f is the function f̂ defined to be

f̂(t) =

∫ ∞
−∞

eitxf(x)dx, t ∈ R.

The above computation shows that, for f(x) = 1
1+x2

, f̂(t) = e−|t|π.

Example. Find the Fourier transform of f(x) = e−x
2/2.

First, we calculate
∫∞
−∞ e

−x
2

2 dx. Since e−
x2

2 > 0, applying Fubini’s Theorem and using polar
coordinate, we get (∫ ∞

−∞
e−

x2

2 dx
)2

=

∫ ∞
−∞

e−
x2

2 dx ·
∫ ∞
−∞

e−
y2

2 dy

=

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dxdy =

∫ 2π

0

∫ ∞
0

e−
r2

2 rdrdθ = 2πe−
r2

2

∣∣∣0
∞

= 2π.

So we get
∫∞
−∞ e

−x
2

2 dx =
√

2π.

Now we calculate f̂(a) =
∫∞
−∞ e

iaxe−
x2

2 dx. Let f(z) = e−
z2

2 . We have

f̂(a) =

∫ ∞
−∞

e−
(x−ia)2

2 e−
a2

2 dx = e−
a2

2 lim
R→∞

∫
[−R−ia,R−ia]

f.

We will show that limR→∞
∫

[−R−ia,R−ia] f = limR→∞
∫

[−R,R] f =
∫∞
−∞ e

−x
2

2 dx =
√

2π. Then we

get f̂(a) =
√

2πe−
a2

2 . In order to do that, we construct a closed curve:

Γ = [−R,R]⊕ [R,R− ia]⊕ [R− ia,−R− ia]⊕ [−R− ia,−R].

Since f is an entire function,

0 =

∫
Γ
f =

∫
[−R,R]

f −
∫

[−R−ia,R−ia]
f +

∫
[R,R−ia]

f −
∫

[−R,−R−ia]
f.

For z ∈ [R,R − ia], Re z = R and | Im z| ≤ |a|, which implies that Re(z2) ≥ R2 − a2. So

|f(z)| = e−Re(z2)/2 ≤ e−
R2−a2

2 on [R,R− ia]. Then we get∣∣∣ ∫
[R,R−ia]

f
∣∣∣ ≤ L([R,R− ia])‖f‖[R,R−ia] ≤ |a|e−

R2−a2
2 → 0, R→∞.
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So limR→∞
∫

[R,R−ia] f = 0. Similarly, limR→∞
∫

[−R,−R−ia] f = 0. So we get

lim
R→∞

∫
[−R−ia,R−ia]

f = lim
R→∞

∫
[−R,R]

f =

∫ ∞
−∞

e−
x2

2 dx =
√

2π

as desired, and then get f̂(a) =
√

2πe−
a2

2 .

Homework Chapter VI §2: 2, 8(a), 9

Trigonometric Integrals We wish to evaluate an integral of the form∫ 2π

0
Q(cos θ, sin θ)dθ,

where Q is a rational function of two variables: Q = Q(x, y). Since

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
,

we find that ∫ 2π

0
Q(cos θ, sin θ)dθ =

∫
|z|=1

1

iz
Q
(z + z−1

2
,
z − z−1

2i

)
dz.

We may then use Residue formula to calculate the integral on the right.

Example. Compute I =
∫ 2π

0
1

a+sin θ dθ, where a > 1.
We have ∫ 2π

0

1

a+ sin θ
dθ =

∫
|z|=1

1

iz
· 1

a+ (z − z−1)/(2i)
dz

=

∫
|z=1

2

z2 + i2az − 1
dz = 2πiResz0

2

z2 + i2az − 1
,

where z0 is a root of z2 + i2az− 1 = (z+ ia)2− 1 + a2 inside {|z| < 1}, which is i(
√
a2 − 1− a),

and

Resz0
2

z2 + i2az + 1
=

2

2z + i2a|z=z0
=

1

i
√
a2 − 1

.

Thus, I = 2π√
a2−1

.

Remark. If we integrate from −π to π, then we get the same value. If Q(cos θ, sin θ) is even,
then

∫ π
0 = 1

2

∫ π
−π = 1

2

∫ 2π
0 .

We end this section with an integral, which uses a branch of logarithm.
Example. Compute

∫∞
0

1
1+xa dx for a > 1.

Note that the improper integral converge by comparison principle: 1
1+xa <

1
xa . If a ≤ 1,

the integral is ∞. Let f(z) = 1
1+za = 1

1+eaL(z) , where L is a branch of logarithm. We need to
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specify the branch to make f well defined. We first define a contour. For r > 0, let Ar denote
the curve γ(t) = reit, 0 ≤ t ≤ 2π/a. Fix R > 1 > ε > 0. Let

Γ = [ε,R]⊕AR ⊕ [Rei2π/a, εei2π/a]⊕A−ε .

Then Γ is a Jordan curve. We want to choose a simply connected domain G ⊂ C \ {0} such
that Γ ∪ Int(Γ) ⊂ G. Then log z has a branch, which is holomorphic on G. A nice choice is
G = C \ {reiπ(1/a+1) : r ≥ 0}. We now choose the branch L of log in G such that L(x) = log(x)
if x ∈ R and x > 0. Then we have ImL(z) ∈ [0, 2π/a] on Γ and its interior.

To find the singularity of f , we solve 0 = 1+za = 1+eaL(z), which gives aL(z) = iπ+ i2nπ,
n ∈ Z. Since ImL(z) ∈ [0, 2π/a] on and inside Γ, the only singularity z0 inside Γ satisfies
L(z0) = iπa , and so z0 = ei

π
a . Now we have

Resz0 f =
1

aza0/z0
= −z0

a
.

We may reparameterize the curve [ε,R] using γ(x) = x, ε ≤ x ≤ R. Then we see that∫
[ε,R] f =

∫ R
ε

1
1+xadx. We may reparameterize [εei2π/a, Rei2π/a] by γ(x) = xei2π/a, ε ≤ x ≤ R.

Then we see that∫
[εei2π/a,Rei2π/a]

f =

∫ R

ε

ei2π/a

1 + (xei2π/a)a
dx = ei2π/a

∫ R

ε

1

1 + xa
dx.

Thus, from Residue formula,∫ R

ε

dx

1 + xa
+

∫
AR

f − ei2π/a
∫ R

ε

dx

1 + xa
−
∫
Aε

f = 2πi
−eiπ/a

a
.

We will show that
∫
AR

f → 0 as R→∞ and
∫
Aε
f → 0 as ε→ 0. Then we get∫ ∞

0

dx

1 + xa
=

2πi

a

eiπ/a

ei2π/a − 1
=
π

a

2i

eiπ/a − e−iπ/a
=

π

a sin(π/a)
.

Note that |za| = |eaL(z)| = eRe aL(z) = ea ln |z| = |z|a. For z ∈ AR, |1 + za| ≥ |za| − 1 =
|z|a − 1 = Ra − 1 > 0. So ‖f‖AR ≤ 1

Ra−1 . Thus, as R→∞,∣∣∣ ∫
AR

f
∣∣∣ ≤ ‖f‖ARL(AR) ≤ 2πR

Ra − 1
→ 0,

where we used a > 1. For z ∈ Aε, |1 + za| ≥ 1− |z|a = 1− εa > 0. So ‖f‖Aε ≤ 1
1−εa . Thus, as

ε→ 0, ∣∣∣ ∫
Aε

f
∣∣∣ ≤ ‖f‖AεL(A, ε) ≤ 2πε

1− εa
→ 0.

Homework Chapter VI §2: 11, 14(a), 19, 24.
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4.7 Multiplication and Division of Power Series

Suppose f and g are holomorphic at z0, or have z0 as a removable singularity or pole. Suppose
the power series expansion (including possible negative power terms) of f and g centered at z0

are known. We will study the method to calculate the coefficients of the power series of fg and
f/g. This calculation will also help us to find residues of some functions.

For simplicity, assume z0 = 0. Assume that neither f or g is constant 0 near 0. Let m1 and
m2 be the order of f and g, respectively, at 0. Then we may write f(z) =

∑∞
n=m1

anz
n and

g(z) =
∑∞

n=m2
bnz

n near 0 such that am1 , bm2 6= 0. Then the product fg has order m1 +m2 at
0, and it has a power series

∑∞
n=m1+m2

cnz
n near 0, where the coefficients cn can be expressed

in terms of an and bn:
cn =

∑
(j,k):j+k=n

ajbk, n ≥ mc.

Note that every sum is essentially a finite sum. For example, if m1 = m2 = 0, then the first
several equalities are c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, c3 = a0b3 + a1b2 +
a2b1 + a3b0.

