
Name:

April 30th, 2015.
Math 2401; Sections K1, K2, K3.

Georgia Institute of Technology
FINAL EXAM

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me
as a member of the Georgia Tech community. By signing my name below I pledge that I have neither
given nor received help on this exam.

Pledged:

Problem Possible Score Earned Score

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

11 10

12 10

13 10

14 10

Total 140

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!



Angle θ (0 ≤ θ ≤ π) between vectors u and v:

cos θ =
u · v
|u||v|

.

Vector Projection of u onto v 6= 0:

Projvu =

(
u · v
|v|2

)
v = |u cos θ| v

|v|
.

Distance from a point S to a line L going through
P and parallel to v:

d =
|
−→
PS × v|
|v|

Length of a smooth curve C: r(t), traced exactly
once as a ≤ t ≤ b:

L =

∫ b

a

|v(t)| dt.

TNB Frame:

T =
v

|v|
; N =

dT/ds
κ

=
dT/dt
|dT/dt|

; B = T×N.

Curvature:

κ =

∣∣∣∣dTds
∣∣∣∣ =

1

|v|

∣∣∣∣dTdt
∣∣∣∣ .

Tangential and Normal Components of Accelera-
tion:

a = aTT + aNN;

aT =
d2s

dt2
=

d

dt
|v(t)|;

aN = κ

(
ds

dt

)2

= κ|v(t)|2 =
√
|a|2 − a2T .

Torsion:

τ = −dB
ds
·N.

Directional Derivative of f at P0 in the direction of
the unit vector u:

(Duf)P0
= (∇f)P0

· u.

Spherical Coordinates: (ρ, φ, θ):

0 ≤ φ ≤ π; 0 ≤ θ ≤ 2π;

x = ρ sinφ cos θ; y = ρ sinφ sin θ; z = ρ cosφ;

Jacobian: dV 7→ ρ2 sinφdρ dφ dθ.

Green’s Theorem in the Plane:∮
C

~F ·~n ds =

∮
C

M dy−N dx =

∫∫
R

(
∂M

∂x
+
∂N

∂y

)
dA;

∮
C

~F ·~T ds =

∮
C

M dx+N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA

Area with Green’s Theorem:

Area(R) =
1

2

∮
C

x dy − y dx.

Surface Differential on Parametric Surface S :
r(u, v); (u, v) ∈ R:

dσ = |ru × rv| d(u, v)

Unit Normal Field on Parametric Surface S :
r(u, v); (u, v) ∈ R:

n = ± ru × rv
|ru × rv|

Surface Differential on Implicitly Defined (Level
Surface) f(x, y, z) = c, over shadow region R in
a coordinate plane:

dσ =
|∇f |
|∇f · p|

dA,

where p is one of i, j, k.
Unit Normal Field on Implicitly Defined (Level Sur-
face) f(x, y, z) = c, over shadow region R in a co-
ordinate plane:

n = ± ∇f
|∇f |

.

Parametrized Sphere of radius R, centered at the
origin: 0 ≤ φ ≤ π; 0 ≤ θ ≤ 2π;

r(φ, θ) = R 〈sinφ cos θ, sinφ sin θ, cosφ〉 ;

rφ × rθ = R2
〈
sin2 φ cos θ, sin2 φ sin θ, sinφ cosφ

〉
;

|rφ × rθ| = R2 sinφ.

Stokes’ Theorem:∮
C

F · dr =

∫∫
S

(∇× F) · n dσ,

(with the appropriate assumptions on C, S and F.)

Divergence Theorem:∫∫
S

F · n dσ =

∫∫∫
D

∇ · F dV,

(with the appropriate assumptions on S, D and F.)



1. [10 points] Set up a triple integral in cylindrical coordinates that gives the volume of the “ice cream
cone,” the solid bounded by the cone

z =
1

2

√
x2 + y2

and the paraboloid

z = 2− x2

4
− y2

4
.

You do not need to compute the integral, just set it up!

𝑥

𝑧

𝑦

𝑧 =
1

2
𝑥2 + 𝑦2

𝑧 = 2 −
𝑥2

4
−
𝑦2

4



2. [10 points] Consider the curve:

~r(t) = (t sin t+ cos t)~i+ (−t cos t+ sin t)~j; −
√

2 ≤ t ≤ 0.

a). [3 points] Find the velocity ~v(t).

b). [4 points] Find the unit tangent vector ~T (t).

c). [3 points] Find the length of the curve.



3. [10 points] Find the points on the cone x2 + y2 = z2 that are closest to the point (4, 2, 0).



4. [10 points] Given that for a curve r(t):

dr

dt
= 3
√
t+ 1 i + 4e−t j +

1

t+ 1
k,

and that:
r(0) = 〈1, 0, 2〉 ,

find r(t).



5. [10 points] Find all the critical points of f(x, y) = xy2 − x2 − 2y2 and classify each one as either a
local minimum, a local maximum, or a saddle point.



6. [10 points] Recall that the angle between two planes is defined to be the angle between their normal
vectors. Consider the planes:

P1 : x+ y + z = −1;

P2 : x+ 2y + 3z = −4.

a). [3 points] Find the angle between the two planes above (give an exact answer).

b). [7 points] Find parametric equations for the line of intersection of the two planes above.



7. [10 points] Let f(x, y) have continuous first order partial derivatives. Consider the points:

A(1, 2); B(2, 2); C(1, 3); D(5, 6).

Suppose that:

• the directional derivative of f at the point A in the direction of
−−→
AB is equal to 2.

• the directional derivative of f at the point A in the direction of
−→
AC is equal to 4.

Use this information to find the directional derivative of f at the point A in the direction of
−−→
AD.



8. [10 points] Let S be the surface consisting of the cylinder x2 + y2 = 4, 0 ≤ z ≤ 10, together with its
“top,” x2 + y2 ≤ 4, z = 10. Let:

F(x, y, z) = −2yi + 2xj + 2x2k.

Find the outward flux of the curl ∇× F through S.



9. [10 points] Compute the integral:

∫ 1

0

∫ √1−y2

0

cos(x2 + y2) dx dy.

Sketch the region of integration.



10. [10 points] Compute the integral: ∫∫
R

sin y

y
dA,

where R is the region in the plane given by:

R : 1 ≤ y ≤ 3; y ≤ x ≤ 2y,

and sketch the region of integration.



11. [10 points] Compute the line integral ∫
C

(2 + x2y) ds,

where C is the lower half of the unit circle x2 + y2 = 1 (going from (−1, 0) to (1, 0) along the unit circle,
below the x-axis).



12. [10 points] Find the work done by the field

F(x, y) = 5xy3i + 9x2y2j

in moving a particle once counterclockwise around the curve C: the boundary of the region enclosed by
the x-axis, the line x = 1 and the curve y = x3 in the first quadrant.



13. [10 points] Find the outward flux of the field

F(x, y, z) =
(
2x3 + 9xy2

)
i +
(
−y3 + πey sin(z)

)
j +
(
2z3 + πey cos(z)

)
k,

through the boundary of the region D:

D : 1 ≤ x2 + y2 + z2 ≤ 2.



14. [10 points] Compute the Gaussian integral:∫ ∞
0

e−πx
2

dx.
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