Name: \qquad
April $30^{\text {th }}, 2015$.
Math 2401; Sections K1, K2, K3.
Georgia Institute of Technology
FINAL EXAM

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
Total	140	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

Angle $\theta(0 \leq \theta \leq \pi)$ between vectors \mathbf{u} and \mathbf{v} :

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Vector Projection of \mathbf{u} onto $\mathbf{v} \neq 0$:

$$
\operatorname{Proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}=|\mathbf{u} \cos \theta| \frac{\mathbf{v}}{|\mathbf{v}|}
$$

Distance from a point S to a line L going through P and parallel to \mathbf{v} :

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

Length of a smooth curve $C: \mathbf{r}(t)$, traced exactly once as $a \leq t \leq b$:

$$
L=\int_{a}^{b}|\mathbf{v}(t)| d t
$$

TNB Frame:

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|} ; \quad \mathbf{N}=\frac{d \mathbf{T} / d s}{\kappa}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|} ; \quad \mathbf{B}=\mathbf{T} \times \mathbf{N} .
$$

Curvature:

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right| .
$$

Tangential and Normal Components of Acceleration:

$$
\begin{gathered}
\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N} \\
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}|\mathbf{v}(t)| ; \\
a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}=\kappa|\mathbf{v}(t)|^{2}=\sqrt{|\mathbf{a}|^{2}-a_{T}^{2}}
\end{gathered}
$$

Torsion:

$$
\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}
$$

Directional Derivative of f at P_{0} in the direction of the unit vector \mathbf{u} :

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=(\nabla f)_{P_{0}} \cdot \mathbf{u} .
$$

Spherical Coordinates: (ρ, ϕ, θ) :

$$
0 \leq \phi \leq \pi ; \quad 0 \leq \theta \leq 2 \pi ;
$$

$x=\rho \sin \phi \cos \theta ; \quad y=\rho \sin \phi \sin \theta ; \quad z=\rho \cos \phi ;$ Jacobian: $d V \mapsto \rho^{2} \sin \phi d \rho d \phi d \theta$.

Green's Theorem in the Plane:
$\oint_{C} \vec{F} \cdot \vec{n} d s=\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A ;$
$\oint_{C} \vec{F} \cdot \vec{T} d s=\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$
Area with Green's Theorem:

$$
\operatorname{Area}(R)=\frac{1}{2} \oint_{C} x d y-y d x
$$

Surface Differential on Parametric Surface S : $\mathbf{r}(u, v) ;(u, v) \in R:$

$$
d \sigma=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d(u, v)
$$

Unit Normal Field on Parametric Surface S : $\mathbf{r}(u, v) ;(u, v) \in R$:

$$
\mathbf{n}= \pm \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

Surface Differential on Implicitly Defined (Level Surface) $f(x, y, z)=c$, over shadow region R in a coordinate plane:

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is one of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
Unit Normal Field on Implicitly Defined (Level Surface) $f(x, y, z)=c$, over shadow region R in a coordinate plane:

$$
\mathbf{n}= \pm \frac{\nabla f}{|\nabla f|} .
$$

Parametrized Sphere of radius R, centered at the origin: $0 \leq \phi \leq \pi ; 0 \leq \theta \leq 2 \pi$;

$$
\mathbf{r}(\phi, \theta)=R\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle ;
$$

$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=R^{2}\left\langle\sin ^{2} \phi \cos \theta, \sin ^{2} \phi \sin \theta, \sin \phi \cos \phi\right\rangle ;$

$$
\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=R^{2} \sin \phi
$$

Stokes' Theorem:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

(with the appropriate assumptions on C, S and \mathbf{F}.)
Divergence Theorem:

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V,
$$

(with the appropriate assumptions on S, D and \mathbf{F}.)

1. [10 points] Set up a triple integral in cylindrical coordinates that gives the volume of the "ice cream cone," the solid bounded by the cone

$$
z=\frac{1}{2} \sqrt{x^{2}+y^{2}}
$$

and the paraboloid

$$
z=2-\frac{x^{2}}{4}-\frac{y^{2}}{4}
$$

You do not need to compute the integral, just set it up!

