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Abstract

The classical Radon transform can be thought of as a way to obtain the density of
an n-dimensional object from its (n — 1)-dimensional sections in different directions.
A generalization of this transform to infinite-dimensional spaces has the potential to
allow one to obtain a function defined on an infinite-dimensional space from its con-
ditional expectations. We work within a standard framework in infinite-dimensional
analysis, that of abstract Wiener spaces, developed by L. Gross. An abstract Wiener
space is a triple (H, B, u) where H is a real separable Hilbert space, B is the Banach
space obtained by completing H with respect to a measurable norm, and u is Wiener
measure on B.

The main obstacle in infinite-dimensional analysis is the absence of a useful ver-
sion of Lebesgue measure. To overcome this, we construct Gaussian measures fiyy,
on B, concentrated on closed affine subspaces p + M, of B, where M, is any closed
subspace of H, and then define the Gaussian Radon transform Gf of a bounded
Borel function f on B using these measures. We investigate the relationship between
the closed subspaces of finite codimension in B and those in H, and also investigate
properties of the Gaussian Radon transform. Among these, we prove a disintegration
theorem and express G f as a conditional expectation. We provide an inversion pro-
cedure for the Gaussian Radon transform which uses the Segal-Bargmann transform.
Finally, we present some possible applications of the Gaussian Radon transform to
machine learning, by showing that G f provides a stochastic interpretation of the ridge
regression problem.

vil



Chapter 1
Introduction

The classical Radon transform, first developed by Johann Radon in 1917, is defined
for a function f: R" — R as:

RF(P) = /Pfdlp, (1.1)

for all hyperplanes P in R", where for every P integration is with respect to Lebesgue
measure [p on P. One may think of the hyperplane P as a “ray” shooting through
the support of f, as pictured in Figure [I.1} and integrating f over P may be viewed
as measuring the changes in the “density” of f as the ray passes through it. In
this sense, Rf provides a way to reconstruct the density of an n-dimensional object
from its known (n — 1)-dimensional cross sections. It is through this line of thinking
that the Radon transform became the mathematical backbone of medical CT scans,
tomography and other image reconstruction applications.

fxy)

\/

Figure 1.1: The classical Radon transform.

The goal of this work is to develop an infinite-dimensional version of the Radon
transform. The main problem in infinite-dimensional analysis is the absence of a
useful version of Lebesgue measure. However, Gaussian measures are known to be
well-behaved in infinite-dimensional settings; with this in mind, we will be taking a
probabilistic approach to this problem. Therefore the previously mentioned property
of the classical Radon transform, that of recovering n-dimensional objects from their



(n — 1)-dimensional sections, will become in our setting the ability to recover infor-
mation about a function defined on an infinite-dimensional space from its conditional
expectations.

Of the two standard frameworks in infinite-dimensional analysis, nuclear spaces
and abstract Wiener spaces, we work within the latter. Abstract Wiener spaces
were first developed by Leonard Gross in the celebrated work [13]. We continue the
present chapter with some background material. In Section [I.I] we present the basic
definitions and some results about Gaussian measures, as well as some of the reasons
behind the popularity of Gaussian measures in infinite-dimensional analysis. Section
introduces the concept of measurable norm, necessary to then define abstract
Wiener spaces, and also presents some of the basic properties of abstract Wiener
spaces.

Before we proceed, we present a short outline of this work. Our first goal in
developing a Radon transform for an infinite-dimensional Banach space B was to
construct an appropriate measure on every hyperplane of B, which would correspond
to the measures [p in . In Chapter [2| we more generally construct probability
measures /iy, on an infinite-dimensional Banach space B which are concentrated on
closed affine subspaces. In this chapter we also explore the relationship between the
closed subspace of finite codimension in B and those in an underlying dense Hilbert
space H. Once the measures jiy;, have been constructed, we use them to define the
Gaussian Radon transform. Chapter [3| then explores the properties of the Gaussian
Radon transform, including a disintegration formula, an expression of the Gaussian
Radon transform as a conditional expectation, and an inversion procedure. Finally,
Chapter (] will explore some possible applications of the Gaussian Radon transform
to the field of machine learning.

1.1 Gaussian Measures

Lebesgue measure [ on R" is uniquely determined (up to a constant) by the following
three conditions:

i. [ assigns finite values to bounded Borel sets.
ii. [ assigns positive numbers to non-empty open sets.
iii. [ is translation-invariant.

For this reason, we say that a Borel measure i on a real Hilbert space H is a “Lebesgue
measure” on H if it satisfies the three conditions above. By “the” Lebesgue measure,
one would mean a particular choice of Lebesgue measure that has been specified (for
instance by requiring that a given set, such as the unit cube, have measure 1).
Suppose V is a real finite-dimensional Hilbert space. Lebesgue measure lyy on V'
is given by:
ly(E) :=1[m,"(E)] forall E € B(V), (1.2)



where for any topological vector space X, B(X) denotes the Borel o-algebra of X,
and:
v R" =V (1.3)

is the Hilbert space isomorphism given by:
Ty (x) 1= mey + xaes + ...+ Tpep,

for all z = (x1, 29, ..., 2,) € R", where {e1,€9,...,¢e,} is an orthonormal basis for V.
The measure [y is independent of the choice of orthonormal basis.

