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Abstract

The classical Radon transform can be thought of as a way to obtain the density of
an n-dimensional object from its (n− 1)-dimensional sections in di�erent directions.
A generalization of this transform to in�nite-dimensional spaces has the potential to
allow one to obtain a function de�ned on an in�nite-dimensional space from its con-
ditional expectations. We work within a standard framework in in�nite-dimensional
analysis, that of abstract Wiener spaces, developed by L. Gross. An abstract Wiener
space is a triple (H,B, µ) where H is a real separable Hilbert space, B is the Banach
space obtained by completing H with respect to a measurable norm, and µ is Wiener
measure on B.

The main obstacle in in�nite-dimensional analysis is the absence of a useful ver-
sion of Lebesgue measure. To overcome this, we construct Gaussian measures µMp

on B, concentrated on closed a�ne subspaces p + M0 of B, where M0 is any closed
subspace of H, and then de�ne the Gaussian Radon transform Gf of a bounded
Borel function f on B using these measures. We investigate the relationship between
the closed subspaces of �nite codimension in B and those in H, and also investigate
properties of the Gaussian Radon transform. Among these, we prove a disintegration
theorem and express Gf as a conditional expectation. We provide an inversion pro-
cedure for the Gaussian Radon transform which uses the Segal-Bargmann transform.
Finally, we present some possible applications of the Gaussian Radon transform to
machine learning, by showing that Gf provides a stochastic interpretation of the ridge
regression problem.
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Chapter 1

Introduction

The classical Radon transform, �rst developed by Johann Radon in 1917, is de�ned
for a function f : Rn → R as:

Rf(P ) =

∫
P

f dlP , (1.1)

for all hyperplanes P in Rn, where for every P integration is with respect to Lebesgue
measure lP on P . One may think of the hyperplane P as a �ray� shooting through
the support of f , as pictured in Figure 1.1, and integrating f over P may be viewed
as measuring the changes in the �density� of f as the ray passes through it. In
this sense, Rf provides a way to reconstruct the density of an n-dimensional object
from its known (n− 1)-dimensional cross sections. It is through this line of thinking
that the Radon transform became the mathematical backbone of medical CT scans,
tomography and other image reconstruction applications.

P 

f(x, y) 

Figure 1.1: The classical Radon transform.

The goal of this work is to develop an in�nite-dimensional version of the Radon
transform. The main problem in in�nite-dimensional analysis is the absence of a
useful version of Lebesgue measure. However, Gaussian measures are known to be
well-behaved in in�nite-dimensional settings; with this in mind, we will be taking a
probabilistic approach to this problem. Therefore the previously mentioned property
of the classical Radon transform, that of recovering n-dimensional objects from their
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(n − 1)-dimensional sections, will become in our setting the ability to recover infor-
mation about a function de�ned on an in�nite-dimensional space from its conditional
expectations.

Of the two standard frameworks in in�nite-dimensional analysis, nuclear spaces
and abstract Wiener spaces, we work within the latter. Abstract Wiener spaces
were �rst developed by Leonard Gross in the celebrated work [13]. We continue the
present chapter with some background material. In Section 1.1 we present the basic
de�nitions and some results about Gaussian measures, as well as some of the reasons
behind the popularity of Gaussian measures in in�nite-dimensional analysis. Section
1.2 introduces the concept of measurable norm, necessary to then de�ne abstract
Wiener spaces, and also presents some of the basic properties of abstract Wiener
spaces.

Before we proceed, we present a short outline of this work. Our �rst goal in
developing a Radon transform for an in�nite-dimensional Banach space B was to
construct an appropriate measure on every hyperplane of B, which would correspond
to the measures lP in (1.1). In Chapter 2 we more generally construct probability
measures µMp on an in�nite-dimensional Banach space B which are concentrated on
closed a�ne subspaces. In this chapter we also explore the relationship between the
closed subspace of �nite codimension in B and those in an underlying dense Hilbert
space H. Once the measures µMp have been constructed, we use them to de�ne the
Gaussian Radon transform. Chapter 3 then explores the properties of the Gaussian
Radon transform, including a disintegration formula, an expression of the Gaussian
Radon transform as a conditional expectation, and an inversion procedure. Finally,
Chapter 4 will explore some possible applications of the Gaussian Radon transform
to the �eld of machine learning.

1.1 Gaussian Measures

Lebesgue measure l on Rn is uniquely determined (up to a constant) by the following
three conditions:

i. l assigns �nite values to bounded Borel sets.

ii. l assigns positive numbers to non-empty open sets.

iii. l is translation-invariant.

For this reason, we say that a Borel measure µ on a real Hilbert spaceH is a �Lebesgue
measure� on H if it satis�es the three conditions above. By �the� Lebesgue measure,
one would mean a particular choice of Lebesgue measure that has been speci�ed (for
instance by requiring that a given set, such as the unit cube, have measure 1).

Suppose V is a real �nite-dimensional Hilbert space. Lebesgue measure lV on V
is given by:

lV (E) := l
[
π−1
V (E)

]
for all E ∈ B(V ), (1.2)
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where for any topological vector space X, B(X) denotes the Borel σ-algebra of X,
and:

πV : Rn → V (1.3)

is the Hilbert space isomorphism given by:

πV (x) := x1e1 + x2e2 + . . .+ xnen,

for all x = (x1, x2, . . . , xn) ∈ Rn, where {e1, e2, . . . , en} is an orthonormal basis for V .
The measure lV is independent of the choice of orthonormal basis.

Unfortunately, this does not work in in�nite dimensions: suppose H is a real
separable in�nite-dimensional Hilbert space and that µ is a Lebesgue measure on H.
Let {en}n∈N be an orthonormal basis for H and for every integer n ≥ 1 let Bn denote
the open ball of radius 1/2 centered at en. Since each Bn is a translate of the open
ball of radius 1/2 centered at 0, a non-empty open, bounded set, we have:

µ(Bn) = a for all n ∈ N,

where 0 < a <∞. Moreover, the sets Bn are mutually disjoint and are all contained
in B, the open ball of radius 2 centered at the origin. But then:

µ(B) ≥
∞∑
n=1

µ(Bn) =
∞∑
n=1

a =∞,

which contradicts the fact that µ assigns �nite values to bounded sets.
The absence of a useful version of Lebesgue measure on in�nite-dimensional spaces

is one of the major obstacles of in�nite-dimensional analysis. However, it was observed
that Gaussian measures behave relatively well in this setting, and they have become
key tools in in�nite-dimensional analysis. We begin our review of Gaussian measures
with the simple Euclidean case: for n ∈ N, m ∈ Rn and σ > 0, the Gaussian measure
on Rn with mean m and variance σ2 is the Borel probability measure γm,σ given by:

γm,σ(E) =
1(

σ
√

2π
)n ∫

E

e−
1

2σ2 ‖x−m‖2 dx, (1.4)

for all E ∈ B (Rn), where ‖ · ‖ denotes the usual Euclidean norm on Rn. A Gaussian
measure with mean 0 is said to be centered and the Gaussian measure γ0,1 with mean
0 and variance 1 is known as the standard Gaussian measure on Rn. Recall that for
m ∈ Rn, Dirac measure δm on Rn is the probability measure concentrated at the
point m:

δm(E) =

{
1 , if m ∈ E
0 , if m /∈ E,

for all Borel subsets E ⊂ Rn. In fact, δm is the weak limit as σ → 0 of the probability
measures γm,σ. For this reason, δm is considered a degenerate Gaussian measure,
with mean m and variance 0. Gaussian measures with positive variance are said to
be non-degenerate.
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Now suppose (Ω,F ,P) is a probability space. A measurable function X : Ω→ R
is said to be a Gaussian (or normal) random variable provided that the distribution
measure P ◦ X−1 of X is a Gaussian measure on R. Speci�cally, we say that X is
Gaussian with mean m and variance σ2, denoted:

X ∼ N (m,σ2),

if the density function ρX : R→ R is given by:

ρX(x) =
1

σ
√

2π
e−

1
2σ2 (x−m)2

, for all x ∈ R.

An important property of Gaussian random variables X is that:

E
[
etX
]

= etE[X]+ t2

2
Var(X), for all t ∈ C. (1.5)

In particular, the characteristic function of a Gaussian random variable X is given
by:

ΦX(t) = E
[
eitX

]
= eitE[x]− t

2

2
Var(X), for all t ∈ C. (1.6)

Conversely, if X : Ω→ R is a random variable with characteristic function ΦX given
by:

ΦX(t) = eitm−
t2σ2

2 , for all t ∈ R,
for some m ∈ R and σ ≥ 0, then X is Gaussian with mean m and variance σ2.

More generally, Gaussian measures may be de�ned on topological vector spaces.

De�nition 1.1. Let X be a real locally convex topological vector space. A Borel
probability measure µ on X is said to be a Gaussian measure provided that every con-
tinuous linear functional f ∈ X∗, viewed as a random variable on (X,µ), is Gaussian.
In this case, the mean of µ is the linear function mµ : X∗ → R given by:

mµ(f)
def
=

∫
X

f dµ, for all f ∈ X∗, (1.7)

and the covariance operator Rµ : X∗ ×X∗ → R is given by:

Rµ(f, g)
def
=

∫
X

[f −mµ(f)] [g −mµ(g)] dµ, for all f, g ∈ X∗. (1.8)

Moreover, µ is said to be centered if mµ(f) = 0 for all f ∈ X∗, and said to be
non-degenerate if µ ◦ f−1 is a non-degenerate measure on Rn for all non-zero f ∈ X∗.

We make a few remarks about this de�nition.

i. It is easily seen that Rµ is a positive de�nite, symmetric bilinear form. Moreover,
µ is non-degenerate if and only if Rµ is strictly positive de�nite, that is if:

Rµ(f, f) = Var(f) > 0, for all non-zero f ∈ X∗.

If µ is centered and non-degenerate, then Rµ(f, g) is simply the inner product of
f and g in L2(X,µ).

4



ii. Since every f ∈ X∗ is Gaussian with mean mµ(f) and variance Rµ(f, f), we see
from (1.6) that the characteristic functional of a Gaussian measure µ on X is:

µ̂(f)
def
=

∫
X

eif dµ = eimµ(f)− 1
2
Rµ(f,f), for all f ∈ X∗. (1.9)

Conversely, if µ is a probability measure on X with characteristic functional:

µ̂(f) = eiL(f)− 1
2
K(f,f), for all f ∈ X∗ (1.10)

where L : X∗ → R is linear and K : X∗×X∗ → R is a positive de�nite symmet-
ric bilinear form, then µ is the Gaussian measure with mean L and covariance
operator K.

Now suppose V is a real �nite-dimensional Hilbert space and {e1, . . . , en} is an
orthonormal basis for V . Moreover, let Z1, . . . , Zn be independent standard Gaussian
random variables on a probability space (Ω,F ,P) and consider the V -valued random
variable on Ω:

Z := Z1e1 + . . .+ Znen.

The Borel distribution measure γV induced by Z on V :

γV (E) := P[Z ∈ E] = P
[
(Z1, . . . , Zn) ∈ π−1

V (E)
]
, (1.11)

for all Borel subsets E of V , is called standard Gaussian measure on V , where πV :
Rn → V is the isomorphism in (1.3). Remark that, regardless of the choice of Ω, Zk
or ek, the random vector (Z1, . . . , Zn) induces standard Gaussian measure γn on Rn,
so for any Borel subset E of V :

γV (E) = γn(π−1
V (E))

=

∫
π−1
V (E)

1√
2π

n e
− 1

2
‖x‖2Rn dx

=

∫
E

1√
2π

n e
− 1

2
‖v‖2V dlV (v), (1.12)

where lV is Lebesgue measure on V . The characteristic functional of γV is then:∫
V

ei〈·,h〉 dγV = e−
1
2
‖h‖2 , (1.13)

for all h ∈ V .
We can already see that the expression in (1.12) makes little sense in in�nite

dimensions: (
√

2π)−n → 0 as n → ∞ and there is no Lebesgue measure on in�nite-
dimensional spaces. Nonetheless, let us try to repeat the process above for a real
separable in�nite-dimensional Hilbert space H: let {ek}k∈N be an orthonormal basis
for H and {Zk}k∈N be an independent sequence of standard Gaussian random vari-
ables on a probability space (Ω,F ,P). Next, we would like to de�ne an H-valued
random variable Z on Ω as:

Z =
∞∑
k=1

Zkek. (1.14)
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A problem immediately arises: this series does not converge almost surely. For any
ω ∈ Ω:

Z(ω) =
∞∑
k=1

Zk(ω)ek

belongs to H if and only if:
∞∑
k=1

Zk(ω)2 <∞. (1.15)

Clearly (1.15) cannot hold almost everywhere, since the random variables Zk are
independent standard Gaussian.

The central idea behind abstract Wiener spaces is that of �measurable norm�,
introduced by Gross in [13]. The inspiration behind the de�nition of a measurable
norm came from attempting to �force� the series in (1.14) to converge; we know this
series does not converge with respect to the original Hilbert norm ‖ · ‖, so instead we
consider a weaker norm | · | on H, complete H with respect to this norm to obtain a
Banach space B, and see if (1.14) converges almost everywhere as a B-valued random
variable. Of course, this new norm | · | must have certain properties in order to lead
to this desired convergence, and we de�ne these next.

1.2 Abstract Wiener Spaces

De�nition 1.2. Let H be a real separable Hilbert space with Hilbert norm ‖ · ‖ and
let J (H) be the collection of all �nite-dimensional subspaces of H. We say that a
norm | · | on H is measurable if for every ε > 0 there is Fε ∈ J (H) such that:

γF [x ∈ F : |x| > ε] < ε, (1.16)

for all F ∈ J (H) with F ⊥ Fε, where γF denotes standard Gaussian measure on
F ∈ J (H).

Remark that, since all norms are equivalent on �nite-dimensional spaces, the set
[x ∈ F : |x| > ε] is Borel in (F, ‖ · ‖), so (1.16) makes sense. In fact, much more is
true - as the next result shows, every measurable norm | · | on H is weaker than the
original Hilbert norm.

Theorem 1.1. Let H be a real separable Hilbert space with Hilbert norm ‖ · ‖ and let
| · | be a measurable norm on H. Then there is c > 0 such that:

|x| ≤ c‖x‖, for all x ∈ H. (1.17)

Moreover, if H is in�nite-dimensional, then the original Hilbert norm ‖ · ‖ on H is
not a measurable norm.

For a proof, see [21]. As a consequence of Theorem 1.1, if | · | is a measurable norm
on a real separable in�nite-dimensional Hilbert space H, then H is not complete with

6



respect to | · |. If it were complete, then (H, | · |) would be a Banach space, and since
| · | is weaker than ‖ · ‖, the identity map:

id : (H, | · |)→ (H, ‖ · ‖),

would be continuous. By the open mapping theorem, id would then be an open map,
and then | · | and ‖ · ‖ would be equivalent. But then ‖ · ‖ would be a measurable
norm, which is a contradiction.

Let B be the Banach space obtained by completingH with respect to a measurable
norm | · |. Then every x∗ ∈ B∗ is continuous on H with respect to the Hilbert norm
‖ · ‖. To see this, note that since x∗ is | · |-continuous, there is K > 0 such that:

|(x, x∗)| ≤ K|x|, for all x ∈ B,

where (x, x∗) denotes the usual pairing B −B∗ for all x ∈ B and x∗ ∈ B∗. But from
Theorem 1.1, there is c > 0 such that:

|(x, x∗)| ≤ K|x| ≤ Kc‖x‖, for all x ∈ H.

By the Riesz representation theorem, we associate to every x∗ a unique hx∗ ∈ H given
by:

〈h, hx∗〉 = (h, x∗), for all h ∈ H. (1.18)

Moreover, the map B∗ → H; x∗ 7→ hx∗ is linear and continuous. Clearly:

hx∗+αy∗ = hx∗ + αhy∗ ,

for all x∗, y∗ ∈ B∗ and α ∈ R, and for every x∗ ∈ B∗:

‖hx∗‖ = sup
h∈H
h6=0

|〈h, hx∗〉|
‖h‖

≤ sup
h∈H
h6=0

|〈h, hx∗〉|
1
c
|h|

≤ sup
x∈B
x 6=0

c|(x, x∗)|
|x|

= c|x∗|∗,

where |·|∗ is the usual norm on B∗ and c is a positive real number such that |h| ≤ c‖h‖
for all h ∈ H.

We let HB∗ denote the image of this map in H:

HB∗ := {hx∗ ∈ H : x∗ ∈ B∗} . (1.19)

Then HB∗ is clearly a subspace of H. Now suppose that h ∈ H⊥B∗ . Then 〈h, hx∗〉 = 0
for all x∗ ∈ B∗, or (h, x∗) = 0 for all x∗ ∈ B∗. But the only element of B that is
mapped to 0 by all continuous linear functionals on B is 0, so H⊥B∗ = {0}. In this
manner, B∗ is continuously embedded as the dense subspace HB∗ of H.

Theorem 1.2. Let H be a real separable Hilbert space and B be the Banach space
obtained by completing H with respect to a measurable norm | · |. Then there is a
unique Borel probability measure µ on B, called Wiener measure, such that:∫

B

ei(x,x
∗) dµ(x) = e−

1
2
‖hx∗‖2 , (1.20)

for all x∗ ∈ B∗.
7



This theorem may be proved from the perspective of cylindrical measures, which
we do not focus on here, or from a more probabilistic point of view, using Lemma 2.3.
One may �nd both of these proofs in [21]. Note however that Theorem 2.4, which
we prove in Chapter 2, will directly imply the result above. We now have all the
ingredients to de�ne abstract Wiener spaces.

De�nition 1.3. An abstract Wiener space is a triple:

(H,B, µ),

where H is a real separable Hilbert space with Hilbert norm ‖ · ‖ =
√
〈·, ·〉, B is the

Banach space obtained by completing H with respect to a measurable norm | · |, and
µ is Wiener measure on B.

Let (H,B, µ) be an abstract Wiener space. From (1.20), every x∗ ∈ B∗, as a
random variable on (B, µ), is centered Gaussian with variance ‖hx∗‖2. Then:

‖x∗‖2
L2(B,µ) =

∫
B

|x∗|2 dµ = ‖hx∗‖2.

So the map HB∗ → L2(B, µ); hx∗ 7→ x∗ is continuous with respect to ‖ · ‖, and since
HB∗ is a dense subspace of H, this map has a unique extension to H. We denote this
extension by:

I : H → L2(B, µ);h 7→ Ih. (1.21)

Speci�cally, for h ∈ H we let {hx∗k}k∈N be a sequence in HB∗ that converges to h in
H. Then the sequence {x∗k}k∈N is Cauchy in L2(B, µ), and thus converges to a limit
Ih ∈ L2(B, µ); this limit does not depend on the choice of {hx∗k}.

The map I was �rst introduced by Gross in [13] and is sometimes referred to as
the Paley-Wiener map. As the L2-limit of a sequence of centered Gaussians with
variances ‖hx∗k‖

2 → ‖h‖2, Ih is centered Gaussian with variance ‖h‖2. Moreover, I is
an isometry: let h, h′ ∈ H and {hx∗k}k, {hy∗k}k be sequences in HB∗ converging in H
to h, h′, respectively. Then:

〈Ih, Ih′〉L2(B,µ) =

∫
B

(Ih)(Ih′) dµ

= lim
k→∞

∫
B

x∗ky
∗
k dµ

= lim
k→∞
〈hx∗k , hy∗k〉

= 〈h, h′〉.

Remark 1.1. Many authors simply denote this map by h 7→ (·, h) and think of it as a
sort of extension of the inner-product map from H to B, but some measure-theoretic
technicalities arising in Chapter 3 require us to be careful about the fact that Ih is
really an equivalence class of functions de�ned almost everywhere.
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Example 1.1. LetH be the space of all absolutely continuous functions h : [0, 1]→ R
such that h(0) = 0 and h′ ∈ L2[0, 1]. Then H is a real separable in�nite-dimensional
Hilbert space with the inner product:

〈h1, h2〉 :=

∫ 1

0

h′1(x)h′2(x)dx,

for all h1, h2 ∈ H. The supremum norm:

‖h‖∞ := sup
0≤x≤1

|h(x)|,

for all h ∈ H, is a measurable norm on H, and the completion of H with respect
to ‖ · ‖∞ is the space C of continuous functions f : [0, 1] → R with f(0) = 0. The
resulting triple:

(H, C, µ),

is known as the classical Wiener space, and the resulting measure µ induced by H
on C is known as classical Wiener measure. This space will be explored further in
Section 3.3.

Example 1.2. If T : H → H is an injective Hilbert-Schmidt operator on a real
separable in�nite-dimensional Hilbert space, then:

|h| := ‖Th‖, for all h ∈ H,

de�nes a measurable norm on H.

So far we have presented the original approach by Gross, that of starting with
H and constructing B and µ by completing H with respect to a measurable norm.
However, one can start with any real separable Banach space and turn it into an
abstract Wiener space. Speci�cally, let B be a real separable Banach space with norm
| · |, µ be a centered, non-degenerate Gaussian measure on B, and Rµ : B∗×B∗ → R
be the covariance operator:

Rµ(x∗, y∗) =

∫
B

x∗y∗ dµ, for all x∗, y∗ ∈ B∗.

The Cameron-Martin space of (B, µ) is the subspace H ⊂ B de�ned as:

H :=

{
x ∈ B : ‖x‖ := sup

0 6=x∗∈B∗

|(x, x∗)|√
Rµ(x∗, x∗)

<∞

}
. (1.22)

Then the norm ‖ · ‖ de�ned above is a complete inner-product norm on H, it is
stronger than the Banach norm | · |, and H is dense in B. Moreover, the Banach norm
| · | is a measurable norm on H (for an ingenious proof, due to Stroock, of this fact,
see Section VIII of Bruce Driver's notes [10]). So (H,B, µ) is an abstract Wiener
space, and note that H is uniquely determined by (B, µ). Conversely, if (H,B, µ) is
an abstract Wiener space, then H is the Cameron-Martin space of (B, µ).

9



Chapter 2

The Gaussian Radon Transform

The focus of this chapter will be to de�ne the Gaussian Radon transform. Our �rst
goal will be to construct the appropriate measures on B, which will be probabil-
ity measures concentrated on closed a�ne subspaces of B. Before we proceed, we
introduce the notion of measurably adapted sequence.

2.1 Measurably Adapted Sequences

The next de�nition and Lemma 2.2 following it are instrumental in obtaining the
main result of this chapter.

