Name _____

Consider the vectors $\vec{u}=\langle 2,-1,1\rangle\,,\,\vec{v}=\langle -1,1,0\rangle\,,\,\vec{w}=\langle 7,-2,5\rangle\,,$ and the point $P_0=(1,-3,2)$

1. (4 points) Compute the distance from P_0 to the plane containing the origin and the vectors \vec{u} and \vec{v} .

2. (4 points) Do the vectors \vec{u}, \vec{v} , and \vec{w} all lie in the same plane? Justify your response.

3. (4 points) Compute the equation of the line containing P_0 which is orthogonal to both \vec{u} and \vec{v}

4. (5 points) Find a vector function which represents the intersection of the surfaces:

 $y^2 + z^2 = 1$ and x + z = 2.

5. (7 points) Find the equation of the line given by the intersection of the planes

2x + y + 8z = 3 and x + y + 5z = 2.

6. (8 points) A particle moves with position $\vec{r} = \langle t^2/2, t, \ln(t+1) \rangle$. Compute the normal and tangential components of acceleration.

7. (5 points) Compute the equation of the plane tangent to the surface $4x^2y + y^2 = z^2 + 1$ at the point (1,1,2).

8. (4 points each) Do the following limits exist? If so, give the value; if not, explain why the limit does not exist.

(a)

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

(b)

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^2 e^y}{x^4 - 4y^2 x^2}$$

9. (10 points) Suppose you are given a function $f(x, y, z) = x(y+1)^2 + x^3 z$ and the relations $x(s,t) = st, y(s,t) = s - t^2$, and z(s,t) = t. Compute the partial derivatives

$$\left(\frac{\partial f}{\partial s}\right)_t$$
 and $\left(\frac{\partial f}{\partial t}\right)_s$.

10. (10 points) Compute the directional derivative $D_{\hat{u}}f$ of $f(x, y, z) = xe^y \sin z$ in the direction $\hat{u} = \langle a, b, c \rangle$ at the point $(1, \ln 2, \pi/4)$

- 11. (5 points each) Consider the relation $xy^2 + y = ze^x$ where $x = se^t$ and y = st.
- (a) Compute $\partial z/\partial t$ at (s,t) = (3,2)(b) Compute $\partial x/\partial y$ at (s,t) = (3,2)