Worksheet 10

Substitution in Double Integrals

1. Use substitution to find:

$$\iint_{R} e^{4x-y} dA,$$

where R is the parallelogram with vertices (0,0), (3,3), (7,4), and (4,1).

Hint: Try the substitution u = x - y; v = x - 4y.

Hint: There are often more than one "good" substitutions in these cases; for instance, try also the substitution u = 4x - y and v = x - y.

2. Use substitution to find:

$$\iint_R (x^2 + y^2) \, dA,$$

where R is the domain bounded by $1 \le xy \le 4$ and $1 \le \frac{y}{x} \le 4$.

Hint: Try u = xy and $v = \frac{y}{x}$.

3. Use substitution to find:

$$\iint_{R} (x+y)^2 \sin^2(x-y) \, dA,$$

where R is the square with vertices (0,1), (1,2), (2,1), and (1,0).

Hint: Try a substitution dictated by making the integral easier to compute.

4. Compute the integral:

$$\int_{1}^{2} \int_{x+2}^{x+3} \frac{dy \, dx}{\sqrt{xy - x^{2}}}$$

by using the substitution u = x; v = y - x. Try to also compute the integral as it was given.

5. (a). Compute the integral:

$$\int_0^4 \sqrt{x} \cos(\sqrt{x}) \, dx$$

by using the substitution $u = \sqrt{x}$.

(b). Verify that

$$\int_0^4 \sqrt{x} \cos(\sqrt{x}) \, dx = \int_0^4 \int_0^1 \sqrt{x} \cos(\sqrt{x}) \, dy \, dx$$

and that you get the same result as in part (a). by working with this double integral and using the substitution $u = \sqrt{x}$, v = y.