De�nition 2.1. Let |·| be a measurable norm on a real separable in�nite-dimensional
Hilbert space H. We say that a sequence {Fn}n∈N of closed subspaces of H is mea-
surably adapted provided that it satis�es the following conditions:

(1). The sequence is strictly increasing: F1 ⊂ F2 ⊂ . . . ⊂ H, with Fn 6= Fn+1, and Fn
has �nite codimension in Fn+1 for all n ∈ N:

1 ≤ dim
(
Fn+1 ∩ F⊥n

)
<∞, for all n ∈ N. (2.1)

(2). The union
⋃∞
n=1 Fn is dense in H.

(3). For every n ∈ N:

γQn

[
x ∈ Qn : |x| > 1

2n

]
<

1

2n
, (2.2)

where γQn denotes standard Gaussian measure on Qn = Fn+1 ∩ F⊥n .

Before we proceed, we make a few simple but useful observations about increasing
sequences of closed subspaces of a real separable Hilbert space.

Proposition 2.1. Let H be a real separable Hilbert space.

(i). If K and L are closed subspaces of H:

(L+K⊥) ∩K = PK(L), (2.3)

where PK denotes the orthogonal projection of H onto K.

(ii). If F1 ⊂ F2 ⊂ . . . ⊂ H is an increasing sequence of closed subspaces of H:

Fm+1 = Fn ⊕ (Fn+1 ∩ F⊥n )⊕ . . .⊕ (Fm+1 ∩ F⊥m), (2.4)

for all integers m ≥ n > 0. If, in addition,
⋃∞
n=1 Fn is dense in H, then:

F⊥n = ⊕∞j=n(Fj+1 ∩ F⊥j ), (2.5)

for all n ∈ N.
10



Proof. (i). Let k = l + k′ ∈ (L + K⊥) ∩ K, where l ∈ L and k′ ∈ K⊥. Then since
k ∈ K:

k = PKk = PK(l + k′) = PK l ∈ PK(L),

so (L+K⊥) ∩K ⊂ PK(L). Conversely, suppose l ∈ L. Then:

PK l = PK l + PK⊥l − PK⊥l = l − PK⊥l ∈ (L+K⊥) ∩K,

which proves (2.3).
(ii). Let n ≤ m be positive integers. Since Fm ⊂ Fm+1, we may express Fm+1 as:

Fm+1 = Fm ⊕ (Fm+1 ∩ F⊥m).

Similarly, we may express Fm as Fm = Fm−1 ⊕ (Fm ∩ F⊥m−1), so:

Fm+1 = Fm−1 ⊕ (Fm ∩ F⊥m−1)⊕ (Fm+1 ∩ F⊥m).

Continuing in this manner, (2.4) follows inductively.
Now suppose that

⋃∞
m=1 Fm is dense in H. Since the sequence {Fm}m∈N is in-

creasing, for n ∈ N:
F⊥n ⊃ ⊕∞j=n(Fj+1 ∩ F⊥j ).

Let h ∈ F⊥n be such that h ⊥ (Fj+1 ∩ F⊥j ) for all j ≥ n. By (2.4), h ⊥ Fm+1 for all
m ≥ n, so then h ⊥ Fm for all m ∈ N. But since

⋃∞
m=1 Fm is dense in H, it follows

that h = 0, and then (2.5) holds.

The following result proves the existence of a measurably adapted sequence �start-
ing� at the orthogonal complement of a given closed subspace of H.

Lemma 2.2. Let | · | be a measurable norm on a real separable in�nite-dimensional
Hilbert space H and M0 ⊂ H be an in�nite-dimensional closed subspace. Then there
is a measurably adapted sequence {Fn}n∈N of closed subspaces of H such that:

F1 ) F0 := M⊥
0 , (2.6)

and:
dim(F1 ∩M0) <∞. (2.7)

Moreover, the linear span of the subspaces Fn ∩ F⊥n−1 for n ∈ N is dense in M0.

Proof. SinceM0 is a closed subspace of a separable Hilbert space, it is also separable.
So letD = {dn}n∈N be a countable dense subset ofM0, with dn 6= 0 and dn 6= dm for all
n,m ∈ N. Since |· | is a measurable norm, there is for every n ∈ N a �nite-dimensional
subspace En of H such that:

γE

[
x ∈ E : |x| > 1

2n

]
<

1

2n
, (2.8)

for every E ∈ J (H) with E ⊥ En, where J (H) denotes the collection of all �nite-
dimensional subspaces of H and γE denotes standard Gaussian measure on E.

11



Let:
F1 := M⊥

0 + E1 + Rd1, (2.9)

where Rh denotes the span {αh : α ∈ R} of the vector h for all h ∈ H. Note that
F1 ⊃M⊥

0 and the inclusion is strict because d1 /∈M⊥
0 . Also, by (2.3):

F1 ∩M0 = PM0(E1 + Rd1),

so F1 ∩M0 is the image of a �nite-dimensional subspace under a continuous map and
thus dim(F1 ∩M0) <∞.

Now F1 is a closed subspace, as the sum of two closed subspaces, one of which is
�nite-dimensional. SoM0\F1 = M0∩FC

1 is an open subset ofM0 and it is non-empty:
ifM0 \F1 = ∅, thenM0∩F1 = M0, a contradiction becauseM0 is in�nite-dimensional
and F1 ∩M0 is not. Thus M0 \ F1 is a non-empty open subset of M0 which does not
contain d1, so there is n1 > 1 such that:

dn1 ∈M0 \ F1.

Consider now:
F2 := F1 + E2 + Rd2 + . . .+ Rdn1 . (2.10)

As before, the inclusion F2 ⊃ F1 is strict, since dn1 /∈ F1, and F2 ∩F⊥1 is a non-empty
�nite-dimensional subspace that is orthogonal to F1, and thus also to E1. By (2.8):

γQ1

[
x ∈ Q1 : |x| > 1

2

]
<

1

2
,

where Q1 = F2 ∩ F⊥1 . By the same reasoning as above, M0 \ F2 is a non-empty open
subset of M0 that does not contain d1, d2, . . . , dn1 , so there is n2 > n1 such that:

dn2 ∈M0 \ F2.

Then let:
F3 := F2 + E3 + Rdn1+1 + . . .+ Rdn2 . (2.11)

As above, it follows that:

γQ2

[
x ∈ Q2 : |x| > 1

22

]
<

1

22
,

where Q2 = F3 ∩ F⊥2 .
Continuing this process inductively, we obtain a sequence F1 ⊂ F2 ⊂ . . . ⊂ H that

satis�es (2.6) and (2.7) such that 1 ≤dim(Fn+1 ∩ F⊥n ) <∞ and:

γQn

[
x ∈ Qn : |x| > 1

2n

]
<

1

2n
,

for all n ∈ N, where Qn = Fn+1 ∩ F⊥n . Since F0 = M⊥
0 ⊂ F1 ⊂ . . . ⊂ H, by (2.4):

Fk = M⊥
0 ⊕ (F1 ∩M0)⊕ (F2 ∩ F⊥1 )⊕ . . .⊕ (Fk ∩ F⊥k−1),

12



for all k ∈ N, and since M⊥
0 ⊂ Fk:

Fk = M⊥
0 ⊕ (Fk ∩M0),

for all k ∈ N. Consequently:

Fk ∩M0 = (F1 ∩M0)⊕ (F2 ∩ F⊥1 )⊕ . . .⊕ (Fk ∩ F⊥k−1),

for all k ∈ N, and since (by construction) Fk∩M0 contains {d1, . . . , dnk}, we conclude
that the closed linear span of Fj ∩ F⊥j−1 for j ∈ N is M0. Finally, the closed linear
span of {Fn}n∈N is then H, so {Fn}n∈N is a measurably adapted sequence.

2.2 De�nition of the Gaussian Radon Transform

Our next goal is to construct measures concentrated on closed a�ne subspaces of B,
measures which will lead to the de�nition of the Gaussian Radon transform. We will
need Lemma 2.2 in conjunction with the following result, which is a standard trick
in probability to test the convergence of a series of random variables.

Lemma 2.3. Let B be a real separable Banach space with norm | · | and {Xn}n∈N be
a sequence of B-valued random variables:

Xn : Ω→ B,

on a probability space (Ω,F ,P). Suppose that:

∞∑
n=1

P
[
|Xn| >

1

2n

]
<∞. (2.12)

Then
∑∞

n=1Xn is almost surely absolutely convergent.

Proof. By the �rst Borel-Cantelli Lemma, (2.12) yields:

P
(

lim sup
n→∞

[
|Xn| >

1

2n

])
= 0. (2.13)

Now suppose ω ∈ Ω′, where:

Ω′ :=

(
lim sup
n→∞

[
|Xn| >

1

2n

])C

.

Then there is N ∈ N such that:

|Xn(ω)| ≤ 1

2n
, for all n ≥ N.

13



Then:

∞∑
n=1

|Xn(ω)| =
N−1∑
n=1

|Xn(ω)|+
∞∑
n=N

|Xn(ω)|

≤
N−1∑
n=1

|Xn(ω)|+
∞∑
n=N

1

2n

< ∞.

So
∑∞

n=1Xn(ω) is absolutely convergent for all ω ∈ Ω′, and P(Ω′) = 1 by (2.13),
which proves our claim.

Finally, we may construct the measures needed for the Gaussian Radon transform.

Theorem 2.4. Let (H,B, µ) be an abstract Wiener space andM0 be a closed subspace
of H. For every p ∈M⊥

0 there exists a unique Borel measure µMp on B such that:∫
B

eix
∗
dµMp = ei(p,x

∗)− 1
2
‖PM0

hx∗‖2 , (2.14)

for all x∗ ∈ B∗, where PM0 denotes the orthogonal projection of H ontoM0. Moreover,
the measure µMp is concentrated on the closure Mp of Mp = p+M0 in B:

µMp(Mp) = 1. (2.15)

Proof. Suppose �rst that dim(M0) = ∞. By Lemma 2.2, there is a measurably
adapted sequence {Fn}n∈N of closed subspaces ofH with F1 ) F0 := M⊥

0 and dim(F1∩
M0) <∞ such that the linear span of Fn ∩ F⊥n−1 for n ∈ N is dense in M0.

Let {e1, . . . , ek1} be an orthonormal basis for F1∩M0, which we extend inductively
to an orthonormal sequence {ek}k∈N with {ekn−1+1, . . . , ekn} forming an orthonormal
basis for Fn ∩ F⊥n−1 for all n ∈ N and k0 := 0 < k1 < k2 < . . .. Then {e1, . . . , ekn} is
an orthonormal basis for the subspace:

(F1 ∩M0)⊕ (F2 ∩ F⊥1 )⊕ . . .⊕ (Fn ∩ F⊥n−1) = Fn ∩M0.

Therefore {ek}k∈N is an orthonormal basis for M0.
Now let {Zk}k∈N be an independent sequence of standard Gaussian random vari-

ables on a probability space (Ω,F ,P). Since {ekn−1+1, . . . , ekn} is an orthonormal
basis for Qn−1 := Fn ∩ F⊥n−1, the standard Gaussian measure γQn−1 on Qn−1 is the
distribution measure of the random variable:

Xn−1 := Zkn−1+1ekn−1+1 + . . .+ Zknekn , (2.16)

for all n ∈ N.
By the measurably adapted property in (2.2):

γQn−1

[
x ∈ Qn−1 : |x| > 1

2n−1

]
<

1

2n−1
.
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This becomes:

P
[
|Xn−1| >

1

2n−1

]
<

1

2n−1
.

By Lemma 2.3, the (appropriately grouped) series:

ZM0
:=

∞∑
n=0

Xn (2.17)

= (Z1e1 + . . .+ Zk1ek1) +

+(Zk1+1ek1+1 + . . .+ Zk2ek2) +
...

is P-a.s. absolutely convergent (with respect to the norm | · | on B). Moreover, since
{ek}k∈N is an orthonormal basis for M0, the random variable ZM0 takes values in M0,
the closure of M0 in B.

Now for every x∗ ∈ B∗, by continuity of x∗:

(ZM0 , x
∗) =

∞∑
n=0

(Xn, x
∗) a.s.

=
∞∑
n=1

(
Zkn−1+1ekn−1+1 + . . .+ Zknekn , x

∗)
=

∞∑
n=1

(
Zkn−1+1〈ekn−1+1, hx∗〉+ . . .+ Zkn〈ekn , hx∗〉

)
=

∞∑
k=1

Zk〈ek, hx∗〉.

Then:∫
Ω

ei(ZM0
,x∗) dP =

∫
Ω

ei
∑∞
k=1 Zk〈ek,hx∗ 〉 dP

= lim
N→∞

∫
Ω

ei
∑N
k=1 Zk〈ek,hx∗ 〉 dP (Dominated Convergence Theorem)

= lim
N→∞

∫
Ω

N∏
k=1

eiZk〈ek,hx∗ 〉 dP

= lim
N→∞

N∏
k=1

∫
Ω

eiZk〈ek,hx∗ 〉 dP (by independence of the Zk's)

= lim
N→∞

N∏
k=1

e−
1
2
〈ek,hx∗ 〉2 (because Zk is standard Gaussian)

= e−
1
2

∑∞
k=1 〈ek,hx∗ 〉

2

= e−
1
2
‖PM0

hx∗‖2 (because {ek}k∈N is an o.n.b. for M0).
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So (ZM0 , x
∗) is a centered Gaussian random variable on (Ω,F ,P) with variance

‖PM0hx∗‖2. Let µM0 be the distribution measure ZM0 induces on B:

µM0(E) := P [ZM0 ∈ E] , (2.18)

for all Borel subsets E of B. Then x∗ ∈ B∗, as a random variable on (B, µM0), is
centered Gaussian with variance ‖PM0hx∗‖2:∫

B

eix
∗
dµM0 =

∫
Ω

ei(ZM0
,x∗) dP = e−

1
2
‖PM0

hx∗‖2 .

Moreover, since ZM0(ω) ∈M0 for P-almost all ω ∈ Ω:

1 = P[ZM0 ∈M0] = µM0(M0).

Now let p ∈M⊥
0 and let µMp be the measure speci�ed by:

µMp(E) := µM0(E − p), (2.19)

for all Borel subsets E of B. Equivalently, µMp is the distribution measure of the
random variable ZMp

:= p+ ZM0 :

µMp(E) = P [p+ ZM0 ∈ E] . (2.20)

In this case: ∫
B

f(x) dµMp(x) =

∫
B

f(x+ p) dµM0(x), (2.21)

whenever either side exists (this reduces to (2.19) for f = 1E and the general case for
a Borel function f follows as usual). Then:∫

B

eix
∗
dµMp =

∫
B

ei(x+p,x∗) dµM0(x) = ei(p,x
∗)− 1

2
‖PM0

hx∗‖2 .

Moreover:
µMp(Mp) = P

[
p+ ZM0 ∈ p+M0

]
= µM0(M0) = 1.

Finally, if M0 is �nite-dimensional, we can simply take:

ZM0
:= Z1e1 + . . .+ Znen,

where {e1, . . . en} is an orthonormal basis forM0 and Z1, . . . , Zn are independent stan-
dard Gaussians on (Ω,F ,P). We then de�ne µM0 and µMp the same as in (2.18) and
(2.19), and (2.14) follows. Note that, in this case, µM0 is simply standard Gaussian
measure on M0.

Uniqueness of the measure µMp follows from uniqueness of characteristic functions
for probability measures.

We are now ready to de�ne the Gaussian Radon transform.
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De�nition 2.2. Let (H,B, µ) be an abstract Wiener space and f be a Borel function
on B. For every closed subspaceM0 of H and p ∈M⊥

0 , the Gaussian Radon transform
Gf of f is de�ned by:

Gf(p+M0) :=

∫
B

f dµMp , (2.22)

where µMp is the measure concentrated on Mp = p+M0 constructed in Theorem 2.4.

Note that for a generic Borel function f , the Gaussian Radon transform Gf does
not necessarily exist, although Gf does exist if f is bounded or non-negative. In our
initial paper [16] we followed the classical Radon transform approach and de�ned Gf
on the set of all hyperplanes in H (because, as will be discussed next in Section 2.3,
there are in a sense �more� hyperplanes in H than in B). However, broader results
can be obtained if one works with general closed a�ne subspaces and the notation in
this more general case becomes less cumbersome if we de�ne Gf as in (2.22).

2.3 Closed A�ne Subspaces

The classical Radon transform is de�ned on the set of all hyperplanes in Rn, which
naturally led us to study hyperplanes in B and their relationship to hyperplanes in
H. Eventually, we obtained the complete relationship between the closed subspaces
of �nite codimension in B and those in H. This result is Theorem 2.6, which relies
on the following lemma.

Lemma 2.5. Let (H,B, µ) be an abstract Wiener space and {u1, . . . , un} ⊂ HB∗ be
an orthonormal set, where uk = hy∗k for some y

∗
k ∈ B∗ for all 1 ≤ k ≤ n. Then:

n⋂
k=1

(y∗k)
−1(pk) = p1u1 + . . .+ pnyn + V ⊥, (2.23)

where V =span{u1, . . . , un} ⊂ HB∗, p1, . . . , pn ∈ R, and V ⊥ is the closure of V ⊥ in
B.

Proof. Let:

L1 :=
n⋂
k=1

(y∗k)
−1(pk) and L′1 := p1u1 + . . .+ pnun + V ⊥ ⊂ H.

Then for every v ∈ V ⊥ and 1 ≤ k ≤ n:

(p1u1 + . . .+ pnun + v, y∗k) = 〈p1u1 + . . .+ pnun + v, uk〉 = pk,

so L′1 ⊂ L1. Since L1 is a closed subspace of B:

L1 ⊃ L′1 = p1u1 + . . .+ pnun + V ⊥.
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Now �x an element x ∈ L1 and consider:

x′ := x− p1u1 − . . .− pnun.

Since (x, y∗k) = pk, we have (x′, y∗k) = 0 for all 1 ≤ k ≤ n, so:

x′ ∈
n⋂
k=1

Ker(y∗k).

We show that there is a | · |-Cauchy sequence {h′j}j∈N ⊂ V ⊥ such that:

h′j
j→∞−−−→ x′ in B. (2.24)

In turn, this will give us that the sequence {hj}j∈N ⊂ L′1 given by:

hj := h′j + p1u1 + . . .+ pnun,

converges to x in B. Since this holds for all x ∈ L1, we will have L1 ⊂ L′1.
To prove the claim in (2.24), note that since H is dense in B there is a sequence

{gj}j∈N ⊂ H such that gj → x′ in B. By | · |-continuity of y∗k, (gj, y
∗
k)

j→∞−−−→ (x′, y∗k)
for all k, so:

lim
j→∞
〈gj, uk〉 = 0, for all 1 ≤ k ≤ n. (2.25)

For every 1 ≤ k ≤ n, consider the sequence {g(k)
j }j∈N given by:

g
(k)
j := gj − 〈gj, uk〉uk, for all j ∈ N.

By (2.25):
lim
j→∞

g
(k)
j = x′ in B, for all 1 ≤ k ≤ n. (2.26)

For every k:

〈g(k)
j , uk〉 = 〈gj, uk〉 − 〈gj, uk〉〈ukuk〉 = 0, for all j ∈ N,

so:
{g(k)

j }j∈N ⊂ u⊥k , for all 1 ≤ k ≤ n. (2.27)

Finally, consider the sequence:

h′j :=
1

n

 n∑
k=1

g
(k)
j −

n∑
k=1

∑
1≤i≤n
i 6=k

〈g(i)
j , uk〉uk

 .

By (2.26) and | · |-continuity of each y∗k:

lim
j→∞

h′j =
1

n
(nx′) = x′ in B.
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Moreover, {h′j}j∈N ⊂ V ⊥ as desired; for every 1 ≤ m ≤ n:

〈h′j, um〉 =
1

n

 n∑
k=1

〈g(k)
j , um〉 −

n∑
k=1

∑
1≤i≤n
i 6=k

〈g(i)
j , uk〉〈uk, um〉


=

1

n

 n∑
k=1

〈g(k)
j , um〉 −

∑
1≤i≤n
i 6=m

〈g(i)
j , um〉


=

1

n
〈g(m)
j , um〉

= 0,

where the last equality follows from (2.27).

Theorem 2.6. Let (H,B, µ) be an abstract Wiener space. Then:

(i). If L is a closed subspace of �nite codimension n in B then there is a unique
closed subspace M of codimension n in H such that L = M , where we are
taking closures in B. Speci�cally, M = L ∩H.

(ii). Let M be a closed subspace of �nite codimension in H. Then the closure M of
M in B is a closed subspace of codimension k in B, where:

0 ≤ k := dim(M⊥ ∩HB∗) ≤ n. (2.28)

In particular, if M⊥ ∩HB∗ = {0}, then M is dense in B.

Proof. (i). Let L be a closed subspace of codimension n in B. Then there is a linearly
independent set {x∗1, . . . , x∗n} of non-zero elements in B∗, such that:

L =
n⋂
k=1

Ker(x∗k).

Consider a translate L1 of L:

L1 =
n⋂
k=1

(x∗k)
−1(tk),

for some t1, . . . , tn ∈ R. Applying the Gram-Schmidt orthonormalization process, we
obtain an orthonormal basis {u1, . . . , un} of V :=span{hx∗1 , . . . , hx∗n} ⊂ HB∗ , where
uk = hy∗k for some y∗k ∈ B∗ for all 1 ≤ k ≤ n. Then:

L1 =
n⋂
k=1

{x ∈ B : (x, x∗k) = tk}

=
n⋂
k=1

{x ∈ B :
n∑
i=1

αk,i(x, y
∗
k) = tk}, where αk,i = 〈hx∗k , ui〉 for all k, i,

= {x ∈ B : A[(x, y∗1) . . . (x, y∗n)]T = [t1 . . . tn]T},
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where A is the n× n matrix given by Ak,i = αk,i for all k, i. Let p = (p1, . . . , pn)T be
the unique element of Rn such that Ap = t. Then:

L1 =
n⋂
k=1

(y∗k)
−1(pk)

= p1u1 + . . .+ pnun + V ⊥,

where the last equality follows from (2.5).
If we let t1 = . . . = tn = 0, we see that:

L = M =
n⋂
k=1

Ker(y∗k),

where M = V ⊥ is a closed subspace of codimension n in H. Moreover, L ∩H = M .
To see that M is unique, suppose N is a subspace of codimension n in H such that
N = L in B. Then N ⊂ L∩H = M , so N⊥ ⊃M⊥ and since both N⊥ and M⊥ have
dimension n, N⊥ = M⊥ and then N = M .

(ii). Let M be a subspace of �nite codimension n in H. Then H = M ⊕M⊥ and
dim(M⊥) = n, so M⊥ ∩HB∗ is a subspace of H with dimension at most n. Suppose
�rst that dim(M⊥ ∩ HB∗) = n. Then M⊥ ⊂ HB∗ , so there is an orthonormal basis
{hy∗1 , . . . , hy∗n} ⊂ HB∗ for M⊥, where y∗1, . . . , y

∗
n ∈ B∗. Then by Lemma 2.5:

M =
n⋂
k=1

(y∗k)
−1(0) =

n⋂
k=1

Ker(y∗k).