The division f/g has order m1 −m2 at 0, and it has a power series, say
∑∞

n=m1−m2
dnz

n

near 0. To find the coefficients dn, we may use that f = g · (f/g) and the equalities in
the last paragraph. We can calculate dn by solving linear equations. To make it simple,
suppose m1 = m2 = 0. Then the first several equations are: b0d0 = a0, b0d1 + b1d0 = a1,
b0d2 +b1d1 +b2d0 = a2, b0d3 +b1d2 +b2d1 +b3d0. Solving the first equation, we get d0; plugging
d0 into the second equation, we get d1; plugging d0 and d1 into the third equation, we get d2;
and so on. We may also do the computation using a division algorithm, which is similar to
those used in elementary arithmetic.
Example Let f(z) = 1

1−z and g(z) = − log(1 − z). We wish to calculate the power series for

f/g centered at 0. Note that f(z) =
∑∞

n=0 z
n and g(z) =

∑∞
n=1

zn

n near 0. The leading nonzero
term in the power series of f/g is z−1. Suppose the power series is z−1 + c0 + c1z + c2z

2 + · · · .
Then we have (z−1 + c0 + c1z+ c2z

2 + · · · )(z+ z2

2 + z3

3 + z4

4 + · · · ) = 1 + z+ z2 + z3 + · · · . Then
we find c0 + 1

2 = 1, c1 + c0
2 + 1

3 = 1, c2 + c1
2 + c0

3 + 1
4 = 1, and so on. Solving these equations, we

get c0 = 1
2 , c1 = 5

12 , c2 = 3
8 . We may use this result to compute residues. For example, since

Res0
f(z)/g(z)

z3
equals to the coefficient c2, which is 3

8 .

Homework

1. Find the coefficients of the Laurent series of cot z centered at 0 up to z3.

2. (20 points) (i) Compute
∑∞

n=1
1
n2 by integrating f(z) = cot z

z2
along the boundary of a

square with vertices {CN+iCN ,−CN+iCN ,−CN−iCN , CN−iCN}, where CN = (N+ 1
2)π

and N ∈ N, and letting N → ∞. (ii) Sketch the computation of
∑∞

n=1
1
n4 and give the

answer.
Note: You need to prove that the integral of f along that boundary tends to 0 as N →∞.
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Chapter 5

Conformal Mappings

In this chapter we study analytic isomorphisms. An analytic isomorphism is also called a confor-
mal map. We say that f is an analytic isomorphism of U with V if f is an analytic isomorphism
defined on U , and f(U) = V . Let Iso(U, V ) denote the set of all analytic isomorphisms of U
with V . If f ∈ Iso(U, V ), then f−1 ∈ Iso(V,U). If f ∈ Iso(U, V ) and g ∈ Iso(V,W ), then
g ◦ f ∈ Iso(U,W ). Recall that an analytic isomorphism of U with itself is an analytic automor-
phism of U . Let Aut(U) = Iso(U,U) denote the set of all analytic automorphisms of U . Then
Aut(U) has a clear group structure.

The name of conformal maps come from the following observation. Let U be an open set
in C and let γ : [a, b]→ U be a C1 curve in U . Let f : U → C be holomorphic, and β = f ◦ γ,
i.e., β(t) = f(γ(t)). Then we have β′(t) = f ′(γ(t))γ′(t). We interpret γ′(t) as a vector in the
direction of a tangent vector at the point γ(t). If γ′(t) 6= 0, it defines the direction of the curve
at the point.

Suppose that two differentiable curves γ and η intersect at z0 = γ(t0) = η(t1). Suppose
γ′(t0) and η′(t1) are not 0. The angle θ between the two tangent vectors γ′(t0) and η′(t1) is
defined to be the angle between γ and η at z0. We may write θ = arg γ′(t0) − arg η′(t1). If
f ′(z0) 6= 0, then

arg
d

dt
f(γ(t0)) = arg f ′(z0) + arg γ′(t0), arg

d

dt
f(η(t1)) = arg f ′(z0) + arg η′(t1).

So we see that the angle between the curves f ◦ γ and f ◦ η at f(z0) is the same as the angle
between γ and η at z0.

Suppose f is a conformal map defined on U . Since f ′ never vanishes, f preserves the angle
between any two curves in U . So in some sense, the shape of a subset S ⊂ U is similar as its
image f(U) under f . The inverse map f−1 has a similar property.

5.1 Schwarz Lemma

Let D = D(0, 1) denote the open unit disc. For c ∈ C, define Mc(z) = cz. It is clear that, if
|c| = 1, then Mc ∈ Aut(D).
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Theorem 5.1.1. [Schwarz Lemma] Let f : D→ D be an analytic function such that f(0) = 0.
Then

(i) |f(z)| ≤ |z| for all z ∈ D, and |f ′(0)| ≤ 1.

(ii) If for some z0 ∈ D \ {0}, |f(z0)| = |z0|, or |f ′(0)| = 1, then f = Mc for some |c| = 1. In
particular, if f(z0) = z0 or f ′(0) = 1, then c = 1, i.e., f = id.

Proof. Since 0 is a zero of f , it is a removable singularity of f(z)/z. Let h(z) = f(z)/z for
z ∈ D \ {0} and h(0) = limz→0 f(z)/z = f ′(0). Then h is also analytic in D. For any r ∈ (0, 1),
|h(z)| = |f(z)|/|z| < 1/r on {|z| = r}. From Maximum Modulus Principle, |h(z)| ≤ 1/r
on {|z| ≤ r}. Fix any z ∈ D. If |h(z)| > 1, then we may find r ∈ (0, 1) such that r >
max{|z|, 1/|h(z)|}. However, from |z| < r, we should get |h(z)| ≤ 1/r, which contradicts that
r > 1/|h(z)|. Thus, |h(z)| ≤ 1 for z ∈ D. Since f(z) = zh(z), we get |f(z)| ≤ |z| for z ∈ D.
Since f ′(0) = h(0), we get |f ′(0)| ≤ 1. If the condition in (ii) is satisfied, then |h| attains its
maximum at an interior point, which implies that h is constant c in D, and |c| = 1. Thus,
f(z) = cz. The rest of the statement is obvious.

Remark. If f ∈ Aut(D) and f(0) = 0, then by applying Schwarz lemma twice to f and f−1,
we can conclude that f = Mc for some |c| = 1.

Homework.

1. Let f ∈ Iso(D, U). Show that if D(f(0), R) ⊂ U , then R ≤ |f ′(0)|. Hint: Consider the
restriction of f−1 to D(f(0), R).

5.2 Analytic Automorphisms of the Disc

Let α ∈ D. Let

g(z) = gα(z) =
α− z
1− ᾱz

.

Since g has only one pole, which is 1/ᾱ that lies outside {|z| ≤ 1}, we see that g is analytic on
{|z| ≤ 1}. If |z| = 1, then

|g(z)| = |α− z|
|1− ᾱz|

=
1

|z|
|α− z|
|1/z − ᾱ|

=
|α− z|
|z̄ − ᾱ|

= 1.

From Maximum Modulus Principle, |g(z)| ≤ 1 for z ∈ D. In fact, we have |g(z)| < 1 for z ∈ D
because if |g(z0)| = 1 for some z0 ∈ D, then g has to be a constant, which is not true. Thus,
g maps D into D. If w = gα(z) = α−z

1−ᾱz , then w − wᾱz = α − z, and z = α−w
1−ᾱw = gα(w). This

shows that g−1
α = gα. Thus, g ∈ Aut(D).

Theorem 5.2.1. Every f ∈ Aut(D) can be expressed by f = Mc ◦ gα for some c ∈ {|z| = 1}
and α ∈ D.
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Proof. First, since Mc, gα ∈ Aut(D), we have Mc ◦ gα ∈ Aut(D). Now suppose f ∈ Aut(D). Let
α = f−1(0) ∈ D and h = f ◦ gα. Then h ∈ Aut(D), and h(0) = f(gα(0)) = f(α) = 0. From the
remark after Schwarz lemma, we see that h = Mc for some |c| = 1. Thus, f = Mc ◦ gα.

Remark. Combining Schwarz Lemma with the map gα, we can obtain some inequalities of
analytic maps f : D → D. For example, if z ∈ D and w = f(z) ∈ D, then the composition
h := gw ◦ f ◦ gz satisfies the condition of Schwarz lemma. We get inequalities for h by applying
Schwarz lemma. Then we can obtain inequalities for f .

Homework. Chapter VII, §2: 1, 2

5.3 The Upper Half Plane

We use H to denote the open upper half plane {z ∈ C : Im z > 0}.

