Worksheet 17 - Surface Integrals

- 1. Find $\iint_S y \, d\sigma$, where S is the surface $z = x + y^2$, $0 \le x \le 1$, $0 \le y \le 2$ (pictured in Figure 1). Try to use both methods (implicit and parametrized).
- 2. Find $\iint_S (x^2z + y^2z) d\sigma$, where S is the upper hemishphere: $x^2 + y^2 + z^2 = 4$; $z \ge 0$.
- 3. Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = 16$ that remains after removing its spherical caps that lie inside the cylinder $x^2 + z^2 = 12$.
- 4. Find $\iint_S y \, d\sigma$, where S is the portion of the cylinder $x^2 + y^2 = 3$ between the planes z = 0 and z = 6.
- 5. Find $\iint_S x^2yz\,d\sigma$, where S is the portion of the plane z=1+2x+3y that lies above $0\leq x\leq 3$ and $0\leq y\leq 2$ see Figure 2.
- 6. Find $\iint_S (y+z) d\sigma$, where S is the closed surface whose sides are given by the cylinder $x^2 + y^2 = 3$, whose top lies in the plane z = 4 y, and whose bottom is in the xy-plane.
- 7. Find $\iint_S yz \, d\sigma$, where S is the surface parametrized by x = uv, y = u + v, z = u v, where $u^2 + v^2 \le 1$.

Figure 1: The surface $z=x+y^2,\, 0\leq x\leq 1,\, 0\leq y\leq 2.$

Figure 2: The portion of the plane z = 1 + 2x + 3y that lies above $0 \le x \le 3$ and $0 \le y \le 2$.