So M is a closed subspace of codimension n in B.
Next, suppose 1 ≤ k :=dim(M⊥ ∩HB∗) < n. Then:

M ⊂ N := (M⊥ ∩HB∗)
⊥.

By our discussion above, N is a closed subspace of codimension k ≥ 1 in B, therefore
M ⊂ N are both proper subspaces. Let x ∈ B \M . By the Hahn-Banach theorem,
there is a non-zero x∗ ∈ B∗ such that (x, x∗) 6= 0 and x∗|M = 0. But then:

hx∗ ∈M⊥ ∩HB∗ = N⊥,

so x∗|N = 0. Since (x, x∗) 6= 0, the Hahn-Banach theorem gives us that x ∈ B \ N ,
so M ⊃ N . Then M = N , so M is a closed subspace of codimension k in B.

Finally, suppose M⊥ ∩HB∗ = {0} and assume that M is a proper subspace of B.
By the Hahn-Banach theorem, there is a non-zero x∗ ∈ B∗ such that x∗|M = 0. Then
hx∗ ∈M⊥ ∩HB∗ , but then hx∗ = 0 and x∗ = 0, a contradiction. So M = B.

Remark that in both Lemma 2.5 and Theorem 2.6, the discussion was purely
topological and the measure µ played no role. Therefore, both results are valid in
the more general setting of a real separable Hilbert space H with norm ‖ · ‖ and the
Banach space B obtained by completing H with respect to a weaker norm | · |.
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Every hyperplane in H is of the form:

ξp,u = pu+ u⊥,

where u ∈ H is a unit vector (uniquely determined as the unit vector normal to
ξp,u) and p ≥ 0 is a non-negative real number (uniquely determined as the distance
from ξp,u to the origin). The result in Theorem 2.6, applied to closed subspaces of
codimension 1, shows that every hyperplane in B is the B-closure of a hyperplane in
H, that is every hyperplane in B is of the form:

ξp,u = pu+ u⊥,

where u ∈ HB∗ . However, this relationship is not one-to-one and, in a sense, there
are �more� hyperplanes in H than in B; speci�cally, if ξp,u is a hyperplane in H, then:

• If u ∈ HB∗ then the closure ξp,u is a hyperplane in B.

• If u /∈ HB∗ then ξp,u is dense in B, that is the closure ξp,u is all of B.

21



Chapter 3

Properties of the Gaussian Radon Transform

Let us �rst explore some of the properties of the measures µMp constructed in Theorem
2.4. The equation in (2.14) shows that every x∗ ∈ B∗ is, with respect to µMp ,
a (possibly degenerate) Gaussian random variable with mean (p, x∗) = 〈p, hx∗〉 and
variance ‖PM0hx∗‖2. The degenerate case occurs when x∗ ∈ B∗ is such that x∗|M0 = 0.
In this case, hx∗ ∈ HB∗∩M⊥

0 and the distribution of x∗ is the Dirac distribution δ(p,x∗):∫
B

eix
∗
dµMp = ei(p,x

∗).

So:

If x∗ ∈ B∗ satis�es x∗|M0 = 0, then (x, x∗) = (p, x∗) for µMp-almost all x ∈ B. (3.1)

Let us now compute the covariance operator of the Gaussian measure µMp ; let
x∗, y∗ ∈ B∗ and apply (2.14) to x∗ + y∗:

E
[
(x∗ + y∗)2

]
= (p, x∗ + y∗)2 + ‖PM0hx∗+y∗‖2

= (p, x∗)2 + (p, y∗)2 + 2(p, x∗)(p, y∗) +

+‖PM0hx∗‖2 + ‖PM0hy∗‖2 + 2〈PM0hx∗ , PM0hy∗〉,

where all expectations are with respect to µMp . In the same time:

E
[
(x∗ + y∗)2

]
= E[(x∗)2] + E[(y∗)2] + 2E[x∗y∗]

= (p, x∗)2 + ‖PM0hx∗‖2 + (p, y∗)2 + ‖PM0hy∗‖2 + 2E[x∗y∗].

Then:
E[x∗y∗] = (p, x∗)(p, y∗) + 〈PM0hx∗ , PM0hy∗〉,

so the covariance of x∗, y∗ with respect to µMp is given by:

CovµMp (x∗, y∗) = 〈PM0hx∗ , PM0hy∗〉. (3.2)

The measures µMp in Theorem 2.4, while concentrated on closed a�ne subspaces
of B, are all Borel probability measures on the same space B, which facilitates compu-
tations involving more than one of these measures. Next, we explore the relationship
between the measures µMp and Wiener measure µ. First of all, note that if we let
M0 = H and p = 0 in Theorem 2.4, we obtain exactly Wiener measure µM0 = µ:∫

B

eix
∗
dµM0 = e−

1
2
‖PHhx∗‖2 = e−

1
2
‖hx∗‖2 ,

for all x∗ ∈ B∗. Moreover, µM0 is concentrated on H = B. The following result shows
that even when M0 $ H we obtain an abstract Wiener space.
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Proposition 3.1. Let (H,B, µ) be an abstract Wiener space and M0 be a closed
subspace of H. Then (M0,M0, µM0) is an abstract Wiener space, where M0 is the
closure of M0 in B and µM0 is the measure constructed in Theorem 2.4, considered
on the Borel σ-algebra of M0.

Proof. First remark that:

M0
∗

= {x∗|M0
: x∗ ∈ B∗}.

For every x∗ ∈ B∗, the restriction x∗|M0
is continuous on M0 with respect to the

Hilbert norm ‖ · ‖ and corresponds to PM0hx∗ in M
∗
0 . To see this, note that:

(h, x∗|M0
) = (h, x∗) = 〈h, hx∗〉 = 〈h, PM0hx∗〉,

for all h ∈ M0. Moreover, the set PM0(HB∗) := {PM0hx∗ : x∗ ∈ B∗} is dense in
(M0, ‖ · ‖): if h ∈M0 is such that h ⊥ PM0(HB∗), then (h, x∗|M0

) = 0 for all x∗ ∈ B∗,
so h = 0.

Now µM0 is a centered, non-degenerate Gaussian measure onM0 and the Cameron-
Martin space H0 of (M0, µM0) is given by:

H0 = {x ∈M0 : x∗|M0
7→ (x, x∗|M0

) is continuous on M0
∗
with respect to q},

where q is the inner product on M0
∗
induced by the covariance operator of µMp :

q(x∗|M0
, y∗|M0

) = 〈PM0hx∗ , PM0hy∗〉.

Clearly M0 ⊂ H0. Now let x ∈ H0. Then x ∈M0 and there is c > 0 such that:

|(x, x∗|M0
)| ≤ c‖PM0hx∗‖, for all x∗ ∈ B∗.

Therefore the linear map:

PM0(HB∗)→ R; PM0hx∗ 7→ (x, x∗|M0
)

is continuous on PM0(HB∗) with respect to ‖ · ‖, so it extends uniquely to M0. Then
there is h ∈M0 such that:

(x, x∗|M0
) = 〈h, PM0hx∗〉, for all x∗ ∈ B∗.

But 〈h, PM0hx∗〉 = (h, x∗|M0
), so:

(x, x∗|M0
) = (h, x∗|M0

), for all x∗ ∈ B∗.

Therefore x = h ∈ M0, so H0 ⊂ M0. This shows that M0 is indeed the Cameron-
Martin space of (M0, µM0).

Note that if M0 is a proper subspace of B then µM0 is a centered degenerate
Gaussian measure on B. However, if M0 = B then (M0, B, µM0) is an abstract
Wiener space. The distinction between these two cases will be relevant for the proof
of our next result, which shows that µM0 and Wiener measure µ are equivalent (in
fact, identical) if and only if M0 = H, and are orthogonal otherwise.
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Theorem 3.2. Let (H,B, µ) be an abstract Wiener space, M0 be a closed proper
subspace of H, and p ∈M⊥

0 . Then the measure µMp is orthogonal to Wiener measure
µ.

Proof. Consider �rst the case when M0 is a proper subspace of B. By the Hahn-
Banach theorem, there is a non-zero x∗ ∈ B∗ such that x∗|M0 = 0. From (3.1), µMp

assigns full measure 1 to the set {x ∈ B : (x, x∗) = (p, x∗)}, which has µ-measure 0,
so µMp ⊥ µ.

Now suppose M0 = B. By Proposition 3.1, (M0, B, µM0) is an abstract Wiener
space. If ν1, ν2 are centered, non-degenerate Gaussian measures on a real separable
Banach space, then ν1 and ν2 are either equivalent or orthogonal; moreover, if ν1 ∼
ν2 then ν1 and ν2 have identical Cameron-Martin spaces (see Theorem 2.7.2 and
Proposition 2.7.3 in [7] for proofs). Since M0 and H are the Cameron-Martin spaces
of (B, µM0) and (B, µ), respectively, andM0 is a proper subspace of H, it follows that
µM0 ⊥ µ.

Finally, if 0 6= p ∈ M⊥
0 then µMp ⊥ µM0 by the Cameron-Martin theorem, so also

µMp ⊥ µ.

Next, we remark that, as in the classical case, the map:

HB∗ → L2(B, µMp); hx∗ 7→ x∗,

is continuous with respect to the Hilbert norm ‖ · ‖ for every p ∈M⊥
0 :

‖x∗‖2
L2(B,µMp ) = 〈p, hx∗〉2 + ‖PM0hx∗‖2

≤ ‖p‖2‖hx∗‖2 + ‖hx∗‖2

= (‖p‖2 + 1)‖hx∗‖2.

For every p ∈M⊥
0 , we denote the extension of this map to H by:

IMp : H → L2(B, µMp); h 7→ IMph. (3.3)

Then every IMph is, with respect to µMp , Gaussian with mean 〈p, h〉 and variance
‖PM0h‖2: ∫

B

eiIMph dµMp = ei〈p,h〉−
1
2
‖PM0

h‖2 . (3.4)

To be more speci�c, for every h ∈ H let {x∗n}n∈N ⊂ B∗ be a sequence such that
hx∗n converges to h in H. Then the sequence {x∗n}n∈N is Cauchy in L2(B, µMp) and
converges to IMph.

However, unlike the classical case, IMph is not an isometry:

〈IMph, IMpk〉L2(B,µMp ) =

∫
B

(IMph)(IMpk) dµMp

= lim
n→∞

∫
B

x∗ny
∗
n dµMp

= lim
n→∞

〈PM0hx∗n , PM0hy∗n〉

= 〈PM0h, PM0k〉,
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where {x∗n}n∈N and {y∗n}n∈N are sequences in B∗ such that hx∗n and hy∗n converge to h
and k in H, respectively.

Proposition 3.3. Let (H,B, µ) be an abstract Wiener space and F1 ⊂ F2 ⊂ . . . be a
measurably adapted sequence of closed subspaces of H. Then:

lim
n→∞

µF⊥n [x ∈ B : |x| > R] = 0, (3.5)

for any R > 0.

Proof. As in the proof of Theorem 2.4, let {ek}k∈N be an orthonormal sequence in
H such that {e1, . . . , ek1} is an orthonormal basis for F2 ∩ F⊥1 and {ekn+1, . . . , ekn+1}
is an orthonormal basis for Fn+2 ∩ F⊥n+1, for all n ≥ 1, where k1 < k2 < . . . is an
increasing sequence of positive integers.

As proved in Theorem 2.4, the measure µF⊥n is the distribution of the B-valued
random variable:

ZF⊥n :=
∞∑

j=n−1

 kj+1∑
l=kj+1

Zlel

 ,

where {Zk}k∈N is an independent sequence of standard Gaussian random variables on
a probability space (Ω,F ,P). For each j, the term:

Sj =

kj+1∑
l=kj+1

Zlel,

takes values in Qj+1 = Fj+2 ∩ F⊥j+1 and its distribution measure is exactly standard
Gaussian measure γQj+1

on this space. By the measurably adapted property in (2.2):

P
[
|Sj| >

1

2j+1

]
<

1

2j+1
, (3.6)

for all j ∈ N.
Let R > 0 and choose N ∈ N large enough such that:

R >
1

2N−1
.

Now if:

ω ∈
∞⋂

j=N−1

[
|Sj| ≤

1

2j+1

]
,

then: ∣∣ZF⊥n (ω)
∣∣ ≤ ∞∑

j=N−1

|Sj| ≤
∞∑

j=N−1

1

2j+1
=

1

2N−1
.

So: [
|ZF⊥n | >

1

2N−1

]
⊆

∞⋃
j=N−1

[
|Sj| >

1

2j+1

]
,
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therefore:

P
[
|ZF⊥n | > R

]
≤ P

[
|ZF⊥n | >

1

2N−1

]
≤

∞∑
j=N−1

P
[
|Sj| >

1

2j+1

]

<
∞∑

j=N−1

1

2j+1
(by (3.6))

=
1

2N−1
.

We showed that for all N ∈ N such that 1
2N−1 < R:

P
[
|ZF⊥n | > R

]
<

1

2N−1

N→∞−−−→ 0,

which translates to (3.5).

Corollary 3.4. Let (H,B, µ) be an abstract Wiener space and f be a bounded Borel
function on B. If F1 ⊂ F2 ⊂ . . . is a measurably adapted sequence of subspaces of H,
then:

f(p) = lim
n→∞

Gf(p+ F⊥n )

= lim
n→∞

∫
B

f dµp+F⊥n , (3.7)

for all p ∈ B such that f is continuous at p.

Proof. Using the translation property in (2.21):∫
B

f dµp+F⊥n − f(p) =

∫
B

(f(x+ p)− f(p)) dµF⊥n (x),

for all n. Let ε > 0. Since f is continuous at p, there is δ > 0 such that |f(x + p)−
f(p)| < ε for all x ∈ B with |x| ≤ δ. Then:∣∣∣∣∫

B

f dµp+F⊥n − f(p)

∣∣∣∣ ≤ ∫
B

|f(x+ p)− f(p)| dµF⊥n (x)

=

∫
[|x|≤δ]

|f(x+ p)− f(p)| dµF⊥n (x) +

+

∫
[|x|>δ]

|f(x+ p)− f(p)| dµF⊥n (x)

< ε+

∫
[|x|>δ]

(|f(x+ p)|+ |f(p)|) dµF⊥n (x)

≤ ε+ 2‖f‖∞µF⊥n [x ∈ B : |x| > δ],
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where ‖f‖∞ := supx∈B |f(x)|. Since this holds for all ε > 0 and, by Proposition 3.3:

lim
n→∞

µF⊥n [x ∈ B : |x| > δ] = 0,

we obtain (3.7).

Next, we look at some inequalities. The following result is the celebrated Fernique
Theorem. For a proof, see III, Theorem 3.1 in [21].

Theorem 3.5. Let (H,B, µ) be an abstract Wiener space. Then there is α > 0 such
that: ∫

B

eα|x|
2

dµ(x) <∞,

where | · | is the norm on B.

As a consequence: ∫
B

|x|t dµ(x) <∞,

for all t > 0. Now suppose M0 is a closed subspace of H. As noted in Proposition
3.1, (M0,M0, µM0) is an abstract Wiener space. By Fernique's Theorem:∫

B

eα|x|
2

dµM0(x) =

∫
M0

eα|x|
2

dµM0(x) <∞,

and consequently: ∫
B

|x|t dµM0(x) <∞,

for all t > 0.
Let B∗1 denote the closed unit ball in B∗:

B∗1 := {x∗ ∈ B∗ : |x∗|∗ ≤ 1},

where | · |∗ is the usual operator norm on B∗. Then:

{x∗}x∗∈B∗1 (3.8)

is a centered Gaussian process on (B, µM0). Moreover, this process is bounded (that
is, all sample paths are bounded): for a �xed x ∈ B,

|(x, x∗)| ≤ |x||x∗|∗ ≤ |x|, for all x∗ ∈ B∗1 .

Recall that for every closed subspace M0 of H we constructed in Theorem 2.4 a
random variable:

ZM0 : Ω→M0 ⊂ B,

on a probability space (Ω,F ,P) with values in the closure M0 of M0 in B, and µM0

is then de�ned by:
µM0(E) := P[ZM0 ∈ E],
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for all Borel subsets E ⊂ B. Then:∫
B

f dµM0 =

∫
Ω

f(ZM0) dP,

whenever either side exists. Therefore:

{x∗(ZM0)}x∗∈B∗1

is a bounded centered Gaussian process on (Ω,F ,P) and:∫
Ω

(x∗(ZM0))2 dP =

∫
B

(x∗)2 dµM0 = ‖PM0hx∗‖2,

for all x∗ ∈ B∗1 . This allows us to compare properties of the Gaussian process in (3.8)
considered on (B, µL0) and (B, µM0) for di�erent closed subspaces L0 and M0 of H
and employ another famous result, the Sudakov-Fernique inequality:

Theorem 3.6. Let {Xt}t∈T and {Yt}t∈T be almost surely bounded centered Gaussian
processes such that:

E[(Xt −Xs)
2] ≤ E[(Yt − Ys)2],

for all s, t ∈ T . Then:

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
.

See [1] for a detailed proof of this result, which we use to obtain the next theorem.

Theorem 3.7. Let (H,B, µ) be an abstract Wiener space and L0 ⊂ M0 be closed
subspaces of H. Then: ∫

B

|x| dµL0(x) ≤
∫
B

|x| dµM0(x). (3.9)

Proof. Recall that:
|x| = sup

x∗∈B∗1
|(x, x∗)|,

for all x ∈ B. So if we consider the Gaussian process (3.8) on (B, µM0) for any closed
subspace M0 of H, then:(

sup
x∗∈B∗1

x∗

)
(x) = sup

x∗∈B∗1
(x, x∗) = sup

x∗∈B∗1
|(x, x∗)| = |x|.

Now consider:
{x∗(ZL0)}x∗∈B∗1 and {x∗(ZM0)}x∗∈B∗1 ,

both bounded, centered Gaussian processes on (Ω,F ,P). For every x∗, y∗ ∈ B∗1 :

E
[
(x∗(ZL0)− y∗(ZL0))2

]
= ‖PL0(hx∗ − hy∗)‖2

≤ ‖PM0(hx∗ − hy∗)‖2 = E
[
(x∗(ZM0)− y∗(ZM0))2

]
.

28



By Sudakov-Fernique:

E

[
sup
x∗∈B∗1

x∗(ZL0)

]
≤ E

[
sup
x∗∈B∗1

x∗(ZM0)

]
,

so: ∫
B

(
sup
x∗∈B∗1

x∗

)
dµL0 ≤

∫
B

(
sup
x∗∈B∗1

x∗

)
dµM0 ,

which is exactly (3.9).

3.1 A Disintegration of Wiener Measure

In this section we focus on the measures µMp in the case when we are dealing with
subspaces of �nite codimension. First, we provide a disintegration of µM0 through the
measures µLp , where L0 is a subspace ofM0 having �nite codimension. As a particular
case, we will have a disintegration of Wiener measure through the measures µQp , where
Q0 is a subspace of �nite codimension in H.

Theorem 3.8. Let (H,B, µ) be an abstract Wiener space and L0 ⊂ M0 be closed
subspaces of H such that L0 has �nite codimension in M0, that is the subspace K0 :=
L⊥0 ∩M0 is �nite-dimensional. For every p ∈ K0, consider the translate Lp = p+ L0

of L0. Then the map:

K0 3 p 7→ Gf(Lp) =

∫
B

f dµLp , (3.10)

is Borel measurable on K0 for all non-negative Borel functions f on B. Moreover:∫
B

f dµM0 =

∫
K0

(∫
B

f dµLp

)
dγK0(p), (3.11)

for all Borel functions for which the left hand side exists, where γK0 denotes standard
Gaussian measure on K0.

In particular, if Q0 is a closed subspace of �nite codimension in H:∫
B

f dµ =

∫
Q⊥0

(∫
B

f dµQp

)
dγQ⊥0 , (3.12)

whenever the left hand side exists, where µ is Wiener measure.

These results are pictured below in Figure 3.1.

Proof. Let f be a non-negative Borel function on B. To prove measurability of the
map in (3.10), consider the map g : (B, µL0)× (K0, γK0)→ R+ given by:

g(x, p) = f(x+ p), for all x ∈ B, p ∈ K0.

By Fubini's theorem, the map:

p 7→
∫
B

g(x, p) dµL0(x) =

∫
B

f(x+ p) dµL0(x) =

∫
B

f dµLp = Gf(Lp),
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(a) Closed subspaces L0 ⊂ M0 ⊂ H where
K0 = L⊥

0 ∩M0 is �nite-dimensional.
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(b) Closed subspace Q0 ⊂ H with �nite codi-
mension.

Figure 3.1: Disintegration theorem

is Borel measurable, where the second equality follows from (2.21).
To prove (3.11), it su�ces to show that the characteristic functional of the Borel

probability measure µ′M0
on B speci�ed by:∫
B

b dµ′M0
=

∫
K0

Gb(Lp) dγK0(p),

for all bounded Borel functions b, coincides with that of µM0 . To see this, note that
for all x∗ ∈ B∗:∫

B

ei(x,x
∗) dµ′M0

(x) =

∫
K0

(∫
B

ei(x,x
∗) dµLp(x)

)
dγK0(p)

=

∫
K0

ei(p,x
∗)− 1

2
‖PL0

hx∗‖2 dγK0(p) (by (2.14))

= e−
1
2
‖PL0

hx∗‖2
∫
K0

ei〈p,PK0
hx∗ 〉 dγK0

= e−
1
2
‖PL0

hx∗‖2e−
1
2
‖PK0

hx∗‖2

= e−
1
2
‖PM0

hx∗‖2 ,

which proves our claim. Finally, (3.12) follows by taking M0 = H and L0 = Q0 in
(3.11).

Next, we explore some of the consequences of this result.

Corollary 3.9. Let (H,B, µ) be an abstract Wiener space and Q0 be a closed subspace
of �nite codimension in H. Then for every measurable f : B → R with

∫
B
|f |r dµ <

∞, where 1 ≤ r <∞, we have:

‖f‖Lr(B,µQp ) <∞ for γQ⊥0 -a.a. p ∈ Q
⊥
0 , (3.13)
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and:
p 7→ Gf(Qp) ∈ Lr

(
Q⊥0 , γQ⊥0

)
. (3.14)

In particular, if f = 0 µ-a.e. for some measurable function f on B, then Gf(Qp) = 0
for γQ⊥0 -a.a p ∈ Q

⊥
0 .