Theorem 5.3.1. Let f(z) = z−i
z+i . Then f ∈ Iso(H,D).

Proof. Note that f is a rational function with only one pole at −i, which lies outside H. Let
z ∈ H. Write z = x+ iy with y > 0. Then

|z − i|2 = x2 + (y − 1)2 = x2 + y2 + 1− 2y < x2 + y2 + 1 + 2y = x2 + (y + 1)2 = |z + i|2.

Thus, |f(z)| = |z−i|
|z+i| < 1. So f maps H into D. Suppose w = f(z). We may solve z in terms of

w: z = −iw+1
w−1 . So f is injective. In addition, we claim that z ∈ H if w ∈ D, which finishes the

proof.
Write w = reiθ = r cos θ + ir sin θ for some r ∈ [0, 1) and θ ∈ R. Then

z = −ir cos θ + 1 + ir sin θ

r cos θ − 1 + ir sin θ
=
−i(r cos θ + 1 + ir sin θ)(r cos θ − 1− ir sin θ)

(r cos θ − 1 + ir sin θ)(r cos θ − 1− ir sin θ)

=
−i((r cos θ)2 − (1 + ir sin θ)2)

(r cos θ − 1)2 + (r sin θ)2
=

−2r sin θ + i(1− r2)

(r cos θ − 1)2 + (r sin θ)2
.

Thus, Im z = 1−r2
(r cos θ−1)2+(r sin θ)2

> 0, which implies that z ∈ H.

There are some obvious analytic automorphisms of H. If a ∈ R, then f(z) = z+a ∈ Aut(H).
If c > 0, then f(z) = cz ∈ Aut(H). Thus, f(z) = cz + a ∈ Aut(H) for c > 0 and a ∈ R.

Let z0 = x0 + iy0 ∈ H and hz0(z) = z−z0
z−z0 . Note that hi(z) = z−i

z+i ∈ Iso(H,D). We may write

hz0(z) =
z − x0 − iy0

z0 − x0 + iy0
=

z−x0
y0
− i

z−x0
y0

+ i
= hi((z − x0)/y0).

Since z 7→ z−x0
y0
∈ Aut(H) and hi ∈ Iso(H,D), we see that hz0 ∈ Iso(H,D).

Remarks.
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1. Every f ∈ Aut(H) can be expressed by f = h−1
z2 ◦Mc ◦ hz1 for some z1, z2 ∈ H and c ∈ C

with |c| = 1. In fact, choose any z1 ∈ H and let z2 = f(z1) ∈ H. Then g := hz2 ◦ f ◦h−1
z1 ∈

Aut(D) and fixes 0. Thus, g = Mc for some c ∈ C with |c| = 1.

2. Combining Schwarz Lemma with the map hz0 , we can obtain some inequalities of analytic
maps f : H→ H.

Homework.

1. Suppose f : H→ H is analytic. Prove that

(i) ∣∣∣f(z)− f(w)

f(z)− f(w)

∣∣∣ ≤ ∣∣∣z − w
z − w

∣∣∣, ∀z, w ∈ H.

(ii) If f ∈ Aut(H), then the equality in the above formula holds for any z, w ∈ H.

(iii) If the equality in the above formula holds for any one pair z0 6= w0 ∈ H, then
f ∈ Aut(H).

5.4 Riemann Sphere

We now add an extra element ∞ to C, and call Ĉ := C ∪ {∞} the extended complex plane.
Unlike the extended real line [−∞,∞], we here only need one extra element. We define a disc
centered at ∞ with radius r > 0 to be D(∞, r) := {∞} ∪ {z ∈ C : |z| > 1/r}. A subset U
of Ĉ is called open if for every z ∈ U , there is r > 0 such that D(z, r) ⊂ U . This means
that (i) U ∩ C is an open set in C; and (ii) if ∞ ∈ U , then for some R > 0, {|z| > R} ⊂ U .
Moreover, that z → ∞ means that |z| → ∞. Ĉ is also called the Riemann sphere. It is called
a sphere because Ĉ is homeomorphic to the sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. A
typical homeomorphism h : S2 → C is given by the stereographic projection: h(x, y, z) = x+iy

1−z
if z < 1 and h(0, 0, 1) =∞. The Riemann sphere may be viewed as a one-dimensional complex
manifold.

The Riemann sphere Ĉ gives a new description of simply connected domains: for a domain
D ⊂ C, D is simply connected if and only if Ĉ \ D is connected. Here a set K ⊂ Ĉ is called
connected if there are no two open sets U1 and U2 in Ĉ such that U1 ∩ U2 = ∅, K ⊂ U1 ∪ U2,
and K ∩ Uj 6= ∅ for j = 1, 2.

The Ĉ in the above statement can not be replaced with C. For example, D = C\ ((−∞, 0]∪
[1,∞)) is a simply connected domain, and Ĉ \D = (−∞, 0] ∪ [1,∞) ∪ {∞} is connected, but
C\D = (−∞, 0]∪[1,∞) is not connected. Another example is D = C\[0, 1], which is not simply
connected. Note that Ĉ \D = [0, 1] ∪ {∞} is not connected, but C \D = [0, 1] is connected.

This statement also motivates one to define multiply connected domains. We say that a
domain D ⊂ C is n-connected, if Ĉ \D has n connected components. For example, an annulus
is 2-connected.
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Let U ⊂ C be an open set. A map f : U → Ĉ is called an extended analytic function if for
every z0 ∈ U , either f(z0) ∈ C and f is analytic at z0 in the usual sense, or f(z0) = ∞ and 1

f

is analytic at z0 with the convention that 1
∞ = 0. This means that, if f(z0) 6= ∞, then there

exists r > 0 such that f(z) 6=∞ on D(z0, r); if f(z0) =∞, then there is r > 0 such that either
f ≡ ∞ on D(z0, r), or f 6= ∞ on D(z0, r) \ {z0}. In the last case, z0 is a pole of f . Thus, if
U is a domain, then either f is constant ∞, or the set f−1(∞) has no accumulation points in
U . In the latter case, f is meromorphic in U with poles at f−1(∞). On the other hand, if f is
meromorphic in U , then by defining the value of f at each pole to be ∞, we get an extended
analytic function in U .

Let U ⊂ Ĉ be an open set. A map f : U → Ĉ is called an extended analytic function if (i)
f restricted to U ∩ C is an extended analytic function defined above; and (ii) if ∞ ∈ U , then
the function g defined by g(z) = f(1/z) is extended analytic at 0. Here we use the convention
that 1

0 =∞.

Example. Let R = P/Q be a rational function. First, it is a meromorphic function on C.
Second, note that g(z) := R(1/z) is also a rational function if we define g(0) in a suitable way.
Then if we define R(∞) = g(0), we get that R is extended analytic at ∞. So every rational
function is an extended analytic function on Ĉ.

In the same spirit, we may talk about the singularity at ∞. We say that ∞ is a singularity
of f if f is analytic in {|z| > R} for some R > 0. This is the case, for example, if f is an entire
function. If we define g(z) = f(1/z), then 0 is a singularity of g. The type of the singularity
∞ of f is then defined as the type of 0 of g. Suppose that the Laurent series expansion of f
in {R < |z| < ∞} is

∑∞
n=−∞ anz

n. Then ∞ is removable if an = 0 for all n > 0; is essential
if there exist infinitely many n ∈ N such that an 6= 0; and is a pole of order n ∈ N if n is the
biggest number such that an 6= 0. If ∞ is an essential singularity, then for any T > R, the
image f({|z| > T}) is dense in C.

In particular, if f is an entire function, then ∞ is a singularity of f . Since the an is zero if
n < 0, we find that, if∞ is removable, then f is constant; if∞ is a pole, then f is a nonconstant
polynomial.

Lemma 5.4.1. Every analytic isomorphism f of C has the form f(z) = az+b for some a, b ∈ C
with a 6= 0.

From this lemma, we see that Iso(C, U) = ∅ if U 6= C, and Iso(C,C) is composed of
polynomials of degree 1.

Proof. Now f is an entire function. Consider the type of singularity ∞ of f . Since f is not
constant, ∞ is not removable. If ∞ is an essential singularity, then f({|z| > 1}) is dense in
C. However, since f is injective, f({|z| > 1}) is disjoint from f({|z| < 1}). From the open
mapping theorem, f({|z| < 1}) is an open set. Thus, the closure of f({|z| > 1}) is contained in
C \ f({|z| < 1}), which contradicts that f({|z| > 1}) is dense in C. So ∞ is a pole of f , which
implies that f is a polynomial, so f ′ is also a polynomial. Since f is injective, f ′ has no zero in
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C. From the Fundamental Theorem of Algebra, f ′ must be a nonzero constant, say a, which
implies that f(z) has the form az + b.