Unfortunately, this does not work in infinite dimensions: suppose H is a real
separable infinite-dimensional Hilbert space and that u is a Lebesgue measure on H.
Let {e, }nen be an orthonormal basis for H and for every integer n > 1 let B,, denote
the open ball of radius 1/2 centered at e,. Since each B, is a translate of the open
ball of radius 1/2 centered at 0, a non-empty open, bounded set, we have:

w(B,) =a for all n € N,

where 0 < a < co. Moreover, the sets B,, are mutually disjoint and are all contained
in B, the open ball of radius 2 centered at the origin. But then:

u(B) = pu(By) =) a=oo,

n=1

which contradicts the fact that p assigns finite values to bounded sets.

The absence of a useful version of Lebesgue measure on infinite-dimensional spaces
is one of the major obstacles of infinite-dimensional analysis. However, it was observed
that Gaussian measures behave relatively well in this setting, and they have become
key tools in infinite-dimensional analysis. We begin our review of Gaussian measures
with the simple Euclidean case: for n € N, m € R® and ¢ > 0, the Gaussian measure
on R™ with mean m and variance o2 is the Borel probability measure 7, , given by:

1
fme(E) = = / e—ﬁllﬂc—mﬂ2 dz, (1.4)
(0 277) E

for all E € B(R"), where || - || denotes the usual Euclidean norm on R". A Gaussian
measure with mean 0 is said to be centered and the Gaussian measure vy ; with mean
0 and variance 1 is known as the standard Gaussian measure on R"™. Recall that for
m € R™ Dirac measure 6,, on R" is the probability measure concentrated at the
point m:

1 ,ifmek

5’”(E):{ 0 ,ifmé¢E,

for all Borel subsets & C R™. In fact, 9,, is the weak limit as ¢ — 0 of the probability
measures 7, .. For this reason, 9,, is considered a degenerate (Gaussian measure,
with mean m and variance 0. Gaussian measures with positive variance are said to
be non-degenerate.



Now suppose (€2, F,P) is a probability space. A measurable function X : Q@ — R
is said to be a Gaussian (or normal) random variable provided that the distribution
measure P o X! of X is a Gaussian measure on R. Specifically, we say that X is
Gaussian with mean m and variance o2, denoted:

X ~ N(m,o?),

if the density function px : R — R is given by:

1
px(z) = 5 e 22 ™ for all z € R.
oV2m

An important property of Gaussian random variables X is that:

2
E [¢¥] = PN ZVarX) for all t € C. (1.5)
In particular, the characteristic function of a Gaussian random variable X is given
by:
. . 12
Dy(t) =E [e"*] = MElRI=5VarX) “for all t € C. (1.6)
Conversely, if X : Q — R is a random variable with characteristic function ®y given
by:
) 1252
Px(t)=e"""2  forallteR,
for some m € R and ¢ > 0, then X is Gaussian with mean m and variance o2.

More generally, Gaussian measures may be defined on topological vector spaces.

Definition 1.1. Let X be a real locally convex topological vector space. A Borel
probability measure p on X is said to be a Gaussian measure provided that every con-
tinuous linear functional f € X* viewed as a random variable on (X, ), is Gaussian.
In this case, the mean of p is the linear function m, : X* — R given by:

mu(f) d:ef/ fdp, for all f e X* (1.7)
b's
and the covariance operator R, : X* x X* — R is given by:
ef *
R.(f,9) = / [f —mu()] g —mu(g)] du, for all f,g € X~ (1.8)
b's

Moreover, p is said to be centered if m,(f) = 0 for all f € X*, and said to be
non-degenerate if o f~! is a non-degenerate measure on R” for all non-zero f € X*.

We make a few remarks about this definition.

i. Tt is easily seen that R, is a positive definite, symmetric bilinear form. Moreover,
1 is non-degenerate if and only if R, is strictly positive definite, that is if:

R,(f,f) = Var(f) > 0, for all non-zero f € X"

If v is centered and non-degenerate, then R,(f,g) is simply the inner product of
fand g in L*(X, p).



ii. Since every f € X* is Gaussian with mean m,(f) and variance R, (f, f), we see
from (1.6)) that the characteristic functional of a Gaussian measure p on X is:

() d:ef/ il dy = e D=3RUED for all f e X*. (1.9)
X

Conversely, if 1 is a probability measure on X with characteristic functional:
a(f) = eMN-2K0D for all f e X* (1.10)

where L : X* — R is linear and K : X* x X* — R is a positive definite symmet-
ric bilinear form, then p is the Gaussian measure with mean L and covariance

operator K.
Now suppose V' is a real finite-dimensional Hilbert space and {ey,...,e,} is an
orthonormal basis for V. Moreover, let 71, ..., Z, be independent standard Gaussian

random variables on a probability space (€2, F,P) and consider the V-valued random
variable on .
7 = Z1€1 +...+ Znen.

The Borel distribution measure vy, induced by Z on V:
w(E) =PZe€E|=P|[(Z,...,Z,) €7, (E)], (1.11)

for all Borel subsets E of V, is called standard Gaussian measure on V, where my :
R™ — V is the isomorphism in (1.3). Remark that, regardless of the choice of Q, Zj
or e, the random vector (Z,. .., Z,) induces standard Gaussian measure v, on R",
so for any Borel subset E of V:

Ww(E) = (' (E))

_ / L el g,
N (B) V2T

\4

1 e
~3II% g 1.12
= e dly(v), .
/E oz (v) (1.12)

where [y, is Lebesgue measure on V. The characteristic functional of 7y is then:

/ M) gy — o3 IMIE, (1.13)
\%

for all h € V.