Proof. Using |f |r in place of f in (3.11) we obtain:∫
B

|f |r dµ =

∫
Q⊥0

(∫
B

|f(x)|r dµQp(x)

)
dγQ⊥0 (p).

So:
‖f‖rLr(B,µ) =

∫
Q⊥0

‖f‖rL2(B,µQp ) dγQ⊥0 (p) <∞. (3.15)

Consequently, the map:
p 7→ ‖f‖rLr(B,µQp ),

is γQ⊥0 -a.e. �nite. Moreover:∫
Q⊥0

|Gf(Qp)|r dγQ⊥0 (p) =

∫
Q⊥0

∣∣∣∣∫
B

f dµQp

∣∣∣∣r dγQ⊥0 (p)

≤
∫
Q⊥0

(∫
B

|f |r dµQp
)
dγQ⊥0 (p)

=

∫
B

|f |r dµ <∞,

which proves (3.14). We proved above that:

‖Gf(Qp)‖Lr(Q⊥0 ,γQ⊥0 ) ≤ ‖f‖Lr(B,µ). (3.16)

Now the last statement in the theorem follows readily from (3.16): if f = 0 µ-a.e.
then ‖f‖Lr(B,µ) = 0, so:

‖Gf(Qp)‖Lr(Q⊥0 ,γQ⊥0 ) = 0,

and then Gf(Qp) = 0 for γQ⊥0 -a.a. p ∈ Q
⊥
0 .

Note that this result also implies that if E ⊂ B is a Borel subset with µ(E) = 0,
then µQp(E) = 0 for γQ⊥0 -a.a. p ∈ Q⊥0 . To see this, remark that 1E = 0 µ-a.e. so
G1E(Qp) = µQp(E) = 0 for almost all p.

Corollary 3.10. Let (H,B, µ) be an abstract Wiener space, Q0 be a closed subspace
of �nite codimension in H and h ∈ H. If h̃ is any representative of Ih in L2(B, µ),
then h̃ is a representative of IQph in L2(B, µQp) for γQ⊥0 -a.a. p ∈ Q

⊥
0 . Moreover:

for γQ⊥0 -a.a. p ∈ Q
⊥
0 : h̃(x) = 〈p, h〉 for γQ⊥0 -a.a. x ∈ B, (3.17)

holds whenever h ∈ Q⊥0 .
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Proof. For every p ∈ Q⊥0 , let h̃Qp be a representative of IQph in L2(B, µQp). Let
{hx∗k}k≥1 be a sequence in HB∗ converging to h in H. Then:

lim
k→∞
‖h̃− x∗k‖L2(B,µ) = 0, (3.18)

and:
lim
k→∞
‖h̃Qp − x∗k‖L2(B,µQp ) = 0, (3.19)

for all p ∈ Q⊥0 .
Now note that if h̃ is de�ned µ-a.e. on B, Corollary 3.9 shows that for γQ⊥0 -a.a.

p ∈ Q⊥0 , h̃ is de�ned µQp-a.e. on B and h̃ ∈ L2(B, µQp). From the disintegration
formula: ∫

B

|h̃− x∗k|2 dµ =

∫
Q⊥0

(∫
B

|h̃− x∗k|2 dµQp
)
dγQ⊥0 (p),

so:
‖h̃− x∗k‖2

L2(B,µ) =

∫
Q⊥0

‖h̃− x∗k‖2
L2(B,µQp ) dγQ⊥0 (p) = ‖gk‖2

L2(Q⊥0 ,γQ⊥0
),

where
gk(p) = ‖h̃− x∗k‖L2(B,µQp ) for all p ∈ Q⊥0 ,

is de�ned γQ⊥0 -a.e. From (3.18):

lim
k→∞

gk = 0 in L2(Q⊥0 , γQ⊥0 ). (3.20)

Now since x∗k → h̃Qp in L2(B, µQp), (h̃− x∗k) converges to (h̃− h̃Qp) in L2(B, µQp) for
γQ⊥0 -a.a. p ∈ Q

⊥
0 (namely for all p such that h̃ is de�ned µQp-a.e.). Therefore:

lim
k→∞

gk(p) = ‖h̃− h̃Qp‖L2(B,µQp ) for γQ⊥0 -a.a. p ∈ Q
⊥
0 . (3.21)

From (3.20) and (3.21), since mean-square limits and pointwise-a.e. limits agree, we
have:

‖h̃− h̃Qp‖L2(B,µQp ) = 0 for γQ⊥0 -a.a. p ∈ Q
⊥
0 .

Therefore h̃ is a representative of IQph for γQ⊥0 -a.a. p ∈ Q
⊥
0 .

Finally, recall that any representative of IQph is, with respect to µQp , Gaussian
with mean 〈p, h〉 and variance ‖PQ0h‖2. Therefore, if h ∈ Q⊥0 then ‖PQ0h‖ = 0 and
then any representative of IQph is µQp-a.e. equal to 〈p, h〉. Since h̃ is a representative
of IQph for γQ⊥0 -a.a. p ∈ Q

⊥
0 , (3.17) follows.

Remark 3.1. In light of these calculations, it is very tempting to say something like

�Ih = IQph for almost all p.�
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However, Ih and IQph are elements of L2(B, µ) and L2(B, µQp), respectively, and
these are spaces whose elements are functions de�ned almost everywhere with respect
to di�erent measures - so the statement above makes little sense. For the sake of
accuracy, we remained sensitive to the true quotient-space structure of L2-spaces and
stated the result as in Corollary 3.10.

We can also use the disintegration theorem to give an alternate proof of the
inequality in Theorem 3.7, and in fact strengthen it. Instead of using the Sudakov-
Fernique inequality approach, we will use Anderson's inequality, which we state next
and for which a proof can be found in [7].

Theorem 3.11. Let µ be a centered Gaussian measure on a real separable Banach
space B. Then for every symmetric convex Borel set C ⊂ B and p ∈ B:

µ(C) ≥ µ(C − p).
Now suppose (H,B, µ) is an abstract Wiener space and L0 ⊂ M0 are closed

subspaces of H and L0 has �nite codimension in M0. By taking f = 11E in (3.11) for
some Borel subset E of B:

µM0(E) =

∫
K0

µLp(E) dγK0(p),

where γK0 is standard Gaussian measure on K0 := L⊥0 ∩M0. If C is a symmetric
convex Borel subset of B, Anderson's inequality gives us:

µL0(C) ≥ µL0(C − p) = µLp(C),

for all p ∈ L⊥0 . Then:

µM0(C) ≤
∫
K0

µL0(C) dγK0(p) = µL0(C),

for all symmetric convex Borel subsets C of B. For every real t, the set:

[x ∈ B : |x| ≤ t]

is symmetric, convex and Borel in B, so:

µM0 [x ∈ B : |x| ≤ t] ≤ µL0 [x ∈ B : |x| ≤ t].

Then for all p > 0:

p

∫ ∞
0

tp−1µL0 [x ∈ B : |x| > t] dt ≤ p

∫ ∞
0

tp−1µM0 [x ∈ B : |x| > t] dt,

which is equivalent to: ∫
B

|x|p dµL0(x) ≤
∫
B

|x|p dµM0(x).

We have just proved the following:

Theorem 3.12. Let (H,B, µ) be an abstract Wiener space and L0 ⊂ M0 be closed
subspaces of H such that dim(L⊥0 ∩M0) <∞. Then:∫

B

|x|p dµL0(x) ≤
∫
B

|x|p dµM0(x), (3.22)

for all p > 0.
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3.2 The Gaussian Radon Transform and Conditional

Expectation

In this section we show how the Gaussian Radon transform may be interpreted as a
conditional expectation. We begin with a short review of conditional expectations.

De�nition 3.1. Let (Ω,F ,P) be a probability space, G ⊂ F be a sub�eld and X be
an integrable random variable on (Ω,F ,P). The conditional expectation of X given
G, denoted

E[X|G],

is any random variable Y that is G-measurable and satis�es:∫
A

Y dP =

∫
A

X dP, for all A ∈ G. (3.23)

It can be shown that the conditional expectation E[X|G] exists and is unique, in
the sense that if Y and Y ′ are G-measurable random variables satisfying (3.23) then
Y = Y ′ almost surely. Any such random variable is called a version of E[X|G]. Note
that whenever we write:

�E[X|G] = Y ,�

this is to be understood in the sense of equality a.s.
The expectation E[X] of a random variable X is often used as the �best guess�

of the value of X, given no other information. However, if we do have some other
information, this guess can be replaced by a more useful one - the conditional ex-
pectation. Intuitively, the sub�eld G above represents the information that we have
available (that is, for every event A in G, we know whether or not A occurred) and
then E[X|G] is our �best guess� for the value of X given our knowledge of G.

The most common occurrence of conditional expectations is conditioning on an-
other random variable (or more). Speci�cally, if {Yt}t∈T is a collection of random
variables on (Ω,F ,P) and X is integrable, we de�ne:

E [X|Yt : t ∈ T ] := E [X|σ(Yt : t ∈ T )] , (3.24)

where σ(Yt : t ∈ T ) is the σ-algebra generated by the collection {Yt}t∈T .
Now suppose Y1, Y2, . . . , Yn are random variables on (Ω,F ,P), where n is a positive

integer. In this case, there is a Borel measurable function g : Rn → R such that:

E [X|Y1, . . . , Yn] = g(Y1, . . . , Yn),

almost surely (see [6, Theorem 20.1]). We denote the conditional expectation:

E [X|Y1 = y1, . . . , Yn = yn] = g(y1, . . . , yn),

to illustrate this point.
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There are many interesting and useful properties of conditional expectations, such
as �conditional� versions of the major convergence theorems and inequalities of mea-
sure theory (see [6, Section 34] or [11, Section 4.1]). One such property that will be of
particular interest to us is the geometric interpretation of conditional expectations in
the Hilbert space setting of L2-spaces. Speci�cally, let (Ω,F ,P) be a probability space
and G ⊂ F be a sub�eld. Then L2(Ω,G,P) is a closed subspace of L2(Ω,F ,P), so
for every f ∈ L2(Ω,F ,P) we may consider its orthogonal projection onto L2(Ω,G,P).
This is the point Y in L2(Ω,G,P) that is �closest� to f :

‖f − Y ‖L2(Ω,F ,P) = inf
g∈L2(Ω,G,P)

‖g − f‖L2(Ω,F ,P).

It turns out that this is exactly the conditional expectation:

E[f |G] = PL2(Ω,G,P)f in L2(Ω,F ,P). (3.25)

For a proof of this fact, see [11, Section 4.1, Theorem (1.4)].
Now suppose that X, Y1, . . . , Yn are random variables on (Ω,F ,P) and X is inte-

grable. Then if X ′, Y ′1 , . . . , Y
′
n are any other random variables such that X = X ′ a.s.

and Yk = Y ′k a.s. for 1 ≤ k ≤ n, any version of E[X|Y1, . . . , Yn] is also a version of
E[X ′|Y1 . . . , Y

′
n]. In light of this fact and (3.25), conditioning over elements of L2(Ω) -

which are equivalence classes of functions, not functions - is usually de�ned as follows.

De�nition 3.2. Let (Ω,F ,P) be a probability space and f, f1, . . . , fn ∈ L2(Ω). Let
M(f1, . . . , fn) be the closed subspace of L2(Ω) consisting of all g(f1, . . . , fn) where
g : Rn → R is Borel and E[g2(f1, . . . , fn)] < ∞. The conditional expectation of f
given f1, . . . , fn is de�ned as the element of M(f1, . . . , fn) that is closest to f :

E[f |f1, . . . , fn] = PM(f1,...,fn)f in L2(Ω). (3.26)

In this case, for y1, . . . , yn ∈ R, we write as before:

E[f |f1 = y1, . . . , fn = yn] (3.27)

as a (more intuitive) notation for a function g(y1, . . . , yn) such that g ◦ (f1, . . . , fn) is
a version of E[f |f1, . . . , fn].

We now turn to the relationship between the Gaussian Radon transform and
conditional expectation.

Lemma 3.13. Let (H,B, µ) be an abstract Wiener space, Q0 be a closed subspace of
�nite codimension in H and f ∈ L2(B, µ). For every y1, . . . , yn ∈ R let:

F (y1, . . . , yn) := Gf(y1u1 + . . .+ ynun +Q0),

where {u1, . . . , un} is an orthonormal basis for Q⊥0 . Then F (Iu1, . . . , Iun) is a version
of E[f |Iu1, . . . , Iun]:

E[f |Iu1 = y1, . . . , Iun = yn] = Gf(y1u1 + . . .+ ynun +Q0). (3.28)
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Recall from Corollary 3.9 that if f ∈ L2(B, µ) then the map p 7→ Gf(Qp) belongs
to L2(Q⊥0 , γQ⊥0 ), so the function F above is de�ned almost everywhere on Rn.

Proof. For simplicity of notation, let ũk be a representative of Iuk in L2(B, µ) for
every 1 ≤ k ≤ n. Since uk ∈ Q⊥0 , by (3.17):

For γQ⊥0 -a.a. p ∈ Q
⊥
0 : ũk(x) = 〈p, uk〉 for µQp-a.a. x ∈ B. (3.29)

Let g(ũ1, . . . , ũn), where g : Rn → R, such that E[g2(ũ1, . . . , ũn)] <∞. By (3.11) and
(3.29): ∫

B

g(ũ1, . . . , ũn)f dµ =

∫
Q⊥0

(∫
B

g(ũ1, . . . , ũn)f dµQp

)
dγQ⊥0 (p)

=

∫
Q⊥0

g (〈p, u1〉, . . . , 〈p, un〉)Gf(Qp) dγQ⊥0 (p). (3.30)

Now consider the map:

P̃Q⊥0 : B → Q⊥0 ; P̃Q⊥0 := ũ1u1 + . . .+ ũnun

(de�ned µ-a.e. on B). Since ũ1, . . . , ũn are independent standard Gaussian random
variables on B, he distribution measure of P̃Q⊥0 on Q⊥0 is exactly standard Gaussian
measure γQ⊥0 . Then (3.30) yields:∫

B

g(ũ1, . . . , ũn)f dµ =

∫
B

g
(
〈P̃Q⊥0 , u1〉, . . . , 〈P̃Q⊥0 , un〉

)
Gf
(
P̃Q⊥0 +Q0

)
dµ

=

∫
B

g(ũ1, . . . , ũn)F (ũ1, . . . , ũn) dµ.

Therefore:
〈f − F (ũ1, . . . , ũn), g′〉L2(B,µ) = 0,

for all g′ ∈ L2(B, σ(ũ1, . . . , ũn)). Since this holds for any representatives ũ1, . . . , ũn, by
De�nition 3.2 we have that F (Iu1, . . . , Iun) is indeed a version of E[f |Iu1, . . . , Iun].

Theorem 3.14. Let (H,B, µ) be an abstract Wiener space, f ∈ L2(B, µ) and linearly
independent elements h1, . . . , hn of H. For every y1, . . . , yn ∈ Rn let:

F (y1, . . . , yn) = Gf

(
n⋂
k=1

[〈hk, ·〉 = yk]

)
.

Then F (Ih1, . . . , Ihn) is a version of E[f |Ih1, . . . , Ihn]:

E[f |Ih1 = y1, . . . , Ihn = yn] = Gf

(
n⋂
k=1

[〈hk, ·〉 = yk]

)
. (3.31)
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Proof. Let {u1, . . . , un} be an orthonormal basis for M =span{h1, . . . , hn}. Then:

hk = αk1u1 + αk2u2 + . . .+ αknun, for all 1 ≤ k ≤ n,

where αkj = 〈hk, uj〉 for all 1 ≤ j, k ≤ n. Let:

A =

 α1
1 α1

2 . . . α1
n

...
...

αn1 αn2 . . . αnn

 .
Note that A is invertible, since h1, . . . , hn are linearly independent. Then:

Ihk = αk1(Iu1) + αk2(Iu2) + . . .+ αkn(Iun), for all 1 ≤ k ≤ n,

so for y1, . . . , yn ∈ R:

E[f |Ih1 = y1, . . . , Ihn = yn] = E[f |Iu1 = p1, . . . , Iun = pn] (3.32)
= Gf(p1u1 + . . .+ pnun +M⊥),

where the last equality follows from Lemma 3.13 and p = [p1 . . . pn]T ∈ Rn is given
by p = A−1y, with y = [y1 . . . yn]T . Then:

p1u1 + . . .+ pnun +M⊥ =
n⋂
k=1

[〈hk, ·〉 = yk] ,

and so (3.31) follows readily from (3.33).

3.3 The Gaussian Radon Transform and the Classi-

cal Wiener Space

In this section we compute some concrete examples of the Gaussian Radon transform
on the classical Wiener space. Recall from Example 1.1 that this is the triple:

(H, C, µ),

where H is the space of all absolutely continuous functions h : [0, 1] → R with
h(0) = 0 and h′ ∈ L2[0, 1], C is the space of all continuous functions f : [0, 1] → R
with f(0) = 0, and µ is classical Wiener measure. The space H is a real separable
in�nite-dimensional Hilbert space with norm ‖ · ‖ induced by the inner-product:

〈h1, h2〉 :=

∫ 1

0

h′1(x)h′2(x)dx, for all h1, h2 ∈ H. (3.33)

The measure µ results by completing H with respect to the supremum norm ‖ · ‖∞,
a measurable norm on H, and obtaining C.
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Consider for a moment the space C[a, b] of continuous real-valued functions on
a closed interval [a, b], a Banach space with the supremum norm. The dual space
C∗[a, b] is isomorphic to the space

NBV [a, b]

of normalized functions of bounded variation on [a, b], that is the space of all bounded
variation functions g : [a, b] → R that are right-continuous and satisfy g(a) = 0.
Speci�cally, for every Λ ∈ C∗[a, b] there is a unique g ∈ NBV [a, b] such that Λf is
given by the Lebesgue-Stieltjes integral:

Λf =

∫ b

a

f dg,

for all f ∈ C[a, b]. Moreover, ‖Λ‖ = V b
a (g), where V b

a (g) denotes the total variation of
g. See Chapter 13 of [3] for details.

Since C = δ−1
0 (0), where:

δ0 : C[0, 1]→ R; δ0f := f(0)

is a continuous linear functional on C[0, 1], C is a closed subspace of C[0, 1]. Therefore
the dual space C∗ consists exactly of the restrictions of elements of C∗[0, 1] to C:

C∗ = {Λg : g ∈ NBV [0, 1]}, where (f,Λg) =

∫ 1

0

f dg, for all f ∈ C. (3.34)

We know that to every Λg ∈ C∗ there corresponds a unique element hΛg ∈ H such
that:

(h,Λg) = 〈h, hΛg〉 for all h ∈ H.

Then: ∫ 1

0

hdg =

∫ 1

0

h′(x)h′Λg(x) dx, for all h ∈ H. (3.35)

Recall that if f1, f2 : [a, b] → R are right-continuous functions of bounded variation
that have no common points of discontinuity, then:∫ b

a

f1 df2 +

∫ b

a

f2 df1 = f1(b)f2(b)− f1(a)f2(a).

Since every h ∈ H is continuous on [0, 1]:∫ 1

0

h dg +

∫ 1

0

g dh = h(1)g(1)− h(0)g(0),

and since h(0) = 0: ∫ 1

0

h dg = h(1)g(1)−
∫ 1

0

g dh. (3.36)
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Now recall that if f : [a, b]→ R is absolutely continuous, then:∫ x

a

f ′(t) dt = f(x)− f(a), for all x ∈ [a, b].

Moreover, the Lebesgue-Stieltjes measure µf on [a, b] induced by an absolutely con-
tinuous function f on [a, b] is absolutely continuous with respect to Lebesgue measure
l, and the Radon-Nikodym derivative is given by the derivative of f :

dµf
dl

= f ′.

In other words: ∫ b

a

f1 df =

∫ b

a

f1(x)f ′(x)dx,

whenever the Lebesgue-Stieltjes integral on the left hand side exists.
Therefore (3.35) and (3.36) yield, for all h ∈ H:∫ 1

0

h′(x)h′Λg(x) dx = h(1)g(1)−
∫ 1

0

g dh

= g(1)

∫ 1

0

h′(x) dx−
∫ 1

0

g(x)h′(x) dx

=

∫ 1

0

h′(x) (g(1)− g(x)) dx,

so: ∫ 1

0

h′(x)
(
h′Λg(x)− g(1) + g(x)

)
dx = 0, for all h ∈ H. (3.37)

If we let:
G(x) :=

∫ x

0

g(t) dt,

for all x ∈ [0, 1], then G is absolutely continuous on [0, 1] and:

G′(x) = g(x) a.e.

Then (3.37) becomes:

0 =

∫ 1

0

h′(x)
(
hΛg(x)− g(1)x+G(x)

)′
dx

=
〈
h, hΛg − g(1)id+G

〉
,

for all h ∈ H, where id denotes the identity function. Then necessarily:

hΛg = g(1)id−G,

for every Λg ∈ C∗. Note that:

h′Λg(x) = g(1)− g(x) a.e.
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and since constant functions have zero variation:∫ 1

0

f dh′Λg = −
∫ 1

0

f dg.

We summarize these conclusions in the following:

Theorem 3.15. Let (H, C, µ) be the classical Wiener space. Then the dual space
C∗ = {Λg : g ∈ NBV [0, 1]} is continuously embedded as the dense subspace HC∗ of H:

HC∗ = {hΛg : Λg ∈ C∗},

where for every Λg ∈ C∗:

hΛg(x) = g(1)x−
∫ x

0

g(t) dt =

∫ x

0

(g(1)− g(t)) dt, (3.38)

for all x ∈ [0, 1], and:

(f,Λg) =

∫ 1

0

f dg = −
∫ 1

0

f dh′Λg , (3.39)

for all f ∈ C.

Example 3.1. For every t ∈ [0, 1], we let δt denote the Dirac functional on C:

δt : C → R; δt(f) = f(t), for all f ∈ C.

Clearly δt ∈ C∗ for every t ∈ [0, 1]. For every t ∈ (0, 1], the function g := 11[t,1] belongs
to NBV [0, 1] and:

δt(f) = f(t) =

∫ 1

0

f dg,

for all f ∈ C. From (3.38), δt corresponds to the element ht := hδt ∈ HC∗ , given by:

ht(s) = g(1)s−
∫ s

0

g(x) dx = s−
∫ s

0

11[t,1] dx,

for all s ∈ [0, 1]. If s ≤ t, then ht(s) = s, and if s > t then ht(s) = s − (s − t) = t.
Therefore:

ht(s) = s ∧ t, for all s ∈ [0, 1], (3.40)

where s ∧ t denotes min{s, t}. If t = 0 then δ0(f) = f(0) = 0 for all f ∈ C, so
h0 = 0 = s ∧ 0 for all s ∈ [0, 1], and (3.40) holds for all t ∈ [0, 1].