It is not difficult to check that, if f and g are extended analytic functions defined on open
sets U, V ⊂ Ĉ, respectively, and f(U) ⊂ V , then g◦f is an extended analytic function defined on
U . If V = f(U) and f is injective on U , then we say that f is an extended analytic isomorphism
of U with V . If V = U , we say that f is an extended analytic automorphism of U . We still
use the symbols Iso(U, V ) and Aut(U) to denote the set of extended analytic isomorphisms and
extended analytic automorphisms.

5.5 Mobius Transformation

Let GL2(C) denote the set of 2 × 2 complex matrices with nonzero determinant. For every

M =

[
a b
c d

]
∈ GL2(C), we define a rational function.

fM (z) =
az + b

cz + d
.

Note that if M = I2 =

[
1 0
0 1

]
, then f(z) = z is the identity function. Also note that

frM = fM for any r ∈ C \ {0}. Since f is a rational function, we may view it as an extended
analytic function defined on Ĉ. If c = 0, then ad 6= 0 and fM = a

dz + b
d is a polynomial of

degree 1, and fM (∞) =∞). If c 6= 0, then f(−d
c ) =∞ and f(∞) = a

c .

Definition 5.5.1. Every fM is called a Möbius transformation or a fractional linear transfor-
mation.

Examples.

1. For a, b ∈ C with a 6= 0, let M =

[
a b
0 1

]
. Then fM (z) = az + b is a polynomial of

degree 1, and fM (∞) =∞.

2. For M =

[
0 1
1 0

]
, fM (z) = 1

z .

3. Let α ∈ D and M =

[
−1 α
−α 1

]
. Then fM = gα ∈ Aut(D).

4. For z0 ∈ H, the function hz0(z) = z−z0
z−z0 can be expressed by fM , where M =

[
1 −z0

1 −z0

]
.
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Consider M1,M2 ∈ GL2(C):

M1 =

[
a1 b1
c1 d1

]
, M =

[
a2 b2
c2 d2

]
.

If z ∈ C, c2z + d2 6= 0 and (c1a2 + d1c2)z + (c1b2 + d1d2) 6= 0, then

fM1 ◦ fM2(z) =
a1

a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1

=
a1(a2z + b2) + b1(c2z + d2)

c1(a2z + b2) + d1(c2z + d2)

=
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
= fM1·M2(z),

where M1 ·M2 is the matrix product of M1 and M2, which belongs to GL2(C) because det(M1 ·
M2) = det(M1) det(M2) 6= 0. So we have fM1·M2 = fM1 ◦ fM2 on Ĉ with at most three possible
exceptions (including ∞). In fact, there are no exceptions because both fM1·M2 and fM1 ◦ fM2

are continuous on Ĉ. Thus, fM1·M2 = fM1 ◦ fM2 holds everywhere on Ĉ.

For every M =

[
a b
c d

]
∈ GL2(C), the inverse matrix M−1 = 1

ad−bc

[
d −b
−c a

]
also

belongs to GL2(C). Thus,

fM ◦ fM−1 = fM−1 ◦ fM = fI2 = id,

which implies that fM ∈ Aut(Ĉ) and

f−1
M = fM−1 = f[

d −b
−c a

].
Theorem 5.5.1. Every f in Aut(D) or Aut(H) is a Möbius transformation.

Proof. Let f ∈ Aut(D). Then f can be expressed as Mc ◦ gα, where |c| = 1 and α ∈ D. Since
both Mc and gα are Möbius transformations, so is f . Now suppose f ∈ Aut(H). Recall that
hi(z) = z−i

z+i ∈ Iso(H,D). Let g = hi ◦ f ◦ h−1
i . Then g ∈ Aut(D) and f = h−1

i ◦ g ◦ hi. Since g,

hi, and h−1
i are all Möbius transformations, so is f .

Theorem 5.5.2. Every f ∈ Aut(Ĉ) is also a Möbius transformation.

Proof. Let f ∈ Aut(Ĉ). If f(∞) = ∞, then f |C ∈ Aut(C). We have a lemma, which says
that every element in Aut(C) is a polynomial of degree 1, and so is a Möbius transformation.
If f(∞) = z0 ∈ C, let h(z) = 1

z−z0 and g = h ◦ f . Then h is a Möbius transformation with

h(z0) = ∞. So g ∈ Aut(Ĉ) with g(∞) = ∞. From the above, we know that g is a Möbius
transformation. Thus, f = h−1 ◦ g is a Möbius transformation.

We now define some simple Möbius transformations.
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1. Ma(z) = az, called multiplication by a ∈ C \ {0};

2. Tb(z) = z + b, called translation by b ∈ C;

3. J(z) = 1
z , called inversion.

Lemma 5.5.1. Every Möbius transformation f can be expressed as a composition of simple
Möbius transformations.

Proof. Suppose f(z) = az+b
cz+d . If c = 0, then f(z) = a

dz+ b
d . So f = T b

d
◦Ma

d
. Now suppose c 6= 0.

Then f(z)− a
c = b′

cz+d , where b′ = b− ad
c . So 1

f(z)−a/c = c
b′ z+ d

b′ . So f = Ta
c
◦ J ◦T d

b′
◦M c

b′
.

Definition 5.5.2. A generalized circle on Ĉ is either a circle in C or the union of {∞} with
a straight line in C. A generalized disc on Ĉ is either a disc in C, or the exterior of a circle
together with ∞, or a half plane.

Remarks.

1. A straight line can be viewed as a circle with radius∞. Every generalized circle C divides
Ĉ into two generalized discs.

2. The stereographic projection generates a one-to-one correspondence between circles on the
sphere with the generalized circles on Ĉ. Those circles passing the north pole correspond
to the straight lines in C.

Theorem 5.5.3. A Möbius transformation maps generalized circles to generalized circles.

Proof. From the above lemma, it suffices to show that J , Tb, and Ma map generalized circles
to generalized circles. This is obviously true for the translations Tb and the multiplications Ma

(which are rotations followed by dilations). Now we consider the map J(z) = 1
z .

The equation of a circle or a straight line in the (x, y)-plane has the form

A(x2 + y2) +Bx+ Cy +D = 0 (5.1)

with A,B,C,D ∈ R such that not all A,B,C are equal to 0. In fact, if A = 0, we get the
equation of a straight line; if A 6= 0, we get the equation of a circle. We now consider the
equation of the image of this set under J(z) = 1

z .
Suppose u+ iv = J(x+ iy). Then x+ iy = J(u+ iv). We then get x = u

u2+v2
and y = −v

u2+v2
.

Thus, u and v satisfy the equation

A
[( u

u2 + v2

)2
+
( −v
u2 + v2

)2]
+B

u

u2 + v2
+ C

−v
u2 + v2

+D = 0.

Multiplying the formula by u2 + v2, we get

A+Bu− Cv +D(u2 + v2),

which is also an equation of a circle or a straight line. This proves the theorem.
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Suppose that a generalized circle C divides Ĉ into two generalized discs, say U1 and U2. If f
is a Möbius transformation, and maps C to another generalized circle C ′, which divides Ĉ into
U ′1 and U ′2. Then either maps f(U1) = U ′1 and f(U2) = U ′2, or f(U1) = U ′2 and f(U2) = U ′1. If
for any z0 ∈ U1, f(z0) ∈ U ′1, then the first case happens; otherwise the second case happens. On
the other hand, if f maps a generalized disc onto a generalized disc, then it maps the boundary
of the first disc onto the boundary of the second disc. For example, R ∪ {∞} is called the
extended real line, which is the boundary of H in Ĉ. If f ∈ Aut(H) is a Möbius transformation,
then f maps R̂ onto R̂.

Theorem 5.5.4. Given any three distinct points z1, z2, z3 ∈ Ĉ, and any three distinct points
w1, w2, w3 ∈ Ĉ, there exists a unique Möbius transformation f such that f(zj) = wj, j = 1, 2, 3.

Proof. For the existence, it suffices to show that such f exists if w1 = 0, w2 =∞, and w3 = 1.
In fact, if we let Fz1,z2,z3 denote a Möbius transformation that maps z1 to 0, z2 to ∞, and z3

to 1, then F−1
w1,w2,w3

◦ Fz1,z2,z3 is a Möbius transformation that maps zj to wj , j = 1, 2, 3.

Now we show that Fz1,z2,z3 exists. First suppose z1, z2, z3 ∈ C. The map z 7→ z−z1
z−z2 takes z1

to 0 and z2 to ∞. But it may not take z3 to 1. To solve this, we may multiply by a suitable
constant. So we may construct Fz1,z2,z3 by

Fz1,z2,z3(z) =
z3 − z2

z3 − z1
· z − z1

z − z2
.

