
MTH 234 Quiz 4 Name
June 16, 2016 (20 points total)

1. (4 points) Compute the line integral
∫
γ x ds where γ is the triangle with positive

orientation connecting the points (0, 0), (1, 1) and (1, 3).

Solution. First come up with parametrizations around the triangle
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2. (4 points) Compute the line integral of the vector field 〈yz, (1 + x)z, 1 + (1 + x)y〉 along
the curve C = {(t, 2t, 5t2) : 0 ≤ t ≤ 2}.

Solution. The given vector field has no curl, and its potential is φ = z + yz + xyz. The
fundamental theorem for line integrals then gives∫
C ∇φ • ~dr = φ(r(2))− φ(r(0)) = 20 + 80 + 160 = 260.

3. (4 points) Compute the mass of the solid tetrahedron T with vertices
(0, 0, 0), (2, 0, 0), (0, 1, 0), and (0, 0, 1) and with density function ρ = 2y.

Hint: It’s easier to determine the limits of integration if you draw a picture first.

Solution.
You need to first compute the equation of the plane giving the bounds in the z direction,
which requires taking a cross product of the vectors (0,0,1)-(2,0,0) and (0,0,1)-(0,1,0). The
equation of the plane is 2z = 2− x− 2y therefore the desired mass integral is∫ 1
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4. (4 points) The formula for the volume of a right circular cone with radius b and height
a is 1

3πb
2a. Show that this is true by computing a triple integral∫∫∫

C
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where C is the solid cone lying below the surface z = a− a
b
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Solution.
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5. (4 points.) Express the volume of the part of the ball B = {ρ ≤ 8} which lies between
the cones z = r and z = 1√

3
r as a triple integral in spherical coordinates, and evaluate the

integral (where r2 = x2 + y2 and ρ2 = r2 + z2, as usual.)

Solution.
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