We make a few observations about these functionals. First note that for every
t ∈ [0, 1]:

h′t = 11(0,t) a.e.

so:

‖ht‖2 =

∫ 1

0

(h′t(x))2 dx =

∫ 1

0

11(0,t) dx = t.
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Then δt, as a random variable on (C, µ), is centered Gaussian with variance ‖ht‖2 = t:

δt ∼ N (0, t) on (C, µ).

Now suppose s, t ∈ [0, 1]. Then:

〈hs, ht〉 =

∫ 1

0

11(0,s)11(0,t) dx,

so:
Cov(δs, δt) = 〈hs, ht〉 = s ∧ t,

for all s, t ∈ [0, 1].
In fact, as we show next, the functionals δt de�ne a Brownian motion on (C, µ).

Recall that a stochastic process {B(t, ω) : t ∈ [0,∞), ω ∈ Ω} on a probability space
(Ω,F ,P) is a Brownian motion provided that it satis�es the following conditions:

i. The process starts at 0, that is B(0) = 0 almost everywhere.

ii. For any 0 ≤ s < t, the random variable B(t) − B(s) is centered Gaussian with
variance t− s.

iii. The process has independent increments, that is for any 0 ≤ t1 < t2 < . . . < tn,
the random variables:

B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1)

are independent.

iv. With probability 1, the function t 7→ B(t, ω) is continuous in t.

Proposition 3.16. Let (H, C, µ) be the classical Wiener space and δt ∈ C∗ be the
Dirac functional for every t ∈ [0, 1]. Then:

{δt : 0 ≤ t ≤ 1}

is a Brownian motion on (C, µ).

Proof. Since δ0 = 0, the process starts at 0. Let 0 < s < t ≤ 1. By our previous
calculations:

δs ∼ N (0, s), δt ∼ N (0, t), and Cov(δs, δt) = s.

Then:
δt − δs ∼ N (0, t+ s− 2ρ

√
ts),

where:

ρ = Corr(δs, δt) =
Cov(δs, δt)√

st
=

s√
st

=

√
s

t
.

So indeed:
δt − δs ∼ N (0, t− s), for all 0 ≤ s < t ≤ 1.
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Now let 0 ≤ t1 < t2 < . . . < tn ≤ 1. For any j < k:

Cov(δtk − δtk−1
, δtj − δtj−1

) = E[δtkδtj − δtkδtj−1
− δtk−1

δtj + δtk−1
δtj−1

]

= tj − tj−1 − tj + tj−1

= 0.

So the increments δt1 , δt2−δt1 , . . . , δtn−δtn−1 are pairwise independent, and since they
are also jointly Gaussian, they are mutually independent. Finally, continuity of paths
follows trivially since t 7→ f(t) is continuous in t for every f ∈ C.

Remark 3.2. Originally, the classical Wiener measure µ on C was de�ned as follows:
�rst de�ne µ on all cylinder subsets of C, that is for every subset A ⊂ C of the form:

A = {f ∈ C : (f(t1), f(t2), . . . , f(tn)) ∈ U}, (3.41)

where 0 < t1 < t2 < . . . < tn ≤ 1 and U ∈ B(Rn), de�ne:

µ(A) :=

∫
U

(
n∏
k=1

1√
2π(tk − tk−1)

e
−

(xk−xk−1)2

2(tk−tk−1)

)
dx1 dx2 . . . dxn, (3.42)

where t0 := 0 and x0 := 0. The collection R of all cylinder subsets of C forms an
algebra, but not a σ-algebra. However, the σ-algebra σ(R) generated by R is the
Borel σ-algebra B(C) of C. In 1923, Wiener proved that µ is a countably additive
measure on R (see [30]), and therefore µ extends uniquely to a measure, also denoted
µ, on B(C). Wiener called the space (C, µ) the �di�erential space�.

To see that the measure µ induced by H on C in the abstract Wiener space sense
coincides with the original de�nition, note that any cylinder subset A ⊂ C of the form
(3.41) can be expressed as:

A = [(δt1 , δt2 , . . . , δtn) ∈ U ].

Since the increments δt1 , δt2 − δt1 , . . . , δtn − δtn−1 are independent, their joint density
function is the product of the individual density functions, so:

µ(A) = µ[(δt1 , δt2 , . . . , δtn) ∈ U ]

= µ[(δt1 , δt2 − δt1 , . . . , δtn − δtn−1) ∈ T (U)]

=

∫
T (U)

(
n∏
k=1

1√
2(tk − tk−1)

e
− y2

k
2(tk−tk−1)

)
dy1 . . . dyn, (3.43)

where T (x1, . . . , xn) = (x1, x2 − x1, . . . , xn − xn−1) and t0 = y0 = 0. Performing the
change of variables:

y1 = x1, y2 = x2 − x1, . . . , yn = xn − xn−1,

we obtain a Jacobian matrix with determinant 1 and (3.43) becomes exactly the
expression in (3.42), proving that µ coincides with the original de�nition of classical
Wiener measure.
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Let us now look at some examples of the Gaussian Radon transform on the classical
Wiener space (H, C, µ).

Example 3.2. Consider ht ∈ HC∗ , given by ht(s) = s∧ t, corresponding to the Dirac
functional δt ∈ C∗ for a �xed t ∈ (0, 1]. Let α ∈ R and:

M0 := h⊥t ⊂ H.

Then:
Mα,t := αht +M0 = αht + h⊥t

is a hyperplane in H, and, since ht ∈ HC∗ , its closure Mα,t in C is a hyperplane in C
(see the discussion following Theorem 2.6). In fact, since h ⊥ ht in H if and only if
0 = 〈h, ht〉 = (h, δt) = h(t):

Mα,t = {h ∈ H : h(t) = αt},

and by Lemma 2.5:
Mα,t = {f ∈ C : f(t) = αt}.

The measure µMα,t resulting from Theorem 2.4 is concentrated on the hyperplane
Mα,t in C and has characteristic function:∫

C
eiΛg dµMα,t = eiα〈ht,hΛg 〉−

1
2
‖PM0

hΛg‖2 ,

for all Λg ∈ C∗. Consider now δs ∈ C∗ for some s ∈ [0, 1]. Then, with respect to µMα,t :

δs ∼ N
(
α〈ht, hs〉, ‖PM0hs‖2

)
.

Since 〈ht, hs〉 = s ∧ t and ‖hr‖2 = r for all r ∈ [0, 1]:

‖PM0hs‖2 = ‖hs‖2 − ‖PM⊥0 hs‖
2 = s− (s ∧ t)2

t
,

so:

δs ∼ N
(
α(s ∧ t), s− (s ∧ t)2

t

)
, (3.44)

with respect to µMα,t . We then obtain:

Gδs
(
αht + h⊥t

)
= α(s ∧ t), (3.45)

and:

Gδ2
s

(
αht + h⊥t

)
= s− (s ∧ t)2

t
+ α2(s ∧ t)2. (3.46)

Note that if we consider E[δs|δt = y] for some y ∈ R, where the conditional
expectation is with respect to classical Wiener measure µ, by Theorem 3.14:

E[δs|δt = y] = Gδs ([〈ht, ·〉 = y])

= Gδs

(y
t
ht + h⊥t

)
=

y

t
(s ∧ t),
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where the last equality follows from (3.45). We showed that:

E[δs|δt = y] = y
s ∧ t
t
.

Now let s1, s2 ∈ [0, 1]. By (3.2):

Cov(δs1 , δs2) = 〈PM0hs1 , PM0hs2〉 ,

where we are once again working on (C, µMα,t). Now for every s ∈ [0, 1]:

PM0hs = hs −
〈hs, ht〉
‖ht‖2

ht = hs −
s ∧ t
t
ht.

Then:

Cov(δs1 , δs2) = (s1 ∧ s2)− (s1 ∧ t)(s2 ∧ t)
t

. (3.47)

In turn, this gives us the Gaussian Radon transform of the product δs1δs2 on Mα,t:

G(δs1δs2)
(
αht + h⊥t

)
= (s1 ∧ s2) + (s1 ∧ t)(s2 ∧ t)

(
α2 − 1

t

)
. (3.48)

Next, we obtain a Brownian bridge on (C, µMα,t) as an almost immediate conse-
quence of the above calculations.

De�nition 3.3. Let a, b ∈ R and L > 0 be �xed. A Brownian bridge of length L
from a to b is a Gaussian process {X(t) : 0 ≤ t ≤ L} that has continuous paths,
starts at a (that is, X(0) = a a.s.) and satis�es:

E[X(t)] = a+ (b− a)
t

L
and Cov(X(s), X(t)) = (s ∧ t)− st

L

for all s, t ∈ [0, L].

Proposition 3.17. Let (H, C, µ) be the classical Wiener space and:

Mα,t = αht + h⊥t ,

for some α ∈ R. Then the process:

{δs : 0 ≤ s ≤ t},

considered on (C, µMα,t), is a Brownian bridge of length t from 0 to αt.

Proof. Clearly {δs : 0 ≤ s ≤ t} is a Gaussian process with continuous paths, and
δ0 = 0. By (3.44):

E[δs] = αs = (αt)
s

t
,

and by (3.47):
Cov(δs1 , δs2) = (s1 ∧ s2)− s1s2

t
,

for all s1, s2 ∈ [0, t].
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Example 3.3. To generalize the results in Example 3.2, let 0 < t1 < t2 < . . . < tn ≤
1. Then the functions ht1 , ht2 , . . . , htn are independent in H, and if we let:

M0 := [span{ht1 , . . . , htn}]
⊥ ,

then: {
1√

tk − tk−1

(htk − htk−1
)

}
1≤k≤n

is an orthonormal basis for M⊥
0 , where t0 := 0. To see this, recall from Proposition

3.16 that {δt1 , δt2 − δt1 , . . . , δtn − δtn−1} are independent in L2(C, µ), so:

〈htk − htk−1
, htj − htj−1

〉 = 〈δtk − δtk−1
, δtj − δtj−1

〉L2(C,µ) =

{
0 , if j 6= k
tk − tk−1 , if j = k

For any s ∈ [0, 1]:
〈hs, htk − htk−1

= (s ∧ tk)− (s ∧ tk−1),

so:

PM⊥0 hs =
n∑
k=1

(s ∧ tk)− (s ∧ tk−1)

tk − tk−1

(htk − htk−1
).

If we let:
Mα,t := α1ht1 + . . .+ αnhtn +M0, (3.49)

for some real α1, . . . , αn, a closed subspace of codimension n in C, then with respect
to µMα,t :

δs ∼ N

(
n∑
k=1

(s ∧ tk), s−
n∑
k=1

((s ∧ tk)− (s ∧ tk−1))2

tk − tk−1

)
,

for all s ∈ [0, 1]. More precisely:

δs ∼

{
N
(∑j−1

k=1 αktk +
∑n

k=j αks, tj−1 +
(s−tj−1)2

tj−tj−1

)
, if s ∈ [tj−1, tj), j = 1, . . . , n

N (
∑n

k=1 αks, tn) , if s ∈ [tn, 1].

For any s1, s2 ∈ [0, 1]:

Cov(δs1 , δs2) = 〈PM0hs1 , PM0hs2〉
= 〈hs1 − PM⊥0 hs1 , hs2 − PM⊥0 hs2〉,

so, with respect to µMα,t :

Cov(δs1 , δs2) = (s1 ∧ s2)−
n∑
k=1

((s1 ∧ tk)− (s1 ∧ tk−1)) ((s2 ∧ tk)− (s2 ∧ tk−1))

tk − tk−1

.

Example 3.4. Now consider Λid ∈ C∗ given by Λidf =
∫ 1

0
f(x) dx for all f ∈ C. This

corresponds to hid ∈ HC∗ given by:

hid(x) =

∫ x

0

(1− t) dt = x− x2

2
,
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for all x ∈ [0, 1]. Then h′id(x) = 1− x and ‖hid‖2 = 1
3
. For every s ∈ [0, 1]:

〈hid, hs〉 = (hid, δs) = s− s2

2
,

so if Mα,t is as in (3.49), then, with respect to µMα,t :

Λid ∼ N

(
n∑
k=1

αk

(
tk −

t2k
2

)
,

1

3
− tn + t2n −

1

4
t3n −

1

4

n∑
k=1

tk−1tk(tk − tk−1)

)
.

Example 3.5. Let P0 = h⊥id and consider the hyperplane in H:

Pα,id = αhid + h⊥id,

for some α ∈ R. Remark that:

P0 = {h ∈ H :

∫ 1

0

h(x) dx = 0} and Pα,id = {h ∈ H :

∫ 1

0

h(x) dx =
α

3
}.

For any s ∈ [0, 1]:

‖PP0hs‖2 = ‖hs‖2 − |〈hs, hid〉|
2

‖hid‖2
= s− 3s2 + 3s3 − 3s4

4
.

So, with respect to µPα,id :

δs ∼ N
(
α

(
s− s2

2

)
, s− 3s2 + 3s3 − 3s4

4

)
,

for all s ∈ [0, 1], and:

Cov(δs1 , δs2) = (s1 ∧ s2)− 3

(
s1 −

s2
1

2

)(
s2 −

s2
2

2

)
.

Example 3.6. The continuous linear functional Λsqrt ∈ C∗ given by:

Λsqrtf =

∫ 1

0

f(x) d
√
x,

for all f ∈ C corresponds to:

hsqrt(x) = x− 2

3
x3/2, for all x ∈ [0, 1]

in HC∗ . Then:

〈hsqrt, hid〉 = (hsqrt,Λid) =

∫ 1

0

(x− 2

3
x3/2) dx =

7

30
,

so:

‖PP0hsqrt‖2 = ‖hsqrt‖2 − |〈hsqrt, hid〉|
2

‖hid‖2
=

1

300
.

Thus, with respect to µPα,id :

Λsqrt ∼ N
(

7α

30
,

1

300

)
.

46



3.4 An Inversion Procedure for the Gaussian Radon

Transform

The focus of this section is to develop a way to recover a function f from its Gaussian
Radon transform. Our procedure will involve the Segal-Bargmann transform for
abstract Wiener spaces, which we review next. We begin with the classical Segal-
Bargmann transform for �nite-dimensional spaces.

Let f ∈ L2(Rn, γn), where γn is standard Gaussian measure on Rn. The Segal-
Bargmann transform of f is the function Sf : Cn → C given by:

(Sf)(z) := e−
1
2

(z,z)

∫
Rn
e(z,x)f(x) dγn(x), for all z ∈ Cn, (3.50)

where:

(z, w) :=
n∑
k=1

zkwk,

for all z, w ∈ Cn.
Next, we introduce the Segal-Bargmann space over Cn, denoted by:

HL2(Cn),

and de�ned as the space of all holomorphic functions on Cn that are square-integrable
with respect to the measure λn on Cn given by:

dλn(z) :=
1

πn
e−|z|

2

dz,

where dz is 2n-dimensional Lebesgue measure. Then HL2(Cn) is a closed subspace
of L2(Cn, λn), therefore a Hilbert space itself, and:

S : L2(Rn, γn)→ HL2(Cn); f 7→ Sf

is a unitary operator, that is SS∗ = S∗S = id. For more details, see [26], [4], or [5].
Now let (H,B, µ) be an abstract Wiener space and HC := H ⊕ iH be the com-

plexi�cation of H. This is a complex Hilbert space with inner-product:

〈h+ ik, u+ iv〉C = (〈h, u〉+ 〈k, v〉) + i (〈k, u〉 − 〈h, v〉) , for all h, k, u, v ∈ H,

and norm ‖h+ik‖2
C = ‖h‖2 +‖k‖2. For any z1, z2 ∈ HC let (z1, z2) denote the complex

bilinear extension of the H inner-product:

(h+ ik, u+ iv) = 〈h, u〉+ i〈h, v〉+ i〈k, u〉 − 〈k, v〉, for all h, k, u, v ∈ H.

For every f ∈ L2(B, µ) the Segal-Bargmann transform of f is the function SBf :
HC → C de�ned by:

(SBf)(z) := e−
1
2

(z,z)

∫
B

e(Iz)(x)f(x) dµ(x), (3.51)
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where Iz := Ih + iIk for all z = h + ik in HC and I : H → L2(B, µ) is the map
de�ned in (1.21).

Let J (HC) be the collection of all �nite-dimensional subspaces of HC. We say that
a function g : HC → C is holomorphic provided that g is locally bounded and the
restriction g|F of g to any F ∈ J (HC) is holomorphic. Consider for every F ∈ J (HC)
the Gaussian probability measure λF on F given by:

dλF (z) :=
1

πn
e−‖z‖

2
C dz,

where n =dim(F ) and dz is Lebesgue measure on F . With these notations, we are
ready to de�ne the Segal-Bargmann space over HC, denoted by:

HL2(HC),

as the space of all holomorphic functions g on HC that satisfy:

‖g‖2
SB := sup

F∈J (HC)

∫
F

|g(z)|2 dλF (z) <∞.

Then ‖ · ‖SB as de�ned above is a complete inner-product norm on HL2(HC), which
is thus a complex Hilbert space. As in the classical case, the map:

SB : L2(B, µ)→ HL2(HC); f 7→ SBf

is unitary. For details and proofs of these facts, see [26], [9], [14], or [8].
The next theorem, our inversion procedure, shows that for a function f ∈ L2(B, µ)

the Segal-Bargmann transform SBf coincides with the �nite-dimensional Segal -
Bargmann transform of Gf(p + Q0) on the complexi�cation of Q⊥0 , for any closed
subspace Q0 of �nite codimension in H.

Theorem 3.18. Let (H,B, µ) be an abstract Wiener space, f ∈ L2(B, µ) and Q0 be
a closed subspace of �nite codimension in H. Consider the function GQ0f de�ned on
Q⊥0 by:

GQ0f(p) := Gf(p+Q0), for all p ∈ Q⊥0 .

Then: (
SQ⊥0 (GQ0f)

)
(z) = (SBf)(z), for all z ∈ (Q⊥0 )C, (3.52)

where SQ⊥0 and SB are the Segal-Bargmann transforms on L2(Q⊥0 , γQ⊥0 ) and L2(B, µ),
respectively. In other words:

SQ⊥0 (GQ0f) = (SBf)|(Q⊥0 )C
. (3.53)

Proof. Recall that, from (3.14), GQ0f ∈ L2(B, µ), so we may consider the Segal-
Bargmann transform SQ⊥0 of GQ0f . From (3.17), if h ∈ Q⊥0 then for γQ⊥0 -almost all
p ∈ Q⊥0 :

Ih = 〈h, p〉, µQp-almost everywhere.
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Then if z = h+ ik ∈ (Q⊥0 )C for some h, k ∈ Q⊥0 , we have for γQ⊥0 -almost all p ∈ Q⊥0 :

Iz = Ih+ iIk = 〈h, p〉+ i〈k, p〉 = (z, p), µQp-almost everywhere. (3.54)

For any z ∈ (Q⊥0 )C:(
SQ⊥0 (GQ0f)

)
(z) = e−

1
2

(z,z)

∫
Q⊥0

e(z,p)GQ0f(p) dγQ⊥0 (p)

= e−
1
2

(z,z)

∫
Q⊥0

∫
B

e(z,p)f(x) dµQp(x) dγQ⊥0 (p)

= e−
1
2

(z,z)

∫
Q⊥0

∫
B

eIz(x)f(x) dµQp(x) dγQ⊥0 (p) (by (3.54))

= e−
1
2

(z,z)

∫
B

eIz(x)f(x) dµ(x) (by Theorem 3.8)

= (SBf)(z),

which proves our claim.

Now suppose u ∈ H is a unit vector. Taking Q0 = u⊥ in Theorem 3.18 we obtain:

SRu(Gu⊥f) = (SBf)Cu.

In particular:
(SRu(Gu⊥f)) (tu) = (SBf)(tu), for all t ∈ R,

which translates to:

(SR(Gu⊥f)) (t) = (SBf)(tu), for all t ∈ R, (3.55)

where SR is the Segal-Bargmann transform on L2(R, γ1). Recall that any hyperplane
in H is of the form:

γp,u = pu+ u⊥,

for a unit vector u and p ≥ 0. The equation (3.55) tells us that if we know the
Gaussian Radon transform of f :

Gf(γp,u) = Gu⊥f(p),

for all hyperplanes in H, then we know (SBf)(h) for all h ∈ H. Taking the holo-
morphic extension to HC, we know SBf and can then obtain f using the inverse
Segal-Bargmann transform.
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Chapter 4

The Gaussian Radon Transform and Machine

Learning

Suppose we are observing an experiment, recording the outputs corresponding to
certain inputs. The central task of machine learning is to predict the outputs cor-
responding to future, yet unobserved, inputs. More precisely, suppose that all input
values are contained in a set X , called the input space, or sample space. We will
assume that all outputs are real numbers. If there is a �nite (or countable) number
of possible outcomes, this problem is known as classi�cation; otherwise, it is known
as regression. Moreover, suppose we have collected a set:

D = {(t1, y1), . . . , (tn, yn)} ⊂ X × R

of input values tk together with their respective output values yk, known as the train-
ing data. A classical example of a classi�cation problem is handwriting recognition.
For instance, say we feed a computer a large number of handwritten digits together
with their corresponding labels �0�, �1�, �2� and so on; the goal of a learning algorithm
would then be for the computer to correctly label new images of handwritten digits.

So the goal is to use the training data to �nd a �prediction� function f : X → R
such that f(t) is a close approximation of the output y resulting from a future input t.
An important point to make is that we are not trying to �nd a function that matches
the training data exactly, but one that yields good approximations of future outputs.
In fact, modeling the training data too closely is known as over�tting ; the �quality�
of a prediction model is determined by its accuracy in predicting future outcomes,
and not by its accuracy in �tting the training data.

Some of the most popular learning methods are support vector machines (SVM's),
and a crucial assumption of these methods is that one searches for the prediction
function within a special kind of Hilbert space of functions, known as a reproducing
kernel Hilbert space (RKHS). We review this next. First, recall that a function
K : X × X → R is said to be positive de�nite provided that:

K(s, t) = K(t, s), for all s, t ∈ X ,

and:
n∑

i,j=1

αiαjK(ti, tj) ≥ 0,

for all n ∈ N and any choice of α1, . . . , αn ∈ R and t1, . . . , tn ∈ X . The following
important result, known as the Moore-Aronszajn Theorem, may be found in Chapter
4 of [28].

Theorem 4.1. Let X be a non-empty set and K : X × X → R be a positive de�nite
function. Then there is a unique Hilbert space H, whose elements are functions
f : X → R, such that:
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i. The function Kt := K(t, ·) is contained in H for every t ∈ X .

ii. For every function f ∈ H:

f(t) = 〈Kt, f〉, for all t ∈ X , (4.1)

where 〈·, ·〉 is the inner-product in H.