If ∞ ∈ {z1, z2, z3}, we let

Fz1,z2,z3(z) =
z3 − z2

z − z2
, z1 =∞;

Fz1,z2,z3(z) =
z − z1

z3 − z1
, z2 =∞;

Fz1,z2,z3(z) =
z − z1

z − z2
, z3 =∞.

This finishes the proof of the existence part.
Now we show the uniqueness. If f and g both satisfies the property, then g−1◦f is a Möbius

transformation with three fixed points z1, z2, z3. So h := Fz1,z2,z3 ◦ g−1 ◦ f ◦F−1
z1,z2,z3 is a Möbius

transformation with fixed points 0, 1,∞. Since h(∞) =∞, h has the form h(z) = az+ b. Since
h(0) = 0, b = 0. Since h(1) = 1, a = 1. So h = id, which implies that g = f .

Given three distinct points z1, z2, z3 ∈ Ĉ, and three distinct points w1, w2, w3 ∈ Ĉ, we will
use the following methods to find the Möbius transformation F , which maps zj to wj , j = 1, 2, 3.

1. F = F−1
w1,w2,w3

◦ Fz1,z2,z3 , where Fz1,z2,z3 and Fw1,w2,w3 are given by the above theorem. If
you use this method, you should simplify your answer as much as possible.

2. Write F (z) = az+b
cz+d , and solve the equations

azj+b
czj+d

= wj , j = 1, 2, 3, to get a, b, c, d. Note

that all equations are linear. There are essentially only 3 unknown variables because
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multiplying any nonzero complex numbers to a, b, c, d does not change the transformation.
You may assume one variable, say a, equals 1. Sometimes, this does not work if a turns
out to be 0. If that is the case, you may then set another variable, say c to be 1.

Homework. Chapter VII, §5: 3(a,b,c), 11.
Additional:

1. Show that if a, b, c, d ∈ R and ad− bc > 0, then f(z) = az+b
cz+d ∈ Aut(H).

Definition 5.5.3. Let z1, z2, z3, z4 be distinct points in Ĉ. Define their cross ratio to be

[z1, z2, z3, z4] =
z1 − z3

z2 − z3
· z2 − z4

z1 − z4
=
z1 − z3

z2 − z3
:
z1 − z4

z2 − z4
,

if z1, z2, z3, z4 ∈ C. If any zj is ∞, then [z1, z2, z3, z4] is defined by the above formula without
the two factors involving zj. For example, [z1, z2, z3,∞] = z1−z3

z2−z3 .

The cross ratio satisfies the following symmetry relations:

[z2, z1, z3, z4] = [z1, z2, z4, z3] = [z1, z2, z3, z4]−1;

[z3, z4, z1, z2] = [z1, z2, z3, z4].

Theorem 5.5.5. Let F be a Möbius transformation, and z′j = F (zj), j = 1, 2, 3, 4. Then
[z′1, z

′
2, z
′
3, z
′
4] = [z1, z2, z3, z4].

Proof. One may check that [z1, z2, z3, z4] = Fz2,z1,z3(z4), where Fz2,z1,z3 is the Möbius transfor-
mation that maps z2, z1, z3 to 0,∞, 1. Note that Fz2,z1,z3 = Fz′2,z′1,z′3 ◦ F . Thus,

[z1, z2, z3, z4] = Fz′2,z′1,z′3 ◦ F (z4) = Fz′2,z′1,z′3(z′4) = [z′1, z
′
2, z
′
3, z
′
4].

Remark. From [z1, z2, z3, z4] = Fz2,z1,z3(z4) and that z4 6= zj , j = 1, 2, 3, we see that
[z1, z2, z3, z4] 6∈ {0,∞, 1}.

Homework.
Show that the four distinct points z1, z2, z3, z4 ∈ Ĉ lie on a generalized circle if and only if
[z1, z2, z3, z4] ∈ R.

5.6 Riemann’s Mapping Theorem

Let D1 and D2 be two complex domains. We say that D1 is conformally equivalent to D2, and
write D1

∼= D2 if Iso(D1, D2) is not empty, i.e., there is an analytic isomorphism of D1 with D2.
From a homework problem, “∼=” is an equivalence relation: D ∼= D; D1

∼= D2 implies D2
∼= D1;

D1
∼= D2 and D2

∼= D3 imply D1
∼= D3.
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Theorem 5.6.1. [Riemann Mapping Theorem] Let U $ C be a simply connected domain.
Let z0 ∈ U . Then there exists f ∈ Iso(U,D) such that f(z0) = 0. Moreover, such f is unique
up to a rotation, i.e., if g also satisfies the property of f , then g = Mc ◦ f for some c ∈ C with
|c| = 1. If we require that f ′(z0) > 0, then f is unique.

The above theorem implies that every simply connected complex domain other than C is
conformally equivalent to D. Here the case U = C is excluded because Iso(C,D) is empty by
Liouville. The theorem is useful for two reasons. First, it transforms results about the unit disc
into those about any simply connected domain. Second, the proof of the theorem introduces
some important ideas.

Homework. Let U $ C be a simply connected domain, and f : U → U be analytic. Suppose
that f fixes at least two points in U , i.e., there are z1 6= z2 ∈ U such that f(zj) = zj , j = 1, 2.
Prove that f is identity.

5.7 Limits of Sequence of Analytic Functions

Definition 5.7.1. A sequence of functions (fn) on an open set U is said to converge compactly
to a function f in U , if for every compact set K ⊂ U , fn → f uniformly on K.

Remarks.

1. Using the open covering definition of compact sets, one can show that fn → f compactly
in U is equivalent to that fn → f locally uniformly in U , i.e., for every z0 ∈ U , there is
r > 0 such that fn → f uniformly in D(z0, r).

2. If every fn is continuous, then the compactly convergent limit f is also continuous.

Theorem 5.7.1. Let (fn) be a sequence of analytic functions on an open set U , which converges
compactly to f . Then f is analytic in U , and (f ′n) converges compactly to f ′ in U .

Proof. Let z0 ∈ U . Pick r > 0 such that D(z0, r) ⊂ U . Let γ be any closed curve in D(z0, r).
Since each fn is analytic analytic in D(z0, r), we have

∫
γ fn = 0. Since γ is compact, we have

fn → f uniformly on γ,
∫
γ f = limn→∞

∫
γ fn = 0. From Morera’s Theorem, f is holomorphic

on D(z0, r). Especially, f is complex differentiable at z0. Since z0 ∈ U is arbitrary, f is
holomorphic on U .

To prove that (f ′n) converges compactly to f ′ in U , it suffices to show that, if D̄(z0, r) ⊂ U ,
then f ′n → f ′ uniformly on D̄(z0, r). We may choose R > r such that D̄(z0, R) ⊂ U . Let
J = {|z − z0| = R}. From Cauchy’s Formula, for any z ∈ D(z0, R),

f ′n(z)− f ′(z) =
1

2πi

∫
J

fn(w)− f(w)

(w − z)2
dw,

which implies that

|f ′n(z)− f ′(z)| ≤ 1

2π
L(J)

‖fn − f‖J
d(z, J)2

.
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Thus,

‖f ′n − f ′‖D̄(z0,r) ≤
R‖fn − f‖J

infz∈D̄(z0,r) d(z, J)2
=
R‖fn − f‖J

(R− r)2
,

which tends to 0 because fn → f uniformly on the compact set J . Thus, f ′n → f ′ uniformly on
D̄(z0, r).

Definition 5.7.2. We say that a series of functions
∑∞

n=1 fn converges compactly to f in U , if
the partial sum sequence sn =

∑n
k=1 fk converges to f compactly in U , i.e.,

∑∞
n=1 fn converges

uniformly on every compact subset of U .

From the previous theorem, if every fn is analytic in U , then so is the compactly convergent
sum f =

∑
fn. Moreover, the series

∑
f ′n converges compactly to f ′ in U . Recall the compar-

ison principle: given K ⊂ U , if there is a sequence (cn) depending on K such that ‖fn‖K ≤ cn
for each n, and

∑
cn <∞, then

∑
fn converges uniformly on K.

Example.

1. Suppose the power series
∑∞

k=0 akz
k has radius R > 0. Then the series converges com-

pactly in D(0, R). In fact, we know that, for every r ∈ (0, R), the series converges
uniformly on D̄(0, r). So the compact convergence follows from the fact that, for every
compact K ⊂ D(0, R), there exists r ∈ (0, R) such that K ⊂ D̄(0, r).

