Math 2552 - Differential Equations

Sections F1 – F4; L1 – L4 Georgia Institute of Technology, Fall 2015

Reduction of Order

Use reduction of order to find a second solution and the general solution to the differential equations below, given one of the solutions (on the right of each equation).

1. $x^2y'' - 7xy' + 16y = 0; y_1 = x^4.$ 2. $xy'' + y' = 0; y_1 = \ln x.$ 3. $(1 - 2x - x^2)y'' + 2(1 + x)y' - 2y = 0; y_1 = x + 1.$ 4. $x^2y'' - xy' + 2y = 0; y_1 = x\sin(\ln x).$ 5. $(3x + 1)y'' - (9x + 6)y' + 9y = 0; y_1 = e^{3x}.$ 6. $x^2y'' - xy' + y = 0; y_1 = x.$ 7. $(1 - x^2)y'' - 2xy' = 0; y_1 = 1.$ 8. $4x^2y'' + y = 0; y_1 = \sqrt{x}\ln x.$

Reduction of Order

Example : Given that $y=e^{x}$ is a solution to y''-y=0, find the general solution.

• Look for a solution
$$y = ue^{x}$$
 for some unknown function of u .
 $y' = w'e^{x} + ue^{x}$
 $y'' = w'e^{x} + 2w'e^{x} + ue^{x}$
 $= > y'' - y = u''e^{x} + 2u'e^{x} = (u'' + 2u')e^{x}$
 $\Rightarrow y = ue^{x}$ is a solution if and only if $u'' + 2u' = 0$
(because $e^{x} \neq 0$ for all real x).
• Solve $u'' + 2w' = 0$
Substitution: $w = u'$
 $\Rightarrow w' + 2w = 0$
 $dw = -2dx$
 $(Sepanable)$
 $\Rightarrow bu|w| = -2x + c \Rightarrow w = ce^{-2x}$
 $w = u'$
 $u' = ce^{-2x} = > u = \int ce^{-2x} dx$
 $u' = ce^{-2x} = > u = \int ce^{-2x} dx$
 $u' = -\frac{1}{2}ce^{-2x} + c_{1}e^{x}$

$$=>$$
 $y=c_1e^{x}+c_2e^{-x}$

General solution