Moreover, the linear span of {Kt : t ∈ X} is dense in H.

The Hilbert space above is called the reproducing kernel Hilbert space over X with
reproducing kernel K. Note that (4.1) yields:

K(s, t) = 〈Ks, Kt〉, for all s, t ∈ X ,

and also implies that the Dirac functional:

δt : H → R; δt(f) := f(t),

is continuous for every t ∈ X :

|δt(f)| = |f(t)| = |〈Kt, f〉| ≤ ‖Kt‖‖f‖.

Another interesting, often useful, property of RKHS's is that norm convergence
implies pointwise convergence. Speci�cally:

If fn → f in H, then lim
n→∞

fn(t) = f(t), for all t ∈ X .

This follows readily from continuity of δt.

4.1 Ridge Regression

Suppose we have the training data D = {(t1, y1), . . . , (tn, yn)} ⊂ X ×R and a RKHS
H with reproducing kernel K : X × X → R. The method known as ridge regression
seeks to �nd a prediction function in H by minimizing the quantity:

Rλ,D(f) :=
n∑
j=1

(yj − f(tj))
2 + λ‖f‖2, for all f ∈ H, (4.2)

where t1, . . . , tn are the given input values in D, y1, . . . , yn are their corresponding
collected outputs, and λ > 0 is a regularization parameter. The main role of this
parameter is to avoid modeling the training data too closely, or over�tting.

The following result, showing that a unique solution to this problem exists, is a
well-known result in machine learning theory. For completeness, we include here a
geometrical proof of this result, with roots in the works [19], [20] of Kimeldorf and
Wahba.
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Theorem 4.2. Let X be a non-empty set,

D = {(t1, y1), . . . , (tn, yn)} ⊂ X × R

be a �nite subset of X × R, and H be a RKHS over X with reproducing kernel
K : X ×X → R. Then for every λ > 0 there is a unique element f̂λ,D ∈ H such that:

Rλ,D(f̂λ,D) = inf
f∈H
Rλ,D(f) = inf

f∈H

(
n∑
j=1

(yj − f(tj))
2 + λ‖f‖2

)
.

Speci�cally, f̂λ,D is given by:

f̂λ,D =
n∑
j=1

ĉjKtj , (4.3)

where Kt denotes the function K(t, ·) for all t ∈ X , and the vector ĉ ∈ Rn is given
by:

ĉ = (KD + λIn)−1y, (4.4)

with KD being the n× n matrix with entries [KD]i,j = K(ti, tj), In the n× n identity
matrix, and y = [y1 . . . yn] ∈ Rn.

Proof. Let Hλ denote the space H with the scaled inner-product:

〈f, g〉Hλ := λ〈f, g, 〉, for all f, g ∈ H.

Consider the linear map:

T : Rn → Hλ; ej 7→ T (ej) =
1

λ
Ktj , for all 1 ≤ j ≤ n,

where {e1, . . . , en} is the standard orthonormal basis of Rn. Then for all f ∈ Hλ:

〈T ∗f, ej〉Rn = 〈f, Tej〉Hλ = λ

〈
f,

1

λ
Ktj

〉
= f(tj)

for every 1 ≤ j ≤ n, so:

T ∗f =
n∑
j=1

f(tj)ej.

Then we may express Rλ,D as:

Rλ,D(f) =
n∑
j=1

(yj − f(tj))
2 + λ‖f‖2

= ‖y − T ∗f‖2
Rn + ‖f‖2

Hλ
.

If we consider the direct sum of Hilbert spaces Hλ⊕Rn, the norm in this space is:

‖(f, c)‖Hλ⊕Rn = ‖c‖2
Rn + ‖f‖2

Hλ
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for all c ∈ Rn and f ∈ Hλ, so Rλ,D(f) may be viewed geometrically as the distance
between the points (f, T ∗f) and (0, y) in Hλ ⊕ Rn:

Rλ,D = dist ((f, T ∗f), (0, y)) in Hλ ⊕ Rn.

In other words, minimizing Rλ,D(f) is the same as �nding the point closest to (0, y)
on the subspace {(f, T ∗f) : f ∈ Hλ}, which is simply the graph of T ∗:

Gr(T ∗) = {(f, T ∗f) : f ∈ Hλ} ⊂ Hλ ⊕ Rn.

Now note that for any c ∈ Rn:

〈(f, T ∗f), (−Tc, c)〉Hλ⊕Rn = 〈f,−Tc〉Hλ + 〈T ∗f, c〉Rn
= −〈f, T c〉Hλ + 〈f, T c〉Hλ
= 0.

Conversely, if f ∈ Hλ and d ∈ Rn are such that 〈(f, d), (−Tc, c)〉Hλ⊕Rn = 0 for all
c ∈ Rn, then 〈f, T c〉Hλ = 〈d, c〉Rn , so:

〈T ∗f, c〉 = 〈d, c〉, for all c ∈ Rn,

meaning that d = T ∗f . Therefore:

Gr(T ∗) = {(−Tc, c) : c ∈ Rn}⊥. (4.5)

So Gr(T ∗) is a closed subspace of Hλ ⊕ Rn, and then there is unique point
(f̂λ,D, T

∗f̂λ,D) in Gr(T ∗) that is closest to (0, y). This point is of the form (0, y)+(f, c),
where (f, c) ∈ Hλ⊕Rn is orthogonal to Gr(T ∗). This is pictured below in Figure 4.1.

𝒏 

𝟎, 𝒚  

𝑯 

𝒇, 𝑻∗𝒇  

(a)

𝒏 

𝟎, 𝒚  

𝑯 

𝒇 ,𝑫 , 𝑻∗𝒇 ,𝑫  

(b)

Figure 4.1: A geometric interpretation of Theorem 4.2.

From (4.5):
(f̂λ,D, T

∗f̂λ,D) = (−Tc, y + c),
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for some c ∈ Rn. Then f̂λ,D = −Tc and:

y + c = T ∗f̂λ,D = −T ∗Tc,

so:
y = −(T ∗T + In)c. (4.6)

Note that (T ∗T + In)d = 0 if and only if d = 0, since 〈(T ∗T + In)d, d〉Rn ≥ ‖d‖2
Rn

for all d ∈ Rn, so the operator T ∗T + In is invertible. So we may solve (4.6) for c:

c = −(T ∗T + In)−1y.

Since f̂λ,D = −Tc:
f̂λ,D = T

[
(T ∗T + In)−1y

]
.

For any 1 ≤ i, j ≤ n:

〈(T ∗T )ei, ej〉Rn = 〈Tei, T ej〉Hλ

= λ

〈
1

λ
Kti ,

1

λ
Ktj

〉
=

1

λ
K(ti, tj)

=
1

λ
[KD]i,j,

so T ∗T = 1
λ
KD. Then:

f̂λ,D = T

 n∑
i,j=1

[(
1

λ
KD + In

)−1
]
i,j

yiej


=

n∑
j=1

(
n∑
i=1

λ
[
(KD + λIn)−1

]
i,j
yi

)
1

λ
Ktj

=
n∑
j=1

(
n∑
i=1

[
(KD + λIn)−1

]
i,j
yi

)
Ktj

=
n∑
j=1

ĉjKtj ,

where ĉ is as in (4.4).

4.2 Probabilistic Interpretations

Remark that the ridge regression problem described above contains no randomness
at all. Our work in this area is motivated by a recent increase in the machine learning
literature interest in probabilistic interpretations of support vector machines - see for
instance [27], [24], [2], [23], [31], or [18].
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Suppose we are performing an experiment and S is the set of all possible out-
comes, a set known as the sample space. The outcome of the experiment follows an
unknown probability distribution on S. A statistical model is a collection of proba-
bility distributions on S, where we suspect the �true� distribution lies. In particular,
a parametric statistical model is a collection {ρ(y|θ)}θ∈Θ of probability distributions
on S, indexed by a parameter set Θ. For example, a Gaussian model might take
Θ = {(m,σ) : m ∈ R, σ > 0} and for every θ = (m,σ) ∈ Θ the Gaussian distribution
on R:

ρ(y|θ) =
1

σ
√

2π
e−

1
2σ2 (y −m)2.

The principal assumption of Bayesian inference is that the parameters themselves
are also considered random, that is we assume that Θ is also equipped with a �xed
probability distribution p(θ), called the prior distribution. The goal is then to use
the collected data to �update� our knowledge of the best parameter, by �nding the
conditional distribution p(θ|y) of θ given the data y, a quantity known as the posterior
distribution. These quantities are all connected by Bayes' formula:

p(θ|y) =
ρ(y|θ)p(θ)
m(y)

,

where m(y) =
∫

Θ
ρ(y|θ)p(θ) dθ is the marginal distribution.

The maximum a posteriori (MAP) estimator seeks the value θ̂MAP of θ that max-
imizes the posterior:

θ̂MAP = argmax
θ∈Θ

p(θ|y) = argmax
θ∈Θ

ρ(y|θ)p(θ),

where the last equality follows because m(y) is a positive quantity that does not
depend on θ, so it has no in�uence on the maximum over Θ of p(θ|y).

Let us now give a Bayesian perspective on the ridge regression problem: suppose
our sample space is R and our parameter space is a RKHS H over the input space X ,
with reproducing kernel K : X × X → R. If H is �nite-dimensional, we may equip
H with standard Gaussian measure γH as our prior distribution:

p(f) =
1
√

2π
d
e−

1
2
‖f‖2 , for all f ∈ H,

where d is the dimension of H. Let f̃ denote the continuous linear functional:

f̃ := 〈f, ·〉

on H for every f ∈ H. Then, with respect to γH , every f̃ is Gaussian with mean 0
and variance ‖f‖2, and Cov(f̃ , g̃) = 〈f, g〉 for all f, g ∈ H.

Recall that H contains the functions Kt = K(t, ·) for all t ∈ X and also:

f(t) = 〈Kt, f〉 = K̃t(f), for all f ∈ H, t ∈ X .

Then {K̃t}t∈X is a centered Gaussian process on H with covariance function K:

Cov(K̃t, K̃s) = 〈Kt, Ks〉 = K(t, s), for all t, s ∈ X .
55



Now suppose D = {(t1, y1), . . . , (tn, yn)} ⊂ X × R is the training data we collected.
The relationship f(t) = K̃t(f) suggests that we could model our data y as arising
from:

ỹt = K̃t(f), for every t ∈ X .

But suppose every measurement yj contains some measurement error which we
model as Gaussian noise. We would need a Gaussian process {ε1, . . . , εn} on H, with
covariance:

Cov(εi, εj) = λδi,j

for some parameter λ > 0, which is also independent of {K̃t1 , . . . , K̃tn}. To achieve
this, we consider an orthonormal set {e1, . . . , en} ⊂ H such that:

{e1, . . . , en} ⊂ [span{Kt1 , . . . , Ktn}]⊥.

Then {K̃tj}1≤j≤n and {ẽj}1≤j≤n are independent, and we model our data as:

ỹj = K̃tj(f) +
√
λẽj, for all 1 ≤ j ≤ n,

for every f ∈ H, where λ > 0 is a �xed parameter. Then ỹj is Gaussian with mean
f(tj) and variance λ, and {ỹ1, . . . , ỹn} are independent. This gives rise, for every
f ∈ H, to the statistical model of distributions on Rn given by:

ρλ,D(x|f) =
n∏
j=1

1√
2πλ

e−
1

2λ
(xj−f(tj))

2

,

for every x = (x1, . . . , xn) ∈ Rn.
Replacing x with the vector y = [y1 . . . yn] of observed values, the posterior distri-

bution is then proportional to:

e−
1

2λ

∑n
j=1(yj−f(tj))

2

e−
1
2
‖f‖2 = e−

1
2λ [

∑n
j=1(yj−f(tj))

2+λ‖f‖2],

so �nding the MAP estimator is equivalent to minimizing Rλ,D in (4.2). Therefore:

f̂MAP = f̂λ,D,

where f̂λ,D is the ridge regression solution in (4.3).
This Bayesian approach clearly depends on H being �nite-dimensional; however,

reproducing kernel Hilbert spaces used in practice are often in�nite-dimensional (such
as those arising from Gaussian RBF kernels). The ridge regression SVM previously
discussed goes through regardless of the dimensionality of the RKHS, and there is
still a need for a valid stochastic interpretation of the in�nite-dimensional case.

We now explore another stochastic approach to ridge regression, which is equiv-
alent to the Bayesian one, but which can be carried over in a sense to the in�nite-
dimensional case, as we shall see later. Suppose again that H is a �nite-dimensional
RKHS over X , with reproducing kernel K, and equipped with standard Gaussian
measure. Recall that {K̃t}t∈X is a centered Gaussian process on H with covariance
function K. If we assume that the data arises from some unknown function in H,
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then the relationship f(t) = K̃t(f) again suggests that the random variable K̃t is a
good model for the outputs. Moreover, the training data D = {(t1, y1), . . . , (tn, yn)}
provides some previous knowledge of the random variables K̃tj , which we can use to
re�ne our estimation of K̃t by taking conditional expectations. In other words, our
�rst instinct would be to estimate the output of a future input t ∈ X by:

E[K̃t|K̃t1 = y1, . . . , K̃tn = yn]. (4.7)

But if we want to include some possible noise in the measurements, we will again
�attach� to {K̃t1 , . . . , K̃tn} an independent centered Gaussian process.

So �x t ∈ X , a future input whose output we'd like to predict. To take mea-
surement error into account, we let again an orthonormal set {e1, . . . , en} ⊂ H such
that:

{e1, . . . , en} ⊂ [span{Kt1 , . . . , Ktn , Kt}]⊥,

and λ > 0, and set:
yj = K̃tj +

√
λẽj, for all 1 ≤ j ≤ n.

Then we estimate the output ŷ(t) as the conditional expectation:

ŷ(t) = E[K̃t|K̃tj +
√
λẽj = yj, 1 ≤ j ≤ n].

As shown in Lemma 4.3 below:

ŷ(t) = a1y1 + . . .+ anyn,

where a = (a1, . . . , an) ∈ Rn is:

a = A−1
[
Cov(K̃t, K̃tj +

√
λẽj)

]
1≤j≤n

,

with:

[A]i,j = Cov(K̃tj +
√
λẽj, K̃ti +

√
λẽi)

= K(ti, tj) + λδi,j

= [KD + λIn]i,j

for all 1 ≤ i, j ≤ n. Moreover:

Cov(K̃t, K̃tj +
√
λẽj) = 〈Kt, Ktj〉 = Ktj(t).

Note this last relationship is why we required that {e1, . . . , en} also be orthogonal to
Kt. This yields:

ŷ(t) =
n∑
j=1

[(KD + λIn)−1y]jKtj(t),

showing that:
ŷ(t) = f̂λ,D(t).
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Lemma 4.3. Let Z0, Z1, . . ., Zn be centered jointly Gaussian random variables on a
probability space (Ω,F ,P) and let A ∈ Rn×n be the matrix with entries:

[A]i,j = Cov(Zi, Zj), for all 1 ≤ i, j ≤ n.

If A is invertible, then:

E[Z0|Z1, . . . , Zn] = a1Z1 + . . .+ anZn,

where a = (a1, . . . , an) ∈ Rn is given by:

a = A−1 [Cov(Z0, Z1) Cov(Z0, Z2) . . . Cov(Z0, Zn)]

Proof. Let Y = Z0 − Z⊥, where Z⊥ is the orthogonal projection in L2(Ω,P) of Z0

onto the linear span of Z1, . . . , Zn. Then Y ⊥ Zj for all 1 ≤ j ≤ n, so Y, Z1, . . . , Zn
are jointly Gaussian and Y is independent of the random vector (Z1, . . . , Zn). Then
if S is any set in the σ-algebra σ(Z1, . . . , Zn) generated by Z1, . . . , Zn:∫

S

Z0 dP =

∫
S

(Z⊥ + Y ) dP

=

∫
S

Z⊥ dP +

∫
S

Y dP

=

∫
S

Z⊥ dP.

Since this holds for all S ∈ σ(Z1, . . . , Zn) and Z⊥ is σ(Z1, . . . , Zn)-measurable (being
a linear combination of Z1, . . . , Zn), the conditional expectation E[Z0|Z1, . . . , Zn] is
exactly Z⊥:

E[Z0|Z1, . . . , Zn] = Z⊥ = a1Z1 + . . .+ anZn,

for some a1, . . . , an ∈ R. Note that, since all variables have mean 0:

E[Z0Zj] = E[Z⊥Zj] =
n∑
i=1

E[ZiZj]ai = [Aa]j,

for all 1 ≤ j ≤ n. So:

Aa = [Cov(Z0, Z1) Cov(Z0, Z2) . . . Cov(Z0, Zn)] ,

which proves the claim.

If H is in�nite-dimensional, the absence of standard Gaussian measure prevents
us from having the Gaussian process {K̃t}t∈X directly on H. In what follows, we
show that the Gaussian Radon transform o�ers a stochastic interpretation to the
ridge regression problem when H is in�nite-dimensional, by considering the Gaussian
process and conditional expectation approach on an abstract Wiener space rather
than on the Hilbert space itself.

Speci�cally, suppose X is a separable topological space and H is a real in�nite-
dimensional RKHS over X with reproducing kernel K. The assumption that X is
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a separable topological space ensures that H is also separable. Complete H with
respect to a measurable norm and obtain an abstract Wiener space (H,B, µ). Then
for every t ∈ X , consider:

K̃t := IKt ∈ L2(B, µ),

where I : H → L2(B, µ) is the map described in (1.21). Since K̃t(f) = 〈Kt, f〉 = f(t)
for all f ∈ H, we choose K̃t as the model random variable for the outputs. Note
that since I is an isometry, {K̃t}t∈X is a centered Gaussian process with covariance
function K:

Cov(K̃t, K̃s) = 〈Kt, Ks〉 = K(t, s), for all t, s ∈ X .

As before, we account for noise in the training set D = {(t1, y1), . . . , (tn, yn)} ⊂
X × R by taking an orthonormal set {e1, . . . , en} ⊂ H such that:

{e1, . . . , en} ⊂ [span{Kt1 , . . . , Ktn , Kt}]⊥, (4.8)

where t ∈ X is the future input whose output we want to predict. For a �xed
parameter λ > 0, we model the data as:

yj = K̃tj +
√
λẽj, for all 1 ≤ j ≤ n,

and then estimate the output ŷ(t) corresponding to t by the conditional expectation:

ŷ(t) = E[K̃t|K̃tj +
√
λẽj = yj, 1 ≤ j ≤ n],

where ẽj = Iej for all 1 ≤ j ≤ n.
By our assumption in (4.8) and the isometric property of I:

Cov(K̃tj +
√
λẽj, K̃ti +

√
λẽi) = 〈Ktj +

√
λej, Kti +

√
λei〉

= K(ti, tj) + λδi,j,

for every 1 ≤ i, j ≤ n. Similarly:

Cov(K̃t, K̃tj +
√
λẽj) = K(tj, t) = Ktj(t).

By Lemma 4.3:

E[K̃t|K̃tj +
√
λẽj = yj, 1 ≤ j ≤ n] = [Kt1(t) . . . Ktn(t)](KD + λIn)−1y

=
n∑
j=1

ĉjKtj(t), where ĉ = (KD + λIn)−1y

= f̂λ,D(t), , (4.9)

where f̂λ,D is the ridge regression solution in (4.3).
Now note that {Kt1+

√
λe1, . . . , Ktn+

√
λen} are linearly independent. For suppose

a1, . . . , an ∈ R are such that:

a1Kt1 +
√
λa1e1 + . . .+ anKtn +

√
λanen = 0.
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Then:
a1Kt1 + . . .+ anKtn = −

√
λ(a1e1 + . . .+ anen),

but from (4.8), both sides of the equality above must be 0. So a1e1 + . . .+ anen = 0,
and since {e1, . . . , en} are orthonormal, a1 = . . . = an = 0. By Theorem 3.14, the
conditional expectation above may be expressed as the Gaussian Radon transform of
K̃t on the closed a�ne subspace determined by 〈Ktj +

√
λej, ·〉 = yj for 1 ≤ j ≤ n:

E[K̃t|K̃tj +
√
λẽj = yj, 1 ≤ j ≤ n] = GK̃t

(
n⋂
j=1

[
〈Ktj +

√
λej, ·〉 = yj

])
.

Combined with (4.9), we see that the value f̂λ,D(t) predicted by ridge regression can
be expressed in terms of the Gaussian radon transform. We summarize these �ndings
in the following theorem.

Theorem 4.4. Let H be a RKHS over a separable topological space X , with repro-
ducing kernel K : X × X → R, and B be the completion of H with respect to a
measurable norm, with Wiener measure µ. Let D = {(t1, y1), . . . , (tn, yn)} ⊂ X × R
and t ∈ X be �xed. Let {e1, . . . , en} ⊂ H be an orthonormal set such that:

{e1, . . . , en} ⊂ [span{Kt1 , . . . , Ktn , Kt}]⊥, (4.10)

where Ks = K(s, ·) ∈ H for all s ∈ X . Then for every λ > 0:

f̂λ,D = E[K̃t|K̃tj +
√
λẽj = yj, 1 ≤ j ≤ n] (4.11)

= GK̃t

(
n⋂
j=1

[
〈Ktj +

√
λej, ·〉 = yj

])
, (4.12)

where K̃s = IKs for all s ∈ X and f̂λ,D is the ridge regression solution in (4.3).

Let us know brie�y go back to our ��rst instinct� approximation in (4.7) and take
simply:

E[K̃t|K̃t1 = y1, . . . , K̃tn = yn] (4.13)

as our estimation of the output corresponding to t ∈ X , basically ignoring noise and
taking λ = 0 above. Note that we are assuming that we are still in the setting of an
abstract Wiener space (H,B, µ), where H is an in�nite-dimensional separable RKHS
with reproducing kernel K, and K̃t = IKt above. Then, again by Theorem 3.14,
assuming that the functions Kt1 , . . . , Ktn are linearly independent, the quantity in
(4.13) may be expressed as:

E[K̃t|K̃t1 = y1, . . . , K̃tn = yn] = GK̃t

(
n⋂
j=1

[
〈Ktj , ·〉 = yj

])
. (4.14)

Applying Lemma 4.3:

E[K̃t|K̃t1 = y1, . . . , K̃tn = yn] =
d∑
j=1

d̂jKtj(t), (4.15)
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where d̂ = [d̂1 . . . d̂n] = K−1
D y, where KD is again the n × n matrix given by the

covariances: [KD]i,j = K(ti, tj), for all 1 ≤ j ≤ n.
As shown below in Theorem 4.5, the quantity to the right of (4.15) is in fact the

element f̂s of H of minimal norm which satis�es the interpolation conditions:

f(tj) = yj, for all 1 ≤ j ≤ n,

which is exactly the setup in the more traditional spline theory (see [19], [20]). In other
words, the spline solution f̂s may also be expressed as a Gaussian Radon transform:

f̂s(t) = GK̃t

(
n⋂
j=1

[
〈Ktj , ·〉 = yj

])
.