2. Consider the series

f(z) =
∞∑
n=1

1

nz
,

where nz is understood as the analytic function ez logn. The log n is the real logarithm
function. We do not need to consider the branch of log z. We have∣∣∣ 1

nz

∣∣∣ = |e−z logn| = e−Re z logn =
1

nRe z
.

We know that, for every p > 1,
∞∑
n=1

1

np
<∞.

By comparison principle, for any p > 1,
∑∞

n=1
1
nz converges uniformly on {z : Re z ≥ p}.

Since for every compact set K ⊂ {Re z > 1}, there is p > 1 such that K ⊂ {Re z ≥ p},
we see that

∑∞
n=1

1
nz converges compactly in {Re z > 1}. From the above theorem, the

sum f is analytic in {Re z > 1}, and

f ′(z) =

∞∑
n=1

− log n

nz
.

Such f has an analytic extension to C \ {1}, which is the famous Riemann zeta function.
It is often denoted by ζ(z). It has trivial zeros at negative integers: −2,−4,−6, . . . . The
Riemann hypothesis states that, all nontrivial zeros of ζ lie on the vertical line {Re z = 1

2}.
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3. Let a < b ∈ R and U ⊂ C be open. Suppose f : [a, b] × U → C be continuous, and for

every t ∈ [a, b], z 7→ f(t, z) is analytic in U . Then F (z) :=
∫ b
a f(t, z)dt is analytic in U .

In fact, if we define the Riemann sum function

Fn(z) =

n∑
k=1

f(tk, z)(tk − tk−1), z ∈ U,

where tk = a+ k
n(b− a), then each Fn is analytic, and Fn → F compactly in U .

4. Suppose f is a continuous function on R. From above, we see that for any n ∈ N,
Fn(z) =

∫ n
−n e

itzf(t)dt is analytic in C. Recall that the Fourier transformation of f is

f̂(z) =
∫∞
−∞ e

itzf(t)dt. If there is an open set U such that (Fn) converges compactly in

U , then the Fourier transformation f̂ is analytic in U .

5. The Gamma function is defined by

Γ(t) =

∫ ∞
0

xt−1e−xdx = lim
ε→0+

lim
R→∞

∫ R

ε
xt−1e−x.

One can show that the limit converges compactly in the right half plane HR = {z ∈ C :
Re z > 0}. So this formula defines an analytic function on HR. It can be extended to an
analytic function on C \ {n ∈ Z : n ≤ 0}. The most important property of Γ is that it is
an analytic extension of the factorial function:

Γ(n) = (n− 1)!

In summary, we have the following methods to construct/check new analytic functions,
which are helpful since analytic functions satisfy a lot of interesting properties.

1. Definition of the complex derivative

2. Combination of known analytic functions: f ± g, f · g, f/g, f ◦ g

3. Cauchy-Riemann equations

4. Power series and Laurent series

5. Primitive or local primitive of an analytic function

6. Derivative of an analytic function

7. Inverse or local inverse of an analytic function

8. Limit of a compactly convergent sequence or series of analytic functions

9. Integral of a family of analytic functions

Homework Chapter V §1: 2, 3 (a,c);
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5.8 Normal Families

Definition 5.8.1. Let U be an open set. Let Φ be a family of analytic functions defined on
U . We say that Φ is a normal family, if every sequence in Φ contains a subsequence, which
converges compactly in U . The limit function does not have to belong to Φ.

Remark. Let Σ denote the set of analytic functions on U . It is possible to define a metric
d on Σ such that d(fn, f) → 0 iff fn → f compactly in U . More specifically, we may find an
increasing sequence of compact subsets (Kn) of U such that Kn is contained in the interior of
Kn+1, and U =

⋃
nKn. For example, we may choose

Kn = {z ∈ U : |z| ≤ n,dist(z, U c) ≥ 1/n}, n ∈ N.

Then we define

d(f, g) =
∞∑
n=1

1

2n
‖f − g‖Kn

1 + ‖f − g‖Kn
.

Then d(fn, f) → 0 if and only if ‖fn − f‖Kn → 0 for each n, which is further equivalent to
that fn → f compactly in U since every compact subset of U is contained in one of Kn. Then
Φ ⊂ Σ is a normal family iff Φ is a precompact set with respect to this metric, i.e., the closure
of Φ is compact.

We will uses the famous Arzelà-Ascoli theorem, which is stated below.

Theorem 5.8.1. Let K and L be two compact metric spaces. Let fn : K → L, n ∈ N, be
an equicontinuous sequence of functions. Then (fn) contains a subsequence, which converges
uniformly on K.

We say that (fn) is equicontinuous on K, if for every ε > 0, there is δ > 0 such that for any
n and any z, w ∈ K, dK(z, w) < δ implies dL(fn(z), fn(w)) < ε.

Now we briefly describe the proof of the Arzelà-Ascoli theorem. Using the compactness of
K, one may find a countable dense subset of K: {zm : m ∈ N}. Let n0

k = k. Consider the
values of (fn0

k
) on z1. Using the compactness of L, we can find a subsequence (fn1

k
) of (fn0

k
)

such that (fn1
k
(z1)) is a convergent sequence in L. Consider the values of (fn1

k
) on z2. There

is a subsequence (fn2
k
) of (fn1

k
) such that (fn2

k
(z2)) is a convergent sequence. Repeating this

process, we get a sequence of subsequences (fnmk ), m ∈ N, such that (fnmk ) is a subsequence of

(fnm−1
k

), and fnmk (zm) converges as k → ∞. Now let nk = nkk. Then for every zm, (fnk(zm))

converges as k → ∞. The reason is that, for any m, the sequence (nk) is a subsequence of
(nmk : k ∈ N) except for finitely many elements. The method used above is called a diagonal
procedure.

Then one may use the equicontinuity of (fn) and the denseness of (zm) in K to conclude
that the pointwise convergence of (fnk) on {zm} implies the uniformly Cauchy property of (fnk)
on the whole space K.

Fix ε > 0. Choose δ > 0 such that for any n and any z, w ∈ K, dK(z, w) < δ implies
dL(fn(z), fn(w)) < ε/3. Since {zm : m ∈ N} is dense in K, we may pick finite set S ⊂ {zm :
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m ∈ N} such that for any z ∈ K, there is w ∈ S with |z−w| < δ. Since limk→∞ fnk(w) converges
for every w ∈ S, there is N such that |fnk1 (w)− fnk2 (w)| < ε/3 for any k1, k2 ≥ N and w ∈ S.
This implies that, for any z ∈ S and k1, k2 ≥ N , |fnk1 (z) − fnk2 (z)| < ε/3 + ε/3 + ε/3 = ε.
From this, we say that (fnk) is uniformly Cauchy on K. So it converges uniformly on K.

Let’s see how Arzelà-Ascoli theorem can be applied in the context of Complex Analysis.

Lemma 5.8.1. Suppose K is a compact subset of an open set U ⊂ C. Let (fn) be a sequence of
analytic functions on U . If (f ′n) or (fn) is uniformly bounded on U , then (fn) is equicontinuous
on K.

Proof. First, we assume that (f ′n) is uniformly bounded on U . Then there is M > 0 such that
|f ′n| ≤ M on U for any n. We may find r > 0 such that D(z0, r) ⊂ U for every z0 ∈ K. This
implies that, if z, w ∈ K and |z−w| < r, then [z, w] ⊂ U , and so |fn(z)− fn(w)| = |

∫
[w,z] f

′
n| ≤

M |w − z|. For any ε > 0, let δ = min{r, ε/M} > 0. Then z, w ∈ K and |z − w| < δ implies
that |fn(z)− fn(w)| < ε for any n. So (fn) is equicontinuous on K.

Second, we assume that (fn) is uniformly bounded on U . Then there is M ∈ R with M > 0
such that ‖fn‖U ≤ M for every n. Let r > 0 be as above. Let U ′ =

⋃
z∈K D(z, r/2). Then U ′

is an open set that contains K. Moreover, for any z0 ∈ U ′, D̄(z0, r/2) ⊂ U . Fix z0 ∈ U ′. From
Cauchy’s Formula, we get

f ′n(z0) =
1

2πi

∫
|z−z0|=r/2

fn(z)

(z − z0)2
dz, n ∈ N,

which implies that

|f ′n(z0)| ≤ 1

2π

‖fn‖U
(r/2)2

L({|z − z0| = r/2}) ≤ 2M

r
, n ∈ N.

This implies that (f ′n) is uniformly bounded on U ′. Since K is a compact subset of U ′, from
the result of the last paragraph, we see that (fn) is equicontinuous on K.