We can already see that the expression in (1.12) makes little sense in infinite
dimensions: (v/27)™" — 0 as n — oo and there is no Lebesgue measure on infinite-
dimensional spaces. Nonetheless, let us try to repeat the process above for a real
separable infinite-dimensional Hilbert space H: let {ej}reny be an orthonormal basis
for H and {Zj}ren be an independent sequence of standard Gaussian random vari-
ables on a probability space (2, F,P). Next, we would like to define an H-valued
random variable Z on ) as:

7= Ze. (1.14)
k=1

5



A problem immediately arises: this series does not converge almost surely. For any
w e

Z((JJ) = ZZk(w)ek
k=1
belongs to H if and only if:
> Zi(w)? < oo (1.15)
k=1

Clearly cannot hold almost everywhere, since the random variables Z; are
independent standard Gaussian.

The central idea behind abstract Wiener spaces is that of “measurable norm”,
introduced by Gross in [13]. The inspiration behind the definition of a measurable
norm came from attempting to “force” the series in to converge; we know this
series does not converge with respect to the original Hilbert norm || - ||, so instead we
consider a weaker norm |- | on H, complete H with respect to this norm to obtain a
Banach space B, and see if converges almost everywhere as a B-valued random
variable. Of course, this new norm | - | must have certain properties in order to lead
to this desired convergence, and we define these next.

1.2 Abstract Wiener Spaces

Definition 1.2. Let H be a real separable Hilbert space with Hilbert norm || - || and
let J(H) be the collection of all finite-dimensional subspaces of H. We say that a
norm | - | on H is measurable if for every e > 0 there is F. € J(H) such that:

Yrlr € F x| > € <e, (1.16)

for all F € J(H) with F' L F,, where vy denotes standard Gaussian measure on
FeJ(H).

Remark that, since all norms are equivalent on finite-dimensional spaces, the set
[z € F :|z| > €| is Borel in (F,| - ), so makes sense. In fact, much more is
true - as the next result shows, every measurable norm |- | on H is weaker than the
original Hilbert norm.

Theorem 1.1. Let H be a real separable Hilbert space with Hilbert norm || || and let
| - | be a measurable norm on H. Then there is ¢ > 0 such that:

|z| < c||z]|, for all x € H. (1.17)

Moreover, if H is infinite-dimensional, then the original Hilbert norm || - || on H is
not a measurable norm.

For a proof, see [21]. As a consequence of Theorem[L.1] if |-| is a measurable norm
on a real separable infinite-dimensional Hilbert space H, then H is not complete with

6



respect to | - |. If it were complete, then (H,|-|) would be a Banach space, and since
| - | is weaker than || - ||, the identity map:

id: (H,|-|) = (H, |-,

would be continuous. By the open mapping theorem, id would then be an open map,
and then |- | and || - || would be equivalent. But then || - || would be a measurable
norm, which is a contradiction.

Let B be the Banach space obtained by completing H with respect to a measurable
norm | - |. Then every 2* € B* is continuous on H with respect to the Hilbert norm
| - |I. To see this, note that since z* is | - |-continuous, there is K > 0 such that:

|(z,2")| < K|z|, for all z € B,

where (x,2*) denotes the usual pairing B — B* for all z € B and z* € B*. But from
Theorem there is ¢ > 0 such that:

|(z, ") < Kl|z| < Kcl||z]|, for all x € H.

By the Riesz representation theorem, we associate to every z* a unique h,« € H given
by:
(h,hys) = (h,x"), for all h € H. (1.18)

Moreover, the map B* — H; * + h,+ is linear and continuous. Clearly:
hm*+ay* - hx* + Oéhy*,

for all z*,y* € B* and a € R, and for every x* € B*:

(R P ) [(hy P )
hy|| = sup ———— sup ———
ol = sup = = sy
h#0 h#£0
< sup d(z.27)] = c|z"ls,
z€EDB |x|
x7#0

where |-|, is the usual norm on B* and c is a positive real number such that |h| < c||hl|
for all h € H.
We let Hp- denote the image of this map in H:

Hp« :={h,» €e H:2" € B"}. (1.19)

Then Hp- is clearly a subspace of H. Now suppose that h € Hz.. Then (h,h,) = 0
for all * € B*, or (h,2*) = 0 for all #* € B*. But the only element of B that is
mapped to 0 by all continuous linear functionals on B is 0, so Hz. = {0}. In this
manner, B* is continuously embedded as the dense subspace Hg- of H.

Theorem 1.2. Let H be a real separable Hilbert space and B be the Banach space

obtained by completing H with respect to a measurable norm |- |. Then there is a
unique Borel probabilily measure v on B, called Wiener measure, such that:
/ ei(xvx*) dlu/(x) e eiéllhz*‘P, (120)
B

for all z* € B*.



This theorem may be proved from the perspective of cylindrical measures, which
we do not focus on here, or from a more probabilistic point of view, using Lemma [2.3
One may find both of these proofs in [21]. Note however that Theorem [2.4] which
we prove in Chapter [2) will directly imply the result above. We now have all the
ingredients to define abstract Wiener spaces.

Definition 1.3. An abstract Wiener space is a triple:

(H’ B7 M)?
where H is a real separable Hilbert space with Hilbert norm || - || = \/{(:,-), B is the
Banach space obtained by completing H with respect to a measurable norm |- |, and

p is Wiener measure on B.