The fact that we may obtain the predicted value through a conditional expecta-
tion and the Gaussian Radon transform suggests that a broader class of prediction
problems could be approached in this fashion. For instance, suppose one is interested
not in predicting the value at a particular input t, but in predicting the maximum or
minimum value attained on a set of future inputs. The predicted value would be:

GF (L), (4.16)

where L is the closed a�ne subspace of the RKHS re�ecting the training data, and
F is, for instance, a function of the form:

F (x) = sup
t∈S

K̃t(x),

for some given set S ⊂ X of future inputs one is interested in. Note that the predic-
tion in (4.16) is generally not the same as taking the supremum over the individual
predicted values, that is not the same as:

sup
t∈S

GK̃t(L),

where GK̃t(L) is the SVM prediction as in Theorem 4.4.
We now return to the spline setting result discussed earlier; this is a known result

in the literature, but we include a proof here for completeness.

Theorem 4.5. Let H be a real RKHS over a non-empty set X , with reproducing ker-
nel K, and D = {(t1, y1), . . . , (tn, yn)} ⊂ X×R be such that the functions Kt1 , . . . , Ktn

are linearly independent. Then the element of H of minimal norm which satis�es
f(tj) = yj for all 1 ≤ j ≤ n is given by:

f̂s =
n∑
j=1

d̂jKtj , (4.17)

where d̂ = [d̂1 . . . d̂n] = K−1
D y, with y = [y1 . . . yn] and KD the n × n matrix with

entries [KD]i,j = K(ti, tj) for every 1 ≤ i, j ≤ n.
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Proof. The proof will be similar to the geometrical �avor of Theorem 4.2. Once again,
we let T : Rn → H be the linear operator that takes ej 7→ T (ej) = Ktj for every
1 ≤ j ≤ n, where {e1, . . . , en} is the standard orthonormal basis of Rn. The adjoint
is then given by:

T ∗f =
n∑
j=1

〈f,Ktj〉ej =
n∑
j=1

f(tj)ej, for all h ∈ H.

Then:
{f ∈ H : f(t1) = y1, . . . , f(tn) = yn} = (T ∗)−1(y).

The assumption that the functions Ktj are linearly independent is crucial be-
cause it guarantees that the a�ne subspace above is non-empty. For assume that
(a1, . . . , an) ∈ Rn is orthogonal to the range of T ∗. Then:

a1f(t1) + . . .+ anf(tn) = 0, for every f ∈ H,

which is equivalent to a1Kt1 + . . .+ anKtn = 0. But since {Kt1 , . . . , Ktn} are linearly
independent, aj = 0 for all 1 ≤ i ≤ n, so Im(T ∗) = Rn and then (T ∗)−1(y) is
non-empty.

Since (T ∗)−1(y) is a translate of the closed subspace Ker(T ∗) of H, there is an
element f̂s in (T ∗)−1(y) of minimal norm, speci�cally the point on (T ∗)−1(y) that is
orthogonal to Ker(T ∗). This is pictured below in Figure 4.2.

𝑯 

𝒇 𝒔 

𝑲𝒆𝒓 𝑻∗  

𝒇 ∈ 𝑯: 𝑻∗𝒇 = 𝒚  

Figure 4.2: The point on (T ∗)−1(y) closest to the origin.

Since:
Ker(T ∗) = [Im(T )]⊥ ,

the orthogonal complement [Ker(T ∗)]⊥ is the closure of the subspace Im(T ). But
Im(T ) is a �nite-dimensional subspace of H and is therefore closed, so:

[Ker(T ∗)]⊥ = Im(T ).
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Therefore our point f̂s ∈ Im(T ) ∩ (T ∗)−1(y). Then f̂s = Tc for some c ∈ Rn and
(T ∗T )c = y, so:

f̂s = Tc = T (T ∗T )−1y.

It follows readily that T ∗T is given by the matrix KD, so indeed:

f̂s =
n∑

i,j=1

[(KD)−1]i,jyiKtj .

4.3 Direct Sums of Abstract Wiener Spaces

One disadvantage of Theorem 4.4 is that, given the training data:

D = {(t1, y1), . . . , (tn, yn)} ⊂ X × R,

for every input t ∈ X whose outcome we'd like to estimate, we must choose an
orthonormal set {e1, . . . , en} ∈ H such that every ej is not only orthogonal to each
Kt1 , . . ., Ktn , but also to Kt. In other words, our choice of {e1, . . . , en} could change
with every training set and every future input t ∈ X . Since span{Kt : t ∈ X} is dense
in H, we cannot �nd a set {e1, . . . , en} that would �universally� work. This suggests
that we would like to �attach� a Hilbert space to H, which could be our �repository�
for errors, that is orthogonal to H. This is precisely the idea behind direct sums of
Hilbert spaces.

Let H1 and H2 be Hilbert spaces with inner-products 〈·, ·〉1 and 〈·, ·〉2, respectively.
The orthogonal direct sum of H1 and H2 is the space

H1 ⊕H2 := {(h1, h2) : h1 ∈ H1, h2 ∈ H2},

which is a Hilbert space with the inner-product:

〈(h1, h2), (g1, g2)〉 := 〈h1, g1〉1 + 〈h2, g2〉2,

for all h1, g1 ∈ H1 and h2, g2 ∈ H2. Note that H1 and H2 are continuously embedded
as subspaces of H1 ⊕H2 through the maps:

H1 → H1 ⊕H2;h1 7→ (h1, 0) and H2 → H1 ⊕H2;h2 7→ (0, h2),

and H1 ⊕H2 is the orthogonal direct sum of these subspaces.
Next, we investigate whether the abstract Wiener space construction over a direct

sum of Hilbert spaces yields a direct sum of Banach spaces, where if B1 and B2 are
Banach spaces with norms | · |1 and | · |2, respectively, their direct sum:

B1 ⊕B2 := {(x1, x2) : x1 ∈ B1, x2 ∈ B2}

is a Banach space with the norm:

|(x1, x2)| := |x1|1 + |x2|2,

for all x1 ∈ B1 and x2 ∈ B2.
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Proposition 4.6. Let (H1, B1, µ1) and (H2, B2, µ2) be abstract Wiener spaces, where
(H1, ‖·‖1) and (H2, ‖·‖2) are real separable in�nite-dimensional Hilbert spaces and B1,
B2 are the Banach spaces obtained by completing H1, H2 with respect to measurable
norms | · |1, | · |2, respectively. Then:

(H1 ⊕H2, B1 ⊕B2, µ1 × µ2)

is an abstract Wiener space.

Proof. Let x∗ ∈ (B1 ⊕B2)∗. Then de�ne for every x1 ∈ B1 and every x2 ∈ B2:

(x1, x
∗
1) := ((x1, 0), x∗) and (x2, x

∗
2) := ((0, x2), x∗) .

Since x∗ is continuous on B1 ⊕B2:

|(x1, x
∗
1)| = |((x1, 0), x∗)| ≤ c|(x1, 0)| = c|x1|1,

for some c > 0, and x∗1 is clearly linear, so x∗1 ∈ B∗1 . Similarly, x∗2 ∈ B∗2 . Thus every
continuous linear functional on B1 ⊕B2 is of the form x∗ = (x∗1, x

∗
2):

((x1, x2), (x∗1, x
∗
2)) = (x1, x

∗
1) + (x2, x

∗
2), for all x1 ∈ B1, x2 ∈ B2,

for some x∗1 ∈ B∗1 and x∗2 ∈ B∗2 .
Now recall that the measurable norms | · |1, | · |2 are weaker than the Hilbert norms

‖ · ‖1, ‖ · ‖2 on H1, H2, respectively, so there is C > 0 such that:

|h1|1 ≤ C‖h1‖1 and |h2|2 ≤ C‖h2‖2,

for all h1 ∈ H1 and h2 ∈ H2. Then:

|(h1, h2)|2 = (|h1|1 + |h2|2)2

≤ C2(‖h1‖1 + ‖h2‖2)2

≤ 2C2(‖h1‖2
1 + ‖h2‖2

2),

so:
|(h1, h2)| ≤

√
2C‖(h1, h2)‖, for all h1 ∈ H1, h2 ∈ H2,

which shows that |(·, ·)| is a weaker norm than ‖(·, ·)‖ on H1⊕H2. Consequently, we
may associate to every x∗ = (x∗1, x

∗
2) in (B1 ⊕ B2)∗ a unique element hx∗ ∈ H1 ⊕H2

such that:

((h1, h2), x∗) = 〈(h1, h2), hx∗〉 , for all (h1, h2) ∈ H1 ⊕H2.

This element is exactly hx∗ = (hx∗1 , hx∗2), where hx∗1 ∈ (H1)B∗1 and hx∗2 ∈ (H2)B∗2 :

((h1, h2), (x∗1, x
∗
2)) = (h1, x

∗
1) + (h2, x

∗
2)

= 〈h1, hx∗1〉1 + 〈h2, hx∗2〉2
= 〈(h1, h2), (hx∗1 , hx∗2)〉,
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for all h1 ∈ H1 and h2 ∈ H2.
Therefore the characteristic functional of the product measure µ1×µ2 on B1⊕B2

is: ∫
B1⊕B2

ei(x
∗
1,x
∗
2) dµ1 × µ2 =

∫
B1×B2

ei(x1,x∗1)+i(x2,x∗2) dµ2(x2) dµ1(x1)

= e
− 1

2
(‖hx∗1‖

2
1+‖hx∗2‖

2
2)

= e
− 1

2
‖(hx∗1 ,hx∗2 )‖2

,

for all x∗1 ∈ B∗1 , x∗2 ∈ B∗2 . Therefore µ1 × µ2 is a centered non-degenerate Gaussian
measure on B1 ⊕B2 with covariance operator:

Rµ1×µ2 ((x∗1, x
∗
2), (y∗1, y

∗
2)) =

〈
(hx∗1 , hx∗2), (hy∗1 , hy∗2 )

〉
,

for all x∗1, y
∗
1 ∈ B∗1 and x∗2, y

∗
2 ∈ B∗2 . We then consider the Cameron-Martin space H

of (B1 ⊕B2, µ1 × µ2):

H :=

(x1, x2) ∈ B1 ⊕B2 : ‖(x1, x2)‖′ := sup
x∗1∈B

∗
1 ,x
∗
2∈B

∗
2

(x∗1,x
∗
2)6=(0,0)

|((x1, x2)(x∗1, x
∗
2))|√

‖hx∗1‖2 + ‖hx∗2‖2

 .

Then note that for any h1 ∈ H1 and h2 ∈ H2:

|((h1, h2), (x∗1, x
∗
2))|2 = (|〈h1, hx∗1〉1|+ |〈h2, hx∗2〉2|)

2

≤ (‖h1‖1‖hx∗1‖1 + ‖h2‖2‖hx∗2‖2)2

≤ (‖h1‖2
1 + ‖h2‖2

2)(‖hx∗1‖
2
1 + ‖hx∗2‖

2
2),

for any x∗1, x
∗
2, so H1 ⊕H2 ⊂ H and:

‖(h1, h2)‖′ ≤ ‖(h1, h2)‖, for all h1 ∈ H1, h2 ∈ H2.

Conversely, suppose (x1, x2) ∈ H. Then by letting x∗2 = 0 we have that:

sup
x∗1∈B

∗
1

x∗1 6=0

|(x1, x
∗
1)|

‖hx∗1‖1

<∞,

therefore x1 belongs to the Cameron-Martin space of (B1, µ1) - which is H1. Similarly,
x2 ∈ H2, so H = H1⊕H2 as sets. Now to see that the norms are the same, note that
for any y∗1 ∈ B∗1 and y∗2 ∈ B∗2 , not both 0:

‖(hy∗1 , hy∗2 )‖′ = sup
x∗1∈B

∗
1 ,x
∗
2∈B

∗
2

(x∗1,x
∗
2) 6=(0,0)

|〈hy∗1 , hx∗1〉1 + 〈hy∗2 , hx∗2〉2|√
‖hx∗1‖2 + ‖hx∗2‖2

≥
|〈hy∗1 , hy∗1 〉1 + 〈hy∗2 , hy∗2 〉2|√

‖hy∗1‖2 + ‖hy∗2‖2

= ‖(hy∗1 , hy∗2 )‖,
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so:
‖(hx∗)‖′ ≥ ‖hx∗‖, for all 0 6= x∗ ∈ (B1 ⊕B2)∗. (4.18)

To every x∗ = (x∗1, x
∗
2) ∈ (B1 ⊕ B2)∗ we may associate a unique h′x∗ = (h′x∗1 , h

′
x∗2

) ∈
H = H1 ⊕ H2 such that (h1, x

∗
1) + (h2, x

∗
2) = 〈h1, h

′
x∗1
〉1 + 〈h2, hx∗2〉2 for all h1 ∈ H1,

h2 ∈ H2, and {h′x∗ : x∗ ∈ (B1 ⊕ B2)∗} is dense in H. But since (h1, x
∗
1) + (h2, x

∗
2) =

〈h1, hx∗1〉1 + 〈h2, hx∗2〉2 for all h1, h2, it follows that h′x∗1 = hx∗1 and h′x∗2 = hx∗2 for all
x∗1, x

∗
2. Then, since {hx∗ : x∗ ∈ (B1 ⊕ B2)∗} is dense in both H and H1 ⊕H2, (4.18)

yields:
‖(h1, h2)‖′ ≥ ‖(h1, h2)‖,

which proves that H and H1 ⊕H2 are the same as Hilbert spaces, and so H1 ⊕H2 is
the Cameron-Martin space of B1 ⊕B2.

Now consider the map I : H1 ⊕ H2 → L2(B1 ⊕ B2, µ1 × µ2) described in (1.21).
Let {(x1

n)∗}n∈N ⊂ B∗1 and {(x2
n)∗}n∈N ⊂ B∗2 be such that:

h(x1
n)∗ → h1 in H1 and h(x2

n)∗ → h2 in H2.

Then: (
h(x1

n)∗ , h(x2
n)∗
)
→ (h1, h2) in H1 ⊕H2,

so I(h1, h2) is the L2(B1⊕B2, µ1×µ2)-limit of {((x1
n)∗, (x2

n)∗)}n∈N. For every k = 1, 2,
Ikhk is the L2(Bk, µk)-limit of {(xkn)∗}n∈N. Let (I1h1, I2h2) denote the map:

B1 ⊕B2 3 (x1, x2) 7→ (I1h1)(x1) + (I2h2)(x2).

Then:

‖(I1h1, I2h2)− ((x1
n)∗, (x2

n)∗)‖2
L2(B1⊕B2,µ1×µ2)

=

∫
B1⊕B2

[
(I1h1 − (x1

n)∗)(x1) + (I2h2 − (x2
n)∗)(x2)

]
dµ1 × µ2(x1, x2)

≤ ‖I1h1 − (x1
n)∗‖2

L2(B1,µ1) + ‖I2h2 − (x2
n)∗‖2

L2(B2,µ2)

+2‖I1h1 − (x1
n)∗‖L2(B1,µ1)‖I2h2 − (x2

n)∗‖L2(B2,µ2)
n→∞−−−→ 0.

So:
I(h1, h2) = (I1h1, I2h2).

Let us re-analyze the ridge regression problem from this perspective. So let
(H,B, µ) be an abstract Wiener space, where H is a real in�nite-dimensional RKHS
over a separable topological space X , with reproducing kernel K. Let

D = {(t1, y1), . . . , (tn, yn)} ⊂ X × R

be our training data. Recall that we would like a �repository� for the measurment
errors which is orthogonal to H, so let (H ′, B′, µ′) be another abstract Wiener space,
where H ′ is a real separable in�nite-dimensional Hilbert space.

For every t ∈ X let Kt = K(t, ·) ∈ H and:

K̃t := I⊕(Kt, 0) ∈ L2(B ⊕B′, µ× µ′),
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where I⊕ : H ⊕ H ′ → L2(B ⊕ B′, µ × µ′) is the Paley-Wiener map in (1.21). As
previously noted:

K̃t(x, x
′) = (IKt)(x),

where I : H → L2(B, µ) is the Paley-Wiener map for (H,B, µ). Let {ej}j∈N be an
orthonormal basis for H ′ and λ > 0. For every j ∈ N, let:

ẽj := I⊕(0, ej); ẽj(x, x
′) = (I ′ej)(x

′),

where I ′ : H ′ → L2(B′, µ′) is the Paley-Wiener map for (H ′, B′, µ′). Then:

I⊕(Kt,
√
λej) = K̃t +

√
λẽj,

for all t ∈ X and j ∈ N. Then Lemma 4.3 and Theorem 3.14 yield:

f̂λ,D(t) = E[K̃t|K̃tj +
√
λẽj = yj, 1 ≤ j ≤ n] (4.19)

= GK̃t

(
n⋂
j=1

[〈(Ktj ,
√
λej), ·〉 = yj]

)
, (4.20)

where f̂λ,D is the ridge regression solution in (4.3) and both the conditional expecta-
tion and the Gaussian Radon transform above are on B ⊕ B′. Remark that, in this
approach, for any n training points and any future input t ∈ X , we can just work
with the same {ẽ1, . . . , ẽn}, and we no longer need to choose {e1, . . . , en} based on
the training set and the input t.
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Appendix A

Category Theory and the Kolmogorov Exis-

tence Theorem

A.1 Kolmogorov's Existence Theorem

Let T be an in�nite index set and J be the collection of all �nite non-empty subsets
of T . Suppose that

{(Ωt,Ft)}t∈T
is an indexed family of measurable spaces. For every non-empty set J ⊂ T let ΩJ

denote the product:

ΩJ :=
∏
t∈J

Ωt = {x : J → ∪t∈JΩt : x(t) = ωt ∈ Ωt,∀t ∈ J}.

We denote such elements x of ΩJ as ω = (ωt)t∈J . In particular, let Ω′ denote ΩT :

Ω′ :=
∏
t∈T

Ωt.

For any non-empty subsets I ⊂ J ⊂ T let πJI denote the projection map from ΩJ

onto ΩI :
πJI : ΩJ → ΩI ; πJI ((ωt)t∈J) = (ωt)t∈I . (A.1)

Note that if ∅ 6= H ⊂ I ⊂ J ⊂ T :

πIH ◦ πJI = πJH . (A.2)

For every non-empty subset J ⊂ T de�ne the collection EJ as follows:

EJ :=

{∏
t∈J

Bt : Bt ∈ Ft,∀t ∈ J , and Bt = Ωt for all but �nitely many t ∈ J

}
,

and let FJ = σ(EJ) be the σ-algebra generated by EJ . In particular, let E ′ denote ET
and F ′ = σ(E ′). Then (ΩJ ,FJ) is a measurable space for every ∅ 6= J ⊂ T , called the
product of the family {(Ωt,Ft)}t∈J and denoted:

(ΩJ ,FJ) = ⊗t∈J(Ωt,Ft).

Note that FJ is the smallest σ-algebra on ΩJ with respect to which πJ{t} is FJ - F{t}
measurable for every t ∈ J .

Now for every non-empty �nite subset F ∈ J of T let the collection CF be de�ned
as:

CF := {π−1
F (B) : B ∈ FF} ⊂ Ω,
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where πF denotes the projection map πTF . Elements of CF are called F -cylinders.
Finally, de�ne the collection C of cylinders by:

C :=
⋃
F∈J

CF .

The collection C is an algebra of subsets of Ω′, and in fact it generates F ′:

F ′ = σ(C).

With these notations, we may now give the following de�nition.

De�nition A.1. Suppose that µF is a probability measure on (ΩF ,FF ) for every
F ∈ J . We say that (µF )F∈J is a projective family of probability measures if:

πGF (µG) = µF , for all F,G ∈ J with F ⊂ G, (A.3)

where the left-hand side is the image measure of µG under πGF :

πGF (µG)(B) = µG
[
(πGF )−1(B)

]
, for all B ∈ FF .

A probability measure µ′ on (Ω′,F ′) is called a projective limit of the projective family
(µF )F∈J if:

πF (µ′) = µF , for all F ∈ J , (A.4)

where, once again, the left-hand side is the image measure of µ′ under πF . In this
case, we write:

µ′ = lim
←−
F∈J

µF .

It is easily shown that any projective family of probability measures has at most
one projective limit. Perhaps the most important example of a projective limit is
the product measure: suppose (Ωt,Ft, µt) is a probability space for every t ∈ T . We
can quickly form a projective family by letting µF = ⊗t∈Fµt be the �nite product
measure for every F ∈ J . Then (µF )F∈J has a projective limit µ′, which is the unique
measure on Ω such that:

µ′(B) =
∏
t∈T

µt(Bt), for all B =
∏
t∈T

Bt ∈ E ′.

In general, it may not be possible to determine whether or not an arbitrary pro-
jective family of probability measures has a projective limit. However, if each Ωt

is a Polish space - a separable topological space which is metrizable by means of a
complete metric - and Ft is the Borel σ-algebra of Ωt, the celebrated Kolmogorov
Extension Theorem shows that this is indeed possible. We state this result next.

Theorem A.1. Let T be an in�nite index set, J denote the collection of all non-
empty �nite subsets of T , and Xt be a Polish space with its Borel σ-algebra Bt for
every t ∈ T . Then any projective family (µF )F∈J of probability measures on (ΩF , µF )
for F ∈ J has a projective limit.

Next, we will �translate� this fundamental result in the language of category the-
ory. Before we proceed, we review some of the basic concepts of this theory.
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A.2 Category Theory

Suppose we have a collection Obj of objects and a collection Mor of morphisms, or
arrows, where to each morphism f there is associated an object s(f) called its domain,
or source, and an object t(f) called its codomain, or target. We express this as:

s(f)
f−→ t(f) or f : s(f)→ t(f).

We let Mor(a, b) denote the set of all morphisms with source a and target b, for any
objects a and b. A composition rule is de�ned by associating to each f ∈ Mor(a, b)
and g ∈Mor(b, c) a morphism gf ∈Mor(a, c), for all objects a, b, c.

We say that Obj and Mor specify a category provided that the composition rule
satis�es the following axioms (pictured in Figure A.1):

i. Associativity: f(gh) = (fg)h for all h ∈ Mor(a, b), g ∈ Mor(b, c) and f ∈
Mor(c, d) and all objects a, b, c, d.

ii. Identity Morphism: For each object a there is an arrow ia ∈Mor(a, a) such that
fia = ibf = f for any f ∈Mor(a, b).

c 

b 

a 

d 

(a) Associativity.

b 

a 

a 

b 

(b) Identity Morphism.