Corollary 5.8.1. Suppose K is a compact subset of an open set U ⊂ C. Let (fn) be a uniformly
bounded sequence of analytic functions on U . Then (fn) contains a subsequence, which converges
uniformly on K.

Proof. From the previous lemma, (fn) is equicontinuous on K. Since (fn) is uniformly bounded
on K, there is M such that ‖fn‖K ≤M for any n. Let L = D(0,M). Then L is a compact set,
and fn maps K into L. The A-A Theorem implies the result.

Theorem 5.8.2. [Montel’s Theorem] Let U be an open set. Let Φ be a family of analytic
functions on U . Then Φ is a normal family if and only if Φ is uniformly bounded on every
compact subset of U .
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Proof. The “only if” part holds because if Φ is not uniformly bounded on a compact K ⊂ U ,
then we may find a sequence (fn) from Φ such that ‖fn‖K → ∞, which can not contain a
subsequence that converges uniformly on K.

Now we prove the “if” part. Suppose Φ is uniformly bounded on every compact subset
of U . For m ∈ N, let Km = {z ∈ U : dist(z, U c) ≥ 1/m, |z| ≤ m}. Then each Km is a
compact subset of U . Let Um =

⋃
z∈Km D(z, 1

m −
1

m+1), m ∈ N. Then each Um is an open set,
Km ⊂ Um ⊂ Km+1, and U =

⋃
Um.

Let (fn) be a sequence in Φ. From the assumption on Φ, (fn) is uniformly bounded on each
Km. Since Um ⊂ Km+1, (fn) is uniformly bounded on each Um. For each m ∈ N, since Km

is a compact subset of the open set Um, from the above corollary, (fn) contains a subsequence
that converges uniformly on Km.

We now use another diagonal procedure to conclude that (fn) contains a subsequence, which
converges uniformly on every Km. Let n0

k = k. Then (fn0
k
) contains a subsequence (fn1

k
), which

converges uniformly on K1. And (fn1
k
) contains a subsequence (fn2

k
), which converges uniformly

on K2. Repeating this process, we get a sequence of subsequences (fnmk ), m ∈ N, such that

(fnmk ) is a subsequence of (fnm−1
k

), and (fnmk ) converges uniformly on Km. Let nk = nkk. Then

(fnk) converges uniformly on every Km.
Finally, if K ⊂ U is a compact set, then there exists R, r > 0 such that K ⊂ D(0, R) and

for every z ∈ K, D(z, r) ⊂ U . If m ∈ N satisfies m > max{R, 1/r}, then K ⊂ Km, which
implies that (fnk) converges uniformly on K. Thus, (fnk) converges compactly in U .

Remark. That Φ is uniformly bounded on every compact subset of U is equivalent to that Φ
is locally uniformly bounded in U , i.e., for every z0 ∈ U , there is r > 0 such that Φ is uniformly
bounded on D̄(z0, r).

Homework. Chapter X, §2: 6, 7.

1. Let Φ be the set of analytic functions on an open set U which satisfies that, for all f ∈ Φ,∫
U |f(x, y)|dxdy ≤ 1. Prove that Φ is a normal family.

5.9 Proof of the Riemann Mapping Theorem

We first prove the uniqueness part. Suppose f1 and f2 are analytic isomorphisms of U with D
such that fj(z0) = 0, j = 1, 2. Let f = f1 ◦ f−1

2 . Then f ∈ Aut(D) and f(0) = 0. So f = Mc

for some c ∈ C with |c| = 1, which implies f1 = Mc ◦ f2. If f ′1(z0) and f ′2(z0) are both positive,
then so is f ′(0) = f ′1(z0)/f ′2(z0), which implies that c = 1 and f1 = f2.

Now we prove the existence part. Let Φ denote the set of injective analytic f : U → D such
that f(z0) = 0. First, we show that Φ is not empty. Let c ∈ C\U . Since U is simply connected,
there is a branch L(z) of log(z − c). Such L is an analytic isomorphism of U . Let V = L(U).
Then V is open, and V ∩ V + (2πi) = ∅. Let w0 ∈ V + 2πi. Then there is r > 0 such that
D(w0, r) ⊂ V + 2πi, which implies that D(w0, r)∩ V = ∅. Thus, h(z) := r

L(z)−w0
is an analytic

isomorphism of U such that h(U) ⊂ D. Finally, let f = gh(z0) ◦ h. Then f ∈ Φ.
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Second, we observe that, if f0 ∈ Φ∩Iso(U,D), then for any f ∈ Φ, F := f ◦f−1
0 is an analytic

map from D into D that satisfies F (0) = 0. From Schwarz lemma, we get |F ′(0)| ≤ 1, which
implies that |f ′(z0)| ≤ |f ′0(z0)|. Thus, if such f0 exists, then |f ′0(z0)| = max{|f ′(z0)| : f ∈ Φ}.

Third, let S = sup{|f ′(z0)| : f ∈ Φ}. Then we may pick a sequence (fn) from Φ such that
|f ′n(z0)| → S. Since Φ is uniformly bounded on U , it is a normal family. Thus, (fn) contains a
subsequence (fnk), which converges compactly in U . Let f0 be the limit. Then f0 is analytic
in U , and f ′nk → f ′0 compactly in U . In particular, we see that f0(z0) = lim fnk(z0) = 0 and
|f ′0(z0)| = lim |f ′nk(z0)| = S > 0. Thus, f0 is not constant.

Since |fnk(z)| < 1 on U for each k, and f0 = lim fnk , we get |f0| ≤ 1 on U . If there is some
z0 ∈ U such that |f0(z0)| = 1, then from the Maximum modulus principle, we can conclude
that f0 is constant, which is impossible. Thus, f0 : U → D.

Now we show that f0 is an analytic isomorphism of U . We have that fnk → f0 compactly
in U , each fnk is analytic and injective, and f0 is not constant. The argument below will show
that, if a sequence of injective analytic functions (fnk) converges compactly to f0, which is not
constant, then f0 is also injective.

Suppose f0 is not injective. Then there exist z1 6= z2 ∈ U such that f0(z1) = f0(z2) = w0. In
other words, z1 and z2 are zeros of f0−w0. Since f0 is not constant, f0−w0 is not constant zero.
We may find r > 0 such that D̄(z1, r) and D̄(z2, r) are disjoint subsets of U , and f0 − w0 6= 0
on Cj := {|z − zj | = r}, j = 1, 2. Since C1 ∪ C2 is compact, and f0 − w0 6= 0 on C1 ∪ C2, there
is ε > 0 such that |f0(z)− w0| ≥ ε, z ∈ Cj , j = 1, 2. Since (fnk) converges to f0 uniformly on
C1 ∪ C2, there is N such that when k > N , ‖fnk − f0‖C1∪C2 < ε. Since

|(fnk(z)− w0)− (f0(z)− w0)| ≤ ‖fnk − f0‖C1∪C2 < ε ≤ |f0(z)− w0|, z ∈ C1 ∪ C2,

from Rouché’s theorem and the fact that f0 − w0 has zeros in both D(z1, r) and D(z2, r), we
see that, if k > N , then fnk − w0 has zeros in both D(z1, r) and D(z2, r), which contradicts
that fnk is injective. Thus, f0 is injective.

Now we see that f0 ∈ Φ and |f ′(z0)| = S = sup{|f ′(z0)| : f ∈ Φ}. So |f ′(z0)| =
max{|f ′(z0)| : f ∈ Φ}. To complete the proof, it remains to show that f0(U) = D. Sup-
pose f0(U) 6= D. Let a ∈ D \ f0(U) and h1 = ga ◦ f . Recall that ga(z) = a−z

1−āz ∈ Aut(D) is such
that ga ◦ ga = id, ga(a) = 0, and ga(0) = a. Then h1 is injective and analytic, and has no zeros

on U . Since U is simply connected, there is an analytic branch h2 of h
1/2
1 in U . Since h1 = h2

2,
we see that h2 is also injective. Since |h2(z)| = |h1(z)|1/2 < 1 for z ∈ U , h2 maps U into D. Let
b = h2(z0) ∈ D. Then

b2 = h2(z0)2 = h1(z0) = ga(f0(z0)) = ga(0) = a.

Let f1 = gb ◦h2. Then f1 : U → D is analytic and injective and f1(z0) = gb(h2(z0)) = gb(b) = 0.
Thus, f1 ∈ Φ. Let S(z) = z2. Then

f0 = ga ◦ h1 = ga ◦ S ◦ h2 = ga ◦ S ◦ gb ◦ f1.
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We see that f1(z0) = 0, gb(0) = b, S(b) = a, and ga(a) = 0. Thus,
|f ′0(z0)|
|f ′1(z0)| = |g′a(a)||S′(b)||g′b(0)|.