Let (H, B,pu) be an abstract Wiener space. From (1.20), every z* € B*, as a
random variable on (B, i), is centered Gaussian with variance ||, |>. Then:

2

e 12 = | 121" dp = [[ o
B

So the map Hp- — L?(B, it); hy- — x* is continuous with respect to | - ||, and since
Hp- is a dense subspace of H, this map has a unique extension to H. We denote this
extension by:

I:H — L*(B,p);h v+ Ih. (1.21)

Specifically, for h € H we let {hx;}keN be a sequence in Hp« that converges to h in
H. Then the sequence {z} }rey is Cauchy in L?(B, 1), and thus converges to a limit
Ih € L*(B, p); this limit does not depend on the choice of {h,:}.

The map I was first introduced by Gross in [13| and is sometimes referred to as
the Paley-Wiener map. As the L2-limit of a sequence of centered Gaussians with
variances [|h,x ||> = [|h|*, Ih is centered Gaussian with variance ||h[|>. Moreover, I is
an gsometry: let h, b’ € H and {hy: }x, {hy: }r be sequences in Hp- converging in H
to h, h', respectively. Then:

Uh IW) o, = /B (Ih)(IN) du

= lim [ zpy;du
k—oo Jp

= Jm Ghas )
= (h,h).

Remark 1.1. Many authors simply denote this map by h + (-, h) and think of it as a
sort of extension of the inner-product map from H to B, but some measure-theoretic
technicalities arising in Chapter 3| require us to be careful about the fact that Ih is
really an equivalence class of functions defined almost everywhere.



Example 1.1. Let H be the space of all absolutely continuous functions h : [0,1] — R
such that h(0) = 0 and i/ € L?[0,1]. Then H is a real separable infinite-dimensional
Hilbert space with the inner product:

1
(i, ha) 1= / B () (2)d,

0

for all Ay, ho € H. The supremum norm:

[h]loc := sup [h(z)],
0<z<1
for all A € H, is a measurable norm on H, and the completion of H with respect
to || - ||l is the space C of continuous functions f : [0,1] — R with f(0) = 0. The
resulting triple:

(H,C, ),

is known as the classical Wiener space, and the resulting measure p induced by H
on C is known as classical Wiener measure. This space will be explored further in

Section [3.3]

Example 1.2. If T": H — H is an injective Hilbert-Schmidt operator on a real
separable infinite-dimensional Hilbert space, then:

|h| :=||Th||, for all h € H,
defines a measurable norm on H.

So far we have presented the original approach by Gross, that of starting with
H and constructing B and p by completing H with respect to a measurable norm.
However, one can start with any real separable Banach space and turn it into an
abstract Wiener space. Specifically, let B be a real separable Banach space with norm
|- |, v be a centered, non-degenerate Gaussian measure on B, and R, : B* x B* -+ R
be the covariance operator:

R,(z",y") = / x*y* du, for all z*,y* € B*.
B

The Cameron-Martin space of (B, u) is the subspace H C B defined as:

H:=qz€B:|z|]:= sup a2l <00 . (1.22)

04 eB* \/ R, (x*, x*)
Then the norm || - || defined above is a complete inner-product norm on H, it is
stronger than the Banach norm |-|, and H is dense in B. Moreover, the Banach norm

| - | is a measurable norm on H (for an ingenious proof, due to Stroock, of this fact,
see Section VIII of Bruce Driver’s notes [10]). So (H, B,u) is an abstract Wiener
space, and note that H is uniquely determined by (B, u). Conversely, if (H, B, i) is
an abstract Wiener space, then H is the Cameron-Martin space of (B, u).

9



Chapter 2
The Gaussian Radon Transform

The focus of this chapter will be to define the Gaussian Radon transform. Our first
goal will be to construct the appropriate measures on B, which will be probabil-
ity measures concentrated on closed affine subspaces of B. Before we proceed, we
introduce the notion of measurably adapted sequence.

2.1 Measurably Adapted Sequences
The next definition and Lemma following it are instrumental in obtaining the
main result of this chapter.

Definition 2.1. Let |-| be a measurable norm on a real separable infinite-dimensional
Hilbert space H. We say that a sequence {F),},en of closed subspaces of H is mea-
surably adapted provided that it satisfies the following conditions:

(1). The sequence is strictly increasing: Fy C Fy C ... C H, with F,, # F, 11, and F),
has finite codimension in F, ; for all n € N:

1 <dim (F,41 NE) < oo, for all n € N. (2.1)

(2). The union | J~ | F,, is dense in H.

(3). For every n € N:

1 1
2n 2n
where 7g, denotes standard Gaussian measure on @), = Fj,41 N Ft.

Before we proceed, we make a few simple but useful observations about increasing
sequences of closed subspaces of a real separable Hilbert space.

Proposition 2.1. Let H be a real separable Hilbert space.
(i). If K and L are closed subspaces of H:
(L+ K+ NK = Pg(L), (2.3)
where Py denotes the orthogonal projection of H onto K.

