Math 2552 - Differential Equations Homework 5
GT; Fall 2015; Sections F1 — F4; L1 — L4

Autonomous Equations; Population Models

1. Attractors and Repellers. The figure below illustrates the four possible behaviors of critical points ¢
of an autonomous ODE, in terms of phase portraits.
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The arrows are both pointing away from the critical point ¢, as in Figure (a). This means that any
solution passing close enough to ¢ moves away from ¢ as * — oco. In this case, the critical point c is
said to be asymptotically unstable, or a repeller.

The arrows both point towards the critical point, asin Figure (b), which means that any solutions
passing close enough to ¢ have the asymptotic behavior lim, ., y(z) = ¢. In this case ¢ is said to be
asymptotically stable, or an attractor.
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(3). The situations in Figures (¢) and (d), where one arrow points towards and one away from ¢, are neither
attractors nor repellers. However, such points display properties of both, since they “attract” solutions
on one side, but “repel” solutions on the other side. Then c is said to be semi-stable.
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For each of the autonomous equations below:
e Find the critical points and equilibrium solutions.
e Draw the phase portrait.

e (Classify each critical point as an attractor, repeller, or semi-stable.

a. vy =y* - 3y.

b. ¥ =y*(4—9?).

c. v =yln(y +2).

d. y' =(y-2)~

e. vy =y?—9>
f.y=y2-y)(d-y).
gy = LW
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2. The Logistic Equation: In what follows, consider the logistic equation:

dy 1
1= =
priakl ( % y) y, (%)
where r > 0 is a fixed growth constant and K > 0 is the fixed carrying capacity (the maximum population

the environment can sustain). Recall that we are usually only interested in solving this equation for ¢ > 0,
since ¢ represents time. Solving this subject to an initial condition y(0) = yo yields the solution:

y(t) = K
Yo+ (K —yop)e ™t

Below is a typical graph of this solution, with varying initial conditions.

Logistic Equation; r=0.3

(a). Find the equilibrium solutions of (x), draw its phase portrait, and classify the critical points as attrac-
tors or repellers.

(b). Suppose that 0 < yo < K. Show that the solution y(t) is then increasing on t € (0, 00), with
0<y(t) <K,forallt>D0.

Interpret the meaning of this for the population model.

(c). Suppose that yo > K. Show that the solution y(¢) is then decreasing on t € (0, 00), with
y(t) > K, for all t > 0.

Interpret the meaning of this for the population model.

(d). Suppose y(t) is a solution of (x). Where is the inflection point of the solution? (In terms of y, not ¢.
In other words, if the solution has an inflection point (¢g,y(to)) for some ¢y > 0, find the population y(tg) at
this time - not interested in the value of ¢y.) Note that you can do this directly from (%), you do not need
to work with the explicit solution.

What is the significance of this point for the rate of growth of the population? Interpret the meaning of
this inflection point for the population model.

3. A run-of-the-mill population problem: Suppose a population of bacteria follows the logistic growth
model. Suppose further that the initial population is 3mg of bacteria, the carrying capacity is 100mg, and
the growth parameter is r = 0.2/hour.

a). At what time does the population reach 20mg?
b). At what time does the population reach 200mg?