Figure A.1: Axioms of category theory.

An arrow f ∈ Mor(a, b) is said to be an isomorphism if there is an arrow g ∈
Mor(b, a) such that gf = ia and fg = ib. An initial object is an object o with the
property that for any object a there is a unique arrow o→ a. Similarly, a �nal object
is an object ô such that for any object a there is a unique arrow a → ô. It is easily
shown that any two initial (�nal) objects are isomorphic. Let us look at some basic
examples of categories.

Example A.1. The category Set:

• Objects: Sets.
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• Morphisms: Functions.

The initial object of this category is the empty set ∅ (with the empty functions
∅ → A as morphisms) and every singleton set {a} is a �nal object (with morphisms
the functions that map all the elements of the source set to the single target element).

Example A.2. The category VectF:

• Objects: All vector spaces over a �xed �eld F.

• Morphisms: Linear transformations.

The zero vector space {0} is both the initial object (with morphisms 0 7→ 0) and the
�nal object (with morphisms v 7→ 0) in this category.

Example A.3. The category Top:

• Objects: Topological spaces.

• Morphisms: Continuous functions.

The initial object in this category is ∅ (as a topological space) and any singleton (as
the topology {∅, {a}}) is a �nal object.

Example A.4. A category on a poset: Let Γ be a non-empty set equipped with a
partial order ≤, that is:

i. α ≤ α for all α ∈ Γ.

ii. If α ≤ β and β ≤ α for some α, β ∈ Γ, then α = β.

iii. If α ≤ β and β ≤ κ for some α, β, κ ∈ Γ, then α ≤ κ.

We form a category as follows:

• Objects: The elements of Γ.

• Morphisms: We let α→ β denote α ≤ β.

Note that for any α, β ∈ Γ we either have a unique arrow α→ β or there is no arrow
from α to β. A rule of composition is provided by transitivity of the partial order.
Any minimal object is an initial object, and any maximal elements is a �nal object
in this category.

Next, we de�ne a special type of map between categories, called a functor.

De�nition A.2. Suppose that C1 and C2 are categories. A functor F : C1 →
C2 associates to every object a ∈ Obj(C1) an object F (a) ∈ Obj(C2) and to each
morphism f : a→ b in C1 a morphism F (f) : F (a)→ F (b) in C2 such that:

i. F (fg) = F (f)F (g), whenever fg is de�ned.

ii. F (ia) = iF (a), for all objects a in C1.
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Similarly, a contravariant functor F : C1 → C2 associates to each object a ∈ Obj(C1)
an object F (a) ∈ Obj(C2), but to each morphism f : a → b in C1 a morphism
F (f) : F (b)→ F (a) in C2 such that:

i. F (fg) = F (g)F (f), whenever fg is de�ned.

ii. F (ia) = iF (a), for all objects a in C1.

Another important concept for our discussion is that of diagram.

De�nition A.3. A diagram in a category C is a non-empty set D of objects and
arrows between these objects in C such that D is itself a category, that is D contains
composites whenever they are de�ned in C and D also contains ia for all objects
a in D. We say that a diagram is commutative if f1f2 . . . fn = g1g2 . . . gm for all
arrows fi, gj in D for which these composites are de�ned - in other words, all directed
paths within the diagram D that have the same endpoints lead to the same result by
composition.

An important type of diagram is an indexed diagram. Suppose Γ is a non-empty
set equipped with a partial order ≤ and C is a category. Consider a contravariant
functor F : Γ → C, where Γ is considered a category as in Example A.4. Then F
associates to every α ∈ Γ an object Fα in C, and to every α ≤ β in Γ a morphism
fαβ : Fβ → Fα that satis�es:

fαβfβκ = fακ, for all α ≤ β ≤ κ in Γ.

Note that F associates to α ≤ α in Γ the identity morphism fαα = iFα . Therefore
the objects Fα along with the morphisms fαβ form a commutative diagram in C. We
denote such an indexed diagram by:

D(F ),

whenever F : Γ→ C is a contravariant functor from a poset into the category C.
Finally, we discuss the concept of cone in a category.

De�nition A.4. Let D be a commutative diagram in a category C and v be an
object in C. A cone with vertex v and base D is speci�ed by arrows pb : v → b for
every object b in D such that the combined diagram of D along with the object v
and all the arrows pb, is commutative. We denote such a cone by v ? D.

The collection of all cones with base D can be thought of as the objects of a
category we denote ConeD . The morphisms in this category are de�ned as follows: if
v ?D and w?D are cones with base D and vertices v and w, respectively, a morphism
of cones f : (v ?D)→ (w ?D) is an arrow f : v → w in the category C such that the
combined diagram [(v ? D), f, (w ? D)] is commutative. We are now ready to de�ne
the concept of projective limit in the sense of category theory.

De�nition A.5. Let D be a commutative diagram in a category C. A projective
limit of the diagram D is a �nal object in the category ConeD , that is a cone ô ? D
such that for any cone v ? D there is a unique morphism of cones v ? D → ô ? D.
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We will deal in particular with cones whose base is an indexed diagram D(F ),
where F : Γ→ C is a contravariant functor from a poset Γ to the category C. Then,
as pictured in Figure A.2, the cone v ? D(F ) is speci�ed by morphisms pα : v → Fα
for all α ∈ Γ that satisf fαβpβ = pα for all α ≤ β in Γ.

Fα 

Fκ 

Fβ 

fακ 

fαβ 

fβκ 

𝜶 ≤ 𝜷 ≤ 𝜿;  𝒇𝜶𝜷𝒇𝜷𝜿 = 𝒇𝜶𝜿 

(a) An indexed diagram.

v 

Fκ 

Fα 

Fβ 

pβ pκ pα 

fαβ fακ 

fβκ 

𝒇𝜶𝜷𝒑𝜷 = 𝒑𝜶 

(b) An indexed cone.

Figure A.2: An indexed diagram and an indexed cone.

If v?D(F ) and w?D(F ) are indexed cones with baseD(F ), speci�ed by morphisms
pα : v → Fα and qα : w → Fα, respectively, a morphism f : v ? D(F ) → w ? D(F )
is an arrow f : v → w in C that satis�es qαf = pα = fαβpβ for all α ≤ β in Γ, as
pictured in Figure A.3.

v 

Fκ 

Fα 

Fβ 

pβ 

pκ 

pα fαβ fακ 

fβκ 

w 

qκ 

qβ 

qα 

f 

Figure A.3: A morphism of indexed cones.
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A.3 A Categorical Interpretation of Kolmogorov's

Existence Theorem

In an attempt to �translate� Kolmogorov's Existence Theorem into the language of
category theory, we posed the question of forming a category of Polish probability
spaces - that is, probability spaces (F ,B, µ) where X is a Polish space and B is its
Borel σ-algebra - and investigate whether or not every diagram has a projective limit.
However, one issue quickly arises: while countable products of Polish spaces are also
Polish spaces, arbitrary products of Polish spaces are not necessarily so. We therefore
worked within the larger category P whose objects are probability spaces and whose
morphisms are measurable functions, with regular composition of functions. We work
with a special type of diagram in this category, which we call a Kolmogorov diagram
and de�ne next. Essentially, this is an indexed diagram whose objects are Polish
probability spaces and some extra assumptions are made on its morphisms.

De�nition A.6. Let Γ be an in�nite index set equipped with a directed partial order
≤, that is for every α, β ∈ Γ there is κ ∈ Γ such that α ≤ κ and β ≤ κ. Let F : Γ→ P
be a contravariant functor, so for every α ∈ Γ we have a probability space (Ωα,Bα, µα)
and for every α ≤ β in Γ there are measurable functions pαβ : Ωβ → Ωα such that:

pαβpβκ = pακ, for all α ≤ β ≤ κ in Γ. (A.5)

We say that the resulting indexed diagram D(F ) is a Kolmogorov diagram pro-
vided that the following conditions hold:

i. For every α ∈ Γ, Ωα is a Polish space and Bα is its Borel σ-algebra.

ii. Each map pαβ is continuous and surjective.

iii. The maps pαβ satisfy the Kolmogorov Consistency Condition:

µβ
(
p−1
αβ(B)

)
= µα(B), for all α ≤ β in Γ and B ∈ Bα. (A.6)

Suppose now that D(F ) is a Kolmogorov diagram as in De�nition A.6 and let:

Ω′ :=
∏
α∈Γ

Ωα.

The set Ω′ is unfortunately too large to be truly useful, so we concentrate instead on
a special subset Ω of Ω′, de�ned by:

Ω := {(ωα)α∈Γ ∈ Ω′ : pαβ(ωβ) = ωα,∀α ≤ β in Γ} . (A.7)

If we let πα : Ω′ → Ωα; ω 7→ ωα denote the projection map for every α ∈ Γ and

pα = πα|Ω
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denote the restriction of each projection map to Ω, the condition in the de�nition of
Ω becomes:

pαβpβ = pα, for all α ≤ β in Γ. (A.8)

As pictured in Figure A.4, this makes us think of a cone. However, we do not yet
have a cone, because we need a probability space for the vertex. So our goal will be
to construct a σ-algebra and a probability measure on Ω. Before we proceed though,
one important issue remains: Ω could be empty! To avoid this possibility, we impose
the Sequential Maximality Condition, �rst introduced by Bochner. As we shall see
below, this condition ensures that Ω is non-empty.

Ω 

Ω κ 

Ω α 

Ω β 

pβ pκ pα 

pαβ pακ 

pβκ 

Figure A.4: A possible cone based on a Kolmogorov diagram.

De�nition A.7. Let D(F ) be a Kolmogorov diagram as in De�nition A.6 and Ω be
the set de�ned in (A.7). We say that D(F ) satis�es the Sequential Maximality

Condition provided that for every increasing sequence α1 ≤ α2 ≤ . . . in Γ and every
sequence {ωn}n∈N with ωn ∈ Ωαn for every n such that:

ωn = pαnαn+1(ωn+1), for all n ∈ N,

there exists ω ∈ Ω such that pαn(ω) = ωn for all n.

The next result shows that imposing these conditions on a diagram in P leads to a
projective limit in the sense of category theory. Moreover, we will see how this result
implies Kolmogorov's Existence Theorem.

Theorem A.2. Let D(F ) be a Kolmogorov diagram, as in De�nition A.6, which
satis�es the Sequential Maximality Condition. Then:

i. The set Ω de�ned in (A.7) is non-empty. Moreover, the projection maps pα :
Ω→ Ωα are surjective for all α ∈ Γ.
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ii. For every α ∈ Γ consider the σ-algebra of subsets of Ω generated by pα:

B′α := p−1
α (Bα) = {p−1

α (B) : B ∈ Bα},

and let:
A :=

⋃
α∈Γ

B′α.

Then A is an algebra of subsets of Ω and:

µ′
(
p−1
α (B)

)
:= µα(B), for all α ∈ Γ, B ∈ Bα, (A.9)

de�nes a countably additive probability measure on A.

iii. Let µ denote the extension of µ′ to F := σ(A). Then the cone Ω ? D(F ), with
vertex (Ω,F , µ) and base D(F ), is the projective limit of the diagram D(F ).

Proof. i. Let α1 ≤ α2 ≤ . . . be an increasing sequence in Γ and pick for every n ∈ N
a non-empty Borel set Bn ∈ Bαn such that:

inf
n∈N

µαn(Bn) = ε,

for some ε > 0. For instance, we can choose Bn = Ωαn for all n and ε = 1. Now
recall that any �nite Borel measure on a Polish space is regular, so for every n we
may choose a non-empty compact set Dn ⊂ Bn such that:

µαn(Bn \Dn) <
ε

2n+1
. (A.10)

Let:

Cn := p−1
α1αn

(D1) ∩ p−1
α2αn

(D2) ∩ . . . ∩ p−1
αnαn(Dn), for all n ∈ N. (A.11)

Recall that pαnαn = 11Ωαn , so Cn ⊂ Dn. Since every map pαjαn is continuous, Cn is a
closed subset of the compact space Dn, therefore Cn is compact.

To see that each Cn is non-empty, note that for all n:

Bn \ Cn =
n⋃
j=1

(
Bn \ p−1

αjαn
(Dj)

)
=

n⋃
j=1

p−1
αjαn

(Bj \Dj),

so:

µαn(Bn \ Cn) ≤
n∑
j=1

µαn

(
p−1
αjαn

(Bj \Dj)
)

=
n∑
j=1

µαj(Bj \Dj) (by (A.6))

<
∞∑
j=1

ε

2n+1

=
ε

2
.
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Then:
µαn(Cn) > µαn(Bn)− ε

2
≥ ε

2
> 0,

which proves that Cn cannot be empty.
Now let n ≤ m be positive integers. Then:

pαnαm(Cm) = pαnαm

(
m⋂
j=1

p−1
αjαn

(Dj)

)
⊂

n⋂
j=1

pαnαmp
−1
αjαm

(Dj).

If 1 ≤ j ≤ n, then αj ≤ αn ≤ αm, so pαnαnpαnαm = pαjαm . Then:

pαnαmp
−1
αjαm

(Dj) = p−1
αjαn

(Dj),

by surjectivity of pαnαm . So:

pαnαm(Cm) ⊂
n⋂
j=1

p−1
αjαn

(Dj) = Cn.

We have shown that:
pαnαm(Cm) ⊂ Cn, for all n ≤ m. (A.12)

Consider now:
C :=

∏
n∈N

Cn ⊂ Ω′,

a compact set by Tychono�'s theorem. For every n set:

Kn :=
{
ω ∈ C : pαnαn+1(ωn+1) = ωn

}
.

Remark that each Kn is non-empty: by (A.12), we may simply pick ωn+1 ∈ Cn+1 and
ωn = pαnαn+1(ωn+1) ∈ Cn. For every n consider the map:

fn : C → Cn × Cn; fn(ω) =
(
ωn, pαnαn+1(ωn+1)

)
.

Then fn is continuous, so the diagonal ∆n of fn is closed. Therefore Kn = f−1
n (∆n)

is closed in C, so Kn is compact. If we can show that the collection {Kn}n∈N has the
Finite Intersection Property, we will have that

⋂
n∈NKn 6= ∅. In turn, this gives us a

sequence {ωn} with ωn ∈ Cn ⊂ Ωαn and:

pαnαn+1(ωn+1) = ωn

for all n. Since our diagram satis�es the Sequential Maximality Condition, there is
ω ∈ Ω such that pαn(ω) = ωn for all n, proving that Ω is non-empty.

So consider positive integers n1 < n2 < . . . < nm, pick any

unm+1 ∈ Cnm+1,

and let:

ui = pαiαnj+1(unj+1) ∈ Ci, for all nj−1 + 1 ≤ i ≤ nj, 1 ≤ j ≤ m,
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where n0 = 0. Let ω ∈ C be given by:

ωi =

{
ui, if i ≤ nm + 1
arbitrary in Ci, if i > nm + 1.

Then for any 1 ≤ j ≤ m:

pαjαnj+1(ωnj+1) = unj = ωnj ,

which proves that ω ∈ Kj for all 1 ≤ j ≤ m, so {Kn}n has the Finite Intersection
Property, as desired.

To prove that the projection maps are surjective, let α ∈ Γ and ω′α ∈ Ωα. Choose
α2 ≥ α1 := α in Γ. Since pα1α2 is surjective, choose ω2 ∈ Ωα2 such that ω1 := ω′α =
pα1α2(ω2). Continuing this process inductively, we obtain a sequence α1 ≤ α2 ≤ . . .
in Γ and ωn ∈ Ωαn for all n such that ωn = pαnαn+1(ωn+1). Then from the Sequential
Maximality Condition there is ω ∈ Ω such that pα(ω) = ω′α, or pα(ω) = ω′α.

ii. We begin by noting that if α ≤ β in Γ and E = p−1
α (B) for some B ∈ Bα, we

may express E as:
E = (pαβpβ)−1(B) = p−1

β

(
p−1
αβ(B)

)
,

where we used (A.8). Since pαβ is measurable, this means that E ∈ B′β:

B′α ⊂ B′β, for all α ≤ β in Γ. (A.13)

Now A is clearly closed under complementation. If A,B ∈ A then there are α, β ∈ Γ
such that A ∈ B′α and B ∈ B′β. But since Γ is directed, there is κ ∈ Γ such that α ≤ κ
and β ≤ κ. From (A.13), both A and B are in B′κ, so A ∪B ∈ B′κ ⊂ A. So indeed A
is an algebra.

Let E ∈ A and α ∈ Γ such that E ∈ B′α. Note that since pα is surjective,
B = pα(E) is the unique element of Bα such that E = p−1

α (B). Now suppose β ∈ Γ
is such that E ∈ B′β as well. Pick κ ∈ Γ such that α ≤ κ and β ≤ κ. As above, we
may express:

µ′(E) = µ′
(
p−1
κ (p−1

ακ(B))
)

= µκ(p
−1
αβ(B))

= µα(B),

where the last equality follows from the Kolmogorov Consistency Condition. Simi-
larly, we see that µ′(E) = µβ(C), where C ∈ B′β is such that E = p−1

β (C). So µ′ is
well-de�ned. To see that µ′ is a �nitely additive measure, note that:

µ′(∅) = µα(∅) = 0 and µ′(Ω) = µα(Ωα) = 1, for any α ∈ Γ,

and if A,B ∈ A with A ∩ B = ∅ then there is α ∈ Γ such that A = p−1
α (C) and

B = p−1
α (D), for disjoint elements C,D in Bα, so:

µ′(A ∪B) = µα(C ∪D) = µα(C) + µα(D) = µ′(A) + µ′(B).
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Finally, to see that µ′ is countably additive on A, it su�ces to prove that if
E1 ⊃ E2 ⊃ . . . is a decreasing sequence of non-empty sets in A such that:

inf
n∈N

µ′(En) = ε > 0,

then ∩nEn is non-empty. Because Γ is directed, we may produce a sequence α1 ≤
α2 ≤ . . . in Γ such that En ∈ B′αn for al n. So let Bn ∈ Bαn be such that En = p−1

αn(Bn)
for all n. We use regularity of µαn to choose for every n a non-empty compact subset
Dn ⊂ Bn such that µαn(Bn \Dn) < ε/2n+1 and let Cn be de�ned as in (A.11). Then
we proceed exactly as in the proof of part i. of this theorem, and produce an element
ω ∈ Ω with pαn(ω) ∈ Cn ⊂ Bn. Then ω ∈ ∩nEn, which proves the claim.

iii. Now that we proved µ′ is countably additive on A, the Hopf Extension Theo-
rem shows that there is a probability measure µ on F = σ(A) such that:

µ
(
p−1
α (B)

)
= µα(B), for all α ∈ Γ, B ∈ Bα. (A.14)

We now have a legitimate cone in the category P, as in A.4.
Suppose that (X ,B, λ) is the vertex of another cone in P with base D(F ), with

maps qα : X → Ωα for every α ∈ Γ. For every x ∈ X , consider:

f(x) = y := (qα(x))α∈Γ ∈ Ω′.

Then pαβ(yβ) = pαβ(qβ(x)) = qα(x) = yα for any α ≤ β in Γ, so f(x) ∈ Ω. So:

f : (X ,B, λ)→ (Ω,F , µ);x 7→ (qα(x))α∈Γ

is well-de�ned. Moreover:

pαf(x) = qα(x), for all x ∈ X , α ∈ Γ,

so the combined diagram (Ω ? D(F ), f,X ? D(F )) is commutative. Therefore f is a
morphism of cones with base D(F ) in P.

If g : X → Ω is another such morphism of cones, then for all x ∈ X and α ∈ Γ:
pαg(x) = qα(x), so g(x) = (qα(x))α∈Γ = f(x). Thus for every cone X ?D(F ) with base
D(F ) there exists a unique morphism (X ,B, λ) → (Ω,F , µ), proving that Ω ? D(F )
is indeed the projective limit of D(F ).

Let us see how this result implies Kolmogorov's Existence Theorem. So let T be
an in�nite index set, J be the collection of all �nite subsets of T , and suppose (Xt,Bt)
is a Polish space with its Borel σ-algebra for every t ∈ T . Now let µF be a probability
measure on every �nite product (XF ,BF ), where F ∈ J , such that (µF )F∈J is a
projective family, that is:

πGF (µG) = µF , (A.15)

where πGF : XG → XF is the projection map for every F ⊂ G in J . Note that inclusion
is a directed partial order on J and for every F ∈ J we have a Polish probability
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space (XF ,BF , µF ) and surjective maps pFG = πGF given by projection for all F ⊂ G
in J , that satisfy:

πGF π
H
G = πHF , for all F ⊂ G ⊂ H in J .

Finally, (A.15) translates to the Kolmogorov Consistency Condition in (A.6), so the
collection DJ of objects (XF ,BF , µF ) for F ∈ J , together with the maps πGF , forms
a Kolmogorov diagram in the category P.

If ω = (ωt)t∈T is an element of the product space Ω′:

πGF (ωG) = πGF ((ωt)t∈G) = (ωt)t∈F = ωF ,

so in this case the space Ω in Theorem A.2 is the whole product space Ω′, and the
Sequential Maximality Condition is trivially satis�ed. Moreover, the algebra A in
Theorem A.2 is the algebra of cylinder subsets of Ω′, so σ(A) = F ′ is the classical
σ-algebra of subsets of Ω′ mentioned in Section A.1. The measure µ obtained in
Theorem A.2 satis�es:

µ
(
π−1
F (B)

)
= µF (B), for all F ∈ J , B ∈ BF ,

which translates exactly to (A.4). So µ is the projective limit of the family (µF )F∈J
in the sense of De�nition A.1, and the cone Ω′ ? DJ with vertex (Ω′,F ′, µ) and base
DJ is the projective limit of the diagram DJ in the sense of category theory.
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Appendix B

Permission for Use

The main results presented in this thesis have previously appeared in the journal
articles [16] and [17].

The �rst article, [16], appeared in the Elsevier Inc. Journal of Functional Analysis.
According to the �Author Rights� webpage of Elsevier:

http://www.elsevier.com/journal-authors/author-rights-and-responsibilities,

authors may use �either their accepted author manuscript or �nal published article�
for a range of purposes, which include �inclusion in a thesis or dissertation.�

The second article, [17], appeared in the World Scienti�c journal In�nite Dimen-
sional Analysis, Quantum Probability and Related Topics. According to the World
Scienti�c �Author Rights� webpage:

http://www.worldscienti�c.com/page/authors/author-rights,

authors �may post the preprint anywhere at any time,� provided that it is accompanied
by the acknowledgement that the printed version appears in the particular World
Scienti�c journal.
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