(ii). If Fy C Fy C ... C H is an increasing sequence of closed subspaces of H:

for all integers m > n > 0. If, in addition, \J,__, F, is dense in H, then:
Fy = @3, (Fj N E}), (2.5)

for all n € N.
10



Proof. (i). Let k =1+ Kk € (L+ K*)N K, where [ € L and k' € K*. Then since
ke K:
k:PK/{Z:PK<l+/€/):PKZGPK(L>,

so (L+ K+)N K C Pg(L). Conversely, suppose [ € L. Then:
Pyl = Pgl+ Pyil — Pl =1 — Pgil € (L+ KY)NK,

which proves (22.3)).

(ii). Let n < m be positive integers. Since F,,, C F,,,11, we may express Fy, ;1 as:
Fri1=Fpn® (Fy NEE).
Similarly, we may express Fy, as F,, = F,,, 1 & (F,, N F£_}), so:
Foi1=Fp1 @ (FnNFL )@ (FppNFY).

Continuing in this manner, follows inductively.
Now suppose that | J°_, F;, is dense in H. Since the sequence {F,,}nen is in-
creasing, for n € N:
Fr > @2, (FiNE).

Let h € F,- be such that h L (Fj;q N Fj-) for all j > n. By (2.4), h L F,14 for all
m > n, so then h L F), for all m € N. But since |J,-_, F}, is dense in H, it follows
that h = 0, and then (2.5) holds. O

The following result proves the existence of a measurably adapted sequence “start-
ing” at the orthogonal complement of a given closed subspace of H.

Lemma 2.2. Let |- | be a measurable norm on a real separable infinite-dimensional
Hilbert space H and My C H be an infinite-dimensional closed subspace. Then there
is a measurably adapted sequence {F,}nen of closed subspaces of H such that:

Fy 2 Fy = My, (2.6)
and:
dim(Fy N M) < oo. (2.7)
Moreover, the linear span of the subspaces F,, N F- | for n € N is dense in M,.
Proof. Since M, is a closed subspace of a separable Hilbert space, it is also separable.
Solet D = {d, }nen be a countable dense subset of My, with d,, # 0 and d,, # d,, for all

n,m € N. Since |-| is a measurable norm, there is for every n € N a finite-dimensional
subspace FE,, of H such that:

<L (2.8)

2m on’

1
7E[xEE:|x|>—

for every £ € J(H) with £ 1 E,,, where J(H) denotes the collection of all finite-
dimensional subspaces of H and g denotes standard Gaussian measure on F.

11



Let:
Fy :== My + E, + Rd,, (2.9)

where Rh denotes the span {ah : @ € R} of the vector h for all h € H. Note that
Fy D My and the inclusion is strict because d; ¢ Mg. Also, by ([2.3)):

Fy N My = Py, (Ey + Rdy),

so F1 N My is the image of a finite-dimensional subspace under a continuous map and
thus dim(F; N M) < oo.

Now F7 is a closed subspace, as the sum of two closed subspaces, one of which is
finite-dimensional. So My\ F} = MoﬂFlc is an open subset of M, and it is non-empty:
if Mo\ F1 = 0, then MyN F; = My, a contradiction because M is infinite-dimensional
and Fy N My is not. Thus M \ Fj is a non-empty open subset of My which does not
contain dq, so there is ny > 1 such that:

dn, € My \ F.

Cousider now:
Fy:=Fi+ FEy+Rdy + ... +Rd,,. (2.10)

As before, the inclusion Fy D F} is strict, since d,,, ¢ Fy, and F, N Fit is a non-empty
finite-dimensional subspace that is orthogonal to Fi, and thus also to E;. By ({2.8):

1 1
Yor [$€Q1:|aj|>§]<§,

where ), = I, N Fi-. By the same reasoning as above, M, \ F; is a non-empty open

subset of M, that does not contain dy, ds, ..., d,,, so there is ny > n; such that:
dn, € My )\ Fo.
Then let:
F3 = F2+E3+]Rdnl+1+...+Rdn2. (211)

As above, it follows that:

1 1
YQ- |:17€Q21|$|>§:| <§,
where QQ = F3 N FQJ'
Continuing this process inductively, we obtain a sequence F} C F, C ... C H that
satisfies (2.6) and (2.7) such that 1 <dim(F,; N F}) < oo and:

- 1
2n’

1
YOn {xé@n:\x|>2—n

for all n € N, where Q,, = Fy,;1 N F-. Since Fy = Mg C Fy C ... C H, by ([2.4):

Fo.=My ®(FiNM) @ (BbNFHe... e (F.nF-)),
12



for all k € N, and since My C Fj:
F. = My @ (F, N M),
for all £ € N. Consequently:
FE.NMy=(FiNM)® (BRNFH®...0 FNF-,),

for all k € N, and since (by construction) Fj, N My contains {dy, ..., d,, }, we conclude
that the closed linear span of F; N Fj{ , for j € Nis M,. Finally, the closed linear
span of {F), }nen is then H, so {F, },en is a measurably adapted sequence. ]

2.2 Definition of the Gaussian Radon Transform

Our next goal is to construct measures concentrated on closed affine subspaces of B,
measures which will lead to the definition of the Gaussian Radon transform. We will
need Lemma in conjunction with the following result, which is a standard trick
in probability to test the convergence of a series of random variables.

Lemma 2.3. Let B be a real separable Banach space with norm | -| and { X, }nen be
a sequence of B-valued random variables:

X,:Q— B,
on a probability space (0, F,P). Suppose that:
— 1
d>p [yxn\ > 27] < 0. (2.12)
n=1
Then > 7 | X,, is almost surely absolutely convergent.