It is straightforward to check that g′c(0) = |c|2 − 1 and g′c(c) = 1
|c|2−1

. Thus,

|f ′0(z0)|
|f ′1(z0)|

=
2|b|(1− |b|2)

1− |a|2
=

2|b|(1− |b|2)

1− |b|4
=

2|b|
1 + |b|2

< 1,

which contradicts that |f ′0(z0)| maximizes {|f ′(z0)| : f ∈ Φ}. So f0 ∈ Iso(U,D) is what we need.

5.10 Examples

We will see some examples of simply connected domains, for which the analytic isomorphisms
between these domains and the unit disc or half plane can be explicitly expressed.

Examples.

1. Let S denote the square map z 7→ z2. Recall that |S(z)| = |z|2 and argS(z) = 2 arg(z).
Since S(z1) = S(z2) if and only if z1 = z2 or z2 = −z2, we see that S is an analytic
isomorphism of U if and only if U ∩ (−U) = ∅.

2. Recall that H = {z ∈ C : Im z > 0} = {z ∈ C : 0 < arg(z) < π}. Let HR = {z ∈ C :
Re z > 0} = {z ∈ C : −π/2 < arg(z) < arg(z)} denote the right half plane. We have
S ∈ Iso(H,C \ {x ∈ R : x ≥ 0}), S ∈ Iso(HR,C \ {x ∈ R : x ≤ 0}), and Mi ∈ Iso(HR,H),
where Mi(z) = iz.

3. The intersection HR ∩ H = {z ∈ C : 0 < arg(z) < π/2} is the first quadrant. Since S
doubles the argument, we have S ∈ Iso(HR ∩H,H).

4. Let U = D ∩ HR ∩ H be a quarter disc. Then S ∈ Iso(U,H ∩ D). This follows from the
previous example and the fact that S(z) ∈ D iff z ∈ D.

5. Let F (z) = z+1
−z+1 be a Möbius transformation. First, note that for every x ∈ R̂, F (x) ∈ R̂.

Thus, F (H) = H or F (H) = −H. Since F (i) = i, we get F ∈ Iso(H,H). Second, note
that F−1(z) = z−1

z+1 , so F−1 ◦M−1
i (z) = −iz−1

−iz+1 = z−i
z+i ∈ Iso(H,D), which implies that

Mi ◦F ∈ Iso(D,H). Since Mi ∈ Iso(HR,H), we see that F ∈ Iso(D,HR). Combining these
two facts, we get F ∈ Iso(H ∩ D,H ∩HR).

6. Let S and F be as above. Then G := S ◦ F ◦ S ∈ Iso(D ∩HR ∩H,H).

7. The map z 7→
√
z2 − 1 is an isomorphism of HR \ [0, 1] with HR. To see this, first, z 7→ z2

maps HR \ [0, 1] onto C \ (−∞, 1]. Then z 7→ z − 1 maps C \ (−∞, 1] onto C \ (−∞, 0].
Finally, z 7→

√
z maps C \ (−∞, 0] onto HR.

8. The exponential map exp is an analytic isomorphism of U if and only if U∩(2kπi+U) = ∅
for any k ∈ Z.
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9. For every y > 0, let Sy denote the strip {z ∈ C : 0 < Im z < y}. The map exp is an analytic
isomorphism of Sπ with H, an analytic isomorphism of the half strip Sπ ∩ (−HR) with the
half disc D∩H, and the strip S2π with the plane without a half line: C \ {x ∈ R : x ≥ 0}.

10. Let J(z) = 1/z. Then J ∈ Aut(C \ {0}) and J−1 = J . Moreover, J ∈ Iso(D,C \ D) and
J ∈ Iso(H,−H). So J ∈ Iso(H \ D, (−H) ∩ D).

11. Let f(z) = z + 1/z. Note that f(z1) = f(z2) if and only if z1 = z2 or z1 = J(z2). So
f is an analytic isomorphism of U if and only if U ∩ J(U) = ∅. We claim that f(H) =
C \ ((−∞, 2]∪ [2,∞)). To see this, we observe that for any w ∈ C, f(z) = w is equivalent
to the equation z2−wz+ 1 = 0, which has two roots z1, z2 that satisfy z1z2 = 1 (the two
roots coincide, i.e., z1 = z2 when w = ±2). From this, we get f(C\{0}) = C. Also observe
that f(z) ∈ (−∞,−2]∪ [2,∞) iff z ∈ R\{0}. Thus, f(H∪ (−H)) = C\ ((−∞, 2]∪ [2,∞)).
Since f ◦J = f , we get f(H) = f(H∪J(H)) = f(H∪ (−H)). Since J(H) = −H is disjoint
from H, we get f ∈ Iso(H,C \ ((−∞, 2] ∪ [2,∞))).

12. Next, for the f above, we show that f(H \ D) = H. Suppose z ∈ H \ D. Write z = reiθ

with r > 1 and 0 < θ < π. Then

f(z) = reiθ + r−1e−iθ = (r + r−1) cos θ + i(r − r−1) sin θ ∈ H,

because r − r−1 > 0 and sin θ > 0. On the other hand, if z ∈ H, and f(z) ∈ H,
then we must have r = |z| > 1. So we get f ∈ Iso(H \ D,H). Since f ◦ J = f and
J ∈ Iso(D ∩ (−H),H \ D), we get f ∈ Iso(D ∩ (−H),H). Since f(−z) = −f(z), we see
that f ∈ Iso(D ∩H,−H) and f ∈ Iso(−H \ D,−H). Finally, f is injective on C \ D since
J(C \ D) = D \ {0} is disjoint from C \ D. We have seen that f maps H \ D onto H,
and maps −H \ D onto −H. We also observe that f maps (1,∞) onto (2,∞), and maps
(−∞,−1) onto (−∞,−2). Combining, we see that f ∈ Iso(C \ D,C \ [−2, 2]).

13. Let W be the half strip {z ∈ C : −π
2 < Re z < π

2 , Im y > 0}. Consider the function

sin z =
eiz − e−iz

2i
=

1

2

(eiz
i

+
(eiz
i

)−1)
.

We see that sin z = 1
2f ◦ g(z), where f(z) = z + z−1 and g(z) = eiz/i = ei(z−π/2). Note

that g ∈ Iso(W,D ∩ (−H)). From the above example, f ∈ Iso(D ∩ (−H),H). Thus,
sin z ∈ Iso(W,H).

Homework.

1. Construct an analytic isomorphism of D \ [1/2, 1] with H.

2. Prove that f(z) = z
(1−z)2 (called the Koebe function) is an analytic isomorphism of D,

and find f(D). Hint: Express f as a composition of analytic isomorphisms.
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List of topics:

1. Basic computation of complex numbers

2. Triangle inequality

3. Polar form and rectangular form

4. Compute powers and n-th roots using the polar form

5. Complex exponential, logarithm, trigonometric functions and hyperbolic functions

6. Principal logarithm, branch of logarithm, and primitive of 1
z .

7. Complex powers

8. Topology on C

9. Radius of convergence

10. Cauchy Riemann equations

11. Derivative rules

12. derivatives/antiderivative of power series, and the related differential equations

13. Coefficients of a power series expansion expressed in terms of derivatives

14. Compute the integral over a curve using the definition or the primitive

15. Uniqueness theorem

16. Cauchy’s theorem and Cauchy’s formula

17. Liouville’s theorem

18. Fundamental Theorem of Algebra

19. Properties of simply connected domains: existence of primitive, branch of logarithm,
harmonic conjugate.

20. Harmonic function and harmonic conjugate

21. Mean value theorem for analytic functions and harmonic functions

22. Maximum principle for analytic functions and harmonic functions

23. Winding numbers and the general Cauchy’s Theorem/Formula and Residue Formula

24. Laurent series: formulas for the coefficients
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25. Find singularities, determine the types, and find the orders of poles

26. Behavior near a singularity of different types

27. Laurent series of function 1
z−z0 in different annuli

28. Compute the residue

29. Residue formula

30. Rouche’s theorem

31. Open Mapping Theorem and Inverse Mapping Theorem

32. Definite integral: half disc, half disc minus a small half disc, rectangular contour, trigono-
metric integrals, involving branch of logarithm

33. Compute power series or Laurent series of the product or ratio of two power series.

34. Schwarz lemma

35. Find Möbius transformation that takes 3 points to 3 points

36. Describe the image of a circle, line, disc, or half plane under a Möbius transformation

37. Cross ratio

38. Riemann mapping theorem

39. Compactly convergence

40. Normal family

41. Find analytic isomorphisms between some particular domains.
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