2. [10 points] Consider the curve:

$$
\vec{r}(t)=(t \sin t+\cos t) \vec{i}+(-t \cos t+\sin t) \vec{j} ;-\sqrt{2} \leq t \leq 0
$$

a). [3 points] Find the velocity $\vec{v}(t)$.
b). [4 points] Find the unit tangent vector $\vec{T}(t)$.
c). [3 points] Find the length of the curve.
3. [10 points] Find the points on the cone $x^{2}+y^{2}=z^{2}$ that are closest to the point $(4,2,0)$.
4. [10 points] Given that for a curve $\mathbf{r}(t)$:

$$
\frac{d \mathbf{r}}{d t}=3 \sqrt{t+1} \mathbf{i}+4 e^{-t} \mathbf{j}+\frac{1}{t+1} \mathbf{k}
$$

and that:

$$
\mathbf{r}(0)=\langle 1,0,2\rangle
$$

find $\mathbf{r}(t)$.
5. [10 points] Find all the critical points of $f(x, y)=x y^{2}-x^{2}-2 y^{2}$ and classify each one as either a local minimum, a local maximum, or a saddle point.
6. [10 points] Recall that the angle between two planes is defined to be the angle between their normal vectors. Consider the planes:

$$
\begin{gathered}
P_{1}: x+y+z=-1 \\
P_{2}: x+2 y+3 z=-4 .
\end{gathered}
$$

a). [3 points] Find the angle between the two planes above (give an exact answer).
b). [7 points] Find parametric equations for the line of intersection of the two planes above.
7. [10 points] Let $f(x, y)$ have continuous first order partial derivatives. Consider the points:

$$
A(1,2) ; B(2,2) ; \quad C(1,3) ; \quad D(5,6)
$$

Suppose that:

- the directional derivative of f at the point A in the direction of $\overrightarrow{A B}$ is equal to 2 .
- the directional derivative of f at the point A in the direction of $\overrightarrow{A C}$ is equal to 4 .

Use this information to find the directional derivative of f at the point A in the direction of $\overrightarrow{A D}$.
8. [10 points] Let S be the surface consisting of the cylinder $x^{2}+y^{2}=4,0 \leq z \leq 10$, together with its "top," $x^{2}+y^{2} \leq 4, z=10$. Let:

$$
\mathbf{F}(x, y, z)=-2 y \mathbf{i}+2 x \mathbf{j}+2 x^{2} \mathbf{k}
$$

Find the outward flux of the curl $\nabla \times \mathbf{F}$ through S.
9. [10 points] Compute the integral:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \cos \left(x^{2}+y^{2}\right) d x d y
$$

Sketch the region of integration.
10. [10 points] Compute the integral:

$$
\iint_{R} \frac{\sin y}{y} d A
$$

where R is the region in the plane given by:

$$
R: 1 \leq y \leq 3 ; \quad y \leq x \leq 2 y
$$

and sketch the region of integration.
11. [10 points] Compute the line integral

$$
\int_{C}\left(2+x^{2} y\right) d s
$$

where C is the lower half of the unit circle $x^{2}+y^{2}=1$ (going from $(-1,0)$ to $(1,0)$ along the unit circle, below the x-axis).
12. [10 points] Find the work done by the field

$$
\mathbf{F}(x, y)=5 x y^{3} \mathbf{i}+9 x^{2} y^{2} \mathbf{j}
$$

in moving a particle once counterclockwise around the curve C : the boundary of the region enclosed by the x-axis, the line $x=1$ and the curve $y=x^{3}$ in the first quadrant.
13. [10 points] Find the outward flux of the field

$$
\mathbf{F}(x, y, z)=\left(2 x^{3}+9 x y^{2}\right) \mathbf{i}+\left(-y^{3}+\pi e^{y} \sin (z)\right) \mathbf{j}+\left(2 z^{3}+\pi e^{y} \cos (z)\right) \mathbf{k}
$$

through the boundary of the region D :

$$
D: \quad 1 \leq x^{2}+y^{2}+z^{2} \leq 2
$$

14. [10 points] Compute the Gaussian integral:

$$
\int_{0}^{\infty} e^{-\pi x^{2}} d x
$$

- SCRATCH PAPER OR ROOM FOR EXTRA WORK -

You may detach this page for scratch work, or leave it attached if you have run out of space. INDICATE CLEARLY what problem any extra work you want graded is for!

- SCRATCH PAPER OR ROOM FOR EXTRA WORK -

You may detach this page for scratch work, or leave it attached if you have run out of space. INDICATE CLEARLY what problem any extra work you want graded is for!

- SCRATCH PAPER OR ROOM FOR EXTRA WORK -

You may detach this page for scratch work, or leave it attached if you have run out of space. INDICATE CLEARLY what problem any extra work you want graded is for!

- SCRATCH PAPER OR ROOM FOR EXTRA WORK -

You may detach this page for scratch work, or leave it attached if you have run out of space. INDICATE CLEARLY what problem any extra work you want graded is for!