Proof. By the first Borel-Cantelli Lemma, (2.12]) yields:

n— o0

1
P (lim sup [|Xn] > o

) — 0. (2.13)

Now suppose w € ', where:

1 C
= (limsup {|Xn| > —n}) :
n—oo 2
Then there is N € N such that:

1
| X (w)] < o for all n > N.

13



Then:

D I Xaw)| = " X |+Z | X (w
n=1 n=1
N-1 .
< X —
< > XKW+ Z 5
n=1 n=N
< Q.
So > X, (w) is absolutely convergent for all w € ', and P(Q') = 1 by -

which proves our claim.
Finally, we may construct the measures needed for the Gaussian Radon transform.

Theorem 2.4. Let (H, B, i) be an abstract Wiener space and My be a closed subspace
of H. For every p € My there exists a unique Borel measure par, on B such that:

j[em*duMp::a@@w—;Wa%hﬁnﬂ (2.14)
B

for allz* € B*, where Py, denotes the orthogonal projection of H onto My. Moreover,
the measure fiyg, is concentrated on the closure M, of M, =p+ My in B:

s, (303) = 1. (2.15)

Proof. Suppose first that dim(M,) = oco. By Lemma there is a measurably
adapted sequence {F,, } ey of closed subspaces of H with F} 2 Fy := Mg and dim(FyN
M) < oo such that the linear span of £, N F- | for n € N is dense in M.

Let {e1,..., ek } be an orthonormal basis for F; N My, which we extend inductively
to an orthonormal sequence {ex}ren with {ex, ,+1,..., €, } forming an orthonormal
basis for F,, N FL | for alln € N and ky := 0 < k; < ko < .... Then {ey,...,ex,} is
an orthonormal basis for the subspace:

(FLNMy) @ (FB,NFHe...e(F,NF-,) = F,N M,

Therefore {ey }ren is an orthonormal basis for Mj.

Now let {Zi}ren be an independent sequence of standard Gaussian random vari-
ables on a probability space (Q, F,P). Since {ex, ,+1,...,€x,} is an orthonormal
basis for Q,_1 (= F, N F -, the standard Gaussian measure 7, , on (),_; is the
distribution measure of the random variable:

anl = an—1+1ekn—1+1 + ...+ anekn, (216)

for all n € N.
By the measurably adapted property in ({2.2)):

1
’an—l T & Qn—l . ‘l’| > m <

2
14
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This becomes:

1 1
P {]X - 2n_1] < ot

By Lemma [2.3] the (appropriately grouped) series:

Zy, = ZXn (2.17)
n=0

= (Zlel—|—...—|—Zk16k1)+
+<Zk1+16k1+1 +...+ Zk2ek2) +

is P-a.s. absolutely convergent (with respect to the norm |- | on B). Moreover, since
{ex}ken is an orthonormal basis for My, the random variable Zy, takes values in My,
the closure of M, in B.

Now for every x* € B*, by continuity of z*:

(Zmy, @) = ZXn,x
n=0

o0
*
= > (B nr€h i1+ D, 77)

n=1
)

— Z kn— 1+1 kp— 1+1,hx*> +“'+an<ekn7hm*>)

= Y Zilex, h
k=1
Then:

/ i Zniy ) gp / ¢ S Zhlenhas) gp
Q Q

= Nlim ¢! Ziet Zilenhar) G (Dominated Convergence Theorem)
— 00 Q

N
= lim / eénienhax) gp

N
= lim H/ et Zrerhax) g (by independence of the Z;’s)

N—o0
k=

: 1 )2 . :
= lim e~ 2(erhar) (because Zj, is standard Gaussian)
N—o0
k=1

e_% 220:1 <ek’7hz* >2

1 e :
— ¢~ zllPapharll (because {e }ren is an o.n.b. for My).
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So (Zu,,x*) is a centered Gaussian random variable on (Q, F,P) with variance
| Pagohar]|?. Let piag, be the distribution measure 7y, induces on B:

pss (B) = P[Zu, € E], (2.18)

for all Borel subsets E of B. Then 2* € B*, as a random variable on (B, iy, ), is
centered Gaussian with variance || Pyl ||

. . 1 )
/ elgc* dlLLMO — / eZ(Z]\/IO7I*) d]ID — 6_§HPN[0]’LI* H )
B Q

Moreover, since Zy, (w) € My for P-almost all w €
1= P[ZMO € ﬁo] = KMo (HO)
Now let p € Mg and let par, be the measure specified by:

tiar, (E) == pny (B — p), (2.19)

for all Borel subsets E of B. Equivalently, py, is the distribution measure of the
random variable Zy;, 1= p + Zy,:

pas (E) =P[p+ Zu, € E. (2.20)

In this case:

Lﬂ@w%@zzgu+mwmm, (2.21)

whenever either side exists (this reduces to (2.19) for f = 1g and the general case for
a Borel function f follows as usual). Then:

.k . * ; *)__ 1 « |12
[ e du, = [ ) dpg () = oAb
B B

Moreover: o o o
/vLMp(Mp) =P [p + ZMO cEp+ M()] = ,uMO(Mo) =1.

Finally, if My is finite-dimensional, we can simply take:
Z]V[g = 2161 +...+ Znen,

where {eq, ...e,} is an orthonormal basis for My and Z1, ..., Z, are independent stan-
dard Gaussians on (Q, F,P). We then define ji5;, and jp, the same as in and
(2-19), and follows. Note that, in this case, uyy, is simply standard Gaussian
measure on M.
Uniqueness of the measure iy, follows from uniqueness of characteristic functions
for probability measures.
]

We are now ready to define the Gaussian Radon transform.
16



Definition 2.2. Let (H, B, 1) be an abstract Wiener space and f be a Borel function

on B. For every closed subspace M, of H and p € M;-, the Gaussian Radon transform
G f of f is defined by:

Gf(p+ M) = / fdpn,, (2.22)
B
where (i, is the measure concentrated on Mp = p+ M, constructed in Theorem

Note that for a generic Borel function f, the Gaussian Radon transform G f does
not necessarily exist, although G f does exist if f is bounded or non-negative. In our
initial paper |[16] we followed the classical Radon transform approach and defined G f
on the set of all hyperplanes in H (because, as will be discussed next in Section
there are in a sense “more” hyperplanes in H than in B). However, broader results
can be obtained if one works with general closed affine subspaces and the notation in
this more general case becomes less cumbersome if we define G f as in ([2.22)).

2.3 Closed Affine Subspaces

The classical Radon transform is defined on the set of all hyperplanes in R", which
naturally led us to study hyperplanes in B and their relationship to hyperplanes in
H. Eventually, we obtained the complete relationship between the closed subspaces
of finite codimension in B and those in H. This result is Theorem which relies

on the following lemma.

Lemma 2.5. Let (H, B, i) be an abstract Wiener space and {uy, ... ,u,} C Hp- be
an orthonormal set, where ug = hy- for some yp € B* for all 1 <k <n. Then:

@) (pr) = prua + -+ payin + VT, (2.23)
k=1
where V =span{uy, ..., un} C Hp, p1,...,pn € R, and V* is the closure of V' in

B.

Proof. Let:

n

Ly = ﬂ(y,";)_l(pk) and L) == pyuy + ...+ pau, +V*+ C H.
k=1

Then for every v € V* and 1 < k < n:
(Prus + - oo+ Pptty + 0, Y5) = (P + -+ Patin + v, UuL) = pr,
so L) C L;. Since Ly is a closed subspace of B:

LlDL_’lzplul—i——i—pnun—l—W

17



Now fix an element x € L; and consider:
¥ i=x—piug — ... — Py,
Since (z,y;) = pr, we have (2/,y;) =0 for all 1 <k <mn, so:

x' e ﬂ Ker(y;).

k=1

We show that there is a | - [-Cauchy sequence {R};en C V* such that:

h; 2% o/ in B.
In turn, this will give us that the sequence {h;};en C L} given by:

h‘] = h; +p1U/1 —+ ... +pnun7

converges to x in B. Since this holds for all 2 € Ly, we will have L; C L.

(2.24)

To prove the claim in (2.24)), note that since H is dense in B there is a sequence

{gj}jen C H such that g; — 2’ in B. By | - |-continuity of y;, (g;,v;) 222 ()

for all k, so:
lim (g;,ux) =0, for all 1 <k <mn.

J—00

For every 1 < k < n, consider the sequence {g](-k)}jeN given by:

gj(k) = g; — (g5, ug)uyg, for all j € N.

By (2.25)):
lim g](k) =2 in B, forall 1 <k <n.
j—o0
For every k:
(0 un) = (g7, un) — (g5, u) (weur) = 0, for all j € N,
so:

{98} jen Cujt, forall 1 < k < n.

Finally, consider the sequence:

R DIUEED D DLUSIAT

k=1 1<i<n

itk
By (2.26) and | - |-continuity of each yj:

: 1 :
}g& hy = me/) =z'in B.

18
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Moreover, {h}jen C V+ as desired; for every 1 < m < n:

1 n
<h2>um> - ﬁ Z g] U Z Z g] U uka“m)
k=1 k= 11‘<727€n
1 - k 7
k=1 1§Z§n
1, o)
= E(gj aum>
= O’
where the last equality follows from ([2.27]). n

Theorem 2.6. Let (H, B, 1) be an abstract Wiener space. Then:

(i). If L is a closed subspace of finite codimension n in B then there is a unique
closed subspace M of codimension n in H such that L = M, where we are
taking closures in B. Specifically, M = L N H.

(ii). Let M be a closed subspace of finite codimension in H. Then the closure M of
M in B is a closed subspace of codimension k in B, where:

0 <k:=dim(M*-N Hg) <n. (2.28)
In particular, if M+ N Hg- = {0}, then M is dense in B.

Proof. (i). Let L be a closed subspace of codimension n in B. Then there is a linearly
independent set {z},...,z"} of non-zero elements in B*, such that:

L= ﬂ Ker(x}).

k=1
Consider a translate L; of L:

n

Ly = () (@) (1),

k=1
for some tq,...,t, € R. Applying the Gram-Schmidt orthonormalization process, we
obtain an orthonormal basis {u1,...,u,} of V :=span{hy:,..., hs:} C Hp-, where

U = hyZ for some y; € B* for all 1 < k < n. Then:
L, = m{a} € B: (x,x}) =ty}

= ﬂ{x € B: Zak‘ x,yy) = ti}, where ay,; = (hxz,ui> for all k.1,

k=1

= {z€B: A[(x, ?J1) oy ) =t )T,
19



where A is the n X n matrix given by Ag; = ay; for all k,i. Let p = (p1,...,pn)" be
the unique element of R"™ such that Ap = t¢. Then:

L= ()
k=1
= piur + ...+ pPply + VL’

where the last equality follows from ({2.5)).
If welet t; =...=1t, =0, we see that:

L=M = (] Ker(y),
k=1

where M = V= is a closed subspace of codimension n in H. Moreover, LN H = M.
To see that M is unique, suppose NN is a subspace of codimension n in H such that
N =Lin B. Then NC LNH = M, so N* D M* and since both N+ and M~ have
dimension n, N* = M* and then N = M.

(ii). Let M be a subspace of finite codimension n in H. Then H = M & M~ and
dim(M+) = n, so M+ N Hp« is a subspace of H with dimension at most n. Suppose
first that dim(M=* N Hp<) = n. Then M+ C Hp:, so there is an orthonormal basis
{hys, ... hy} C Hge for M+, where yi,...,y% € B*. Then by Lemma :

M = (i) (0) = [ ] Ker(y;).

So M is a closed subspace of codimension n in B.
Next, suppose 1 < k :=dim(M~* N Hp-) < n. Then:

M C N :=(M*+nHg)"

By our discussion above, N is a closed subspace of_codimension k > 1in B, therefore
M C N are both proper subspaces. Let x € B\ M. By the Hahn-Banach theorem,
there is a non-zero x* € B* such that (z,2*) # 0 and z*|y; = 0. But then:

hy € Mt N Hp = N*,

so x*|y = 0. Since (x,2*) # 0, the Hahn-Banach theorem gives us that x € B\ N,
so M D N. Then M = N, so M is a closed subspace of codimension k in B.
Finally, suppose M+ N Hp. = {0} and assume that M is a proper subspace of B.
By the Hahn-Banach theorem, there is a non-zero x* € B* such that 2*|5; = 0. Then
hy« € M+ N Hg«, but then hy« = 0 and z* = 0, a contradiction. So M = B. O

Remark that in both Lemma [2.5] and Theorem the discussion was purely
topological and the measure p played no role. Therefore, both results are valid in
the more general setting of a real separable Hilbert space H with norm || - || and the
Banach space B obtained by completing H with respect to a weaker norm | - |.
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Every hyperplane in H is of the form:
gp,u = pu + uLa

where u € H is a unit vector (uniquely determined as the unit vector normal to
&) and p > 0 is a non-negative real number (uniquely determined as the distance
from &,, to the origin). The result in Theorem , applied to closed subspaces of
codimension 1, shows that every hyperplane in B is the B-closure of a hyperplane in
H, that is every hyperplane in B is of the form:

Epu = pu+ ut,

where u € Hp-. However, this relationship is not one-to-one and, in a sense, there
are “more” hyperplanes in H than in B; specifically, if &, , is a hyperplane in H, then:

e If u € Hp- then the closure % is a hyperplane in B.

o If u ¢ Hp- then &, is dense in B, that is the closure &, , is all of B.
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Chapter 3
Properties of the Gaussian Radon Transform

Let us first explore some of the properties of the measures p157, constructed in Theorem
The equation in shows that every x* € B* is, with respect to wupg,,
a (possibly degenerate) Gaussian random variable with mean (p,z*) = (p, h,+) and
variance || Py, he+||?. The degenerate case occurs when z* € B* is such that z*|y;, = 0.
In this case, h,« € Hp- ﬁMOl and the distribution of x* is the Dirac distribution d, ;«):

/eix* dlLLMp _ ei(p,x*).
B

So:
If ™ € B satisfies 27| 5, = 0, then (x,2") = (p, x") for ppg,-almost all x € B. (3.1)

Let us now compute the covariance operator of the Gaussian measure fiyy,; let
x*,y* € B* and apply (2.14) to z* + y*:

E[(z"+y)°] = (02" +y)+ | Paghaety

= (p,2")*+ (p,y")* + 2(p,2*)(p,y") +
+HPM0hI* 2 —+ HPMohy* 2 -+ 2<PM0h:c*7P]Wghy*>,

2

where all expectations are with respect to ppz,. In the same time:

El(@ +y)] = E[@)]+E[y")’] + 2E["y"]

= (p,2*)° + || Paghar |* + (0, y)* + || Pagy oy || + 2E[z*y*].

Then:
E[I*y*] - (p> [E*)(p, y*> + <PMohx*’ PMohy*>7

so the covariance of z*,y* with respect to g, is given by:
COV:“]\/IP (x*7 y*) = <PM0h/CE*7 PJ\/[ohy*>‘ (32)

The measures 7, in Theorem , while concentrated on closed affine subspaces
of B, are all Borel probability measures on the same space B, which facilitates compu-
tations involving more than one of these measures. Next, we explore the relationship
between the measures py;, and Wiener measure p. First of all, note that if we let
My = H and p = 0 in Theorem [2.4] we obtain exactly Wiener measure iy, = j:

- 1 2 _1 2
/ezx Ay, = e3Pk 2 =4l
B

for all * € B*. Moreover, iy, is concentrated on H = B. The following result shows
that even when M, ; H we obtain an abstract Wiener space.
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Proposition 3.1. Let (H, B, u) be an abstract Wiener space and My be a closed
subspace of H. Then (Mg, My, iag,) s an abstract Wiener space, where My is the
closure of My in B and pup, 1s the measure constructed in Theorem considered
on the Borel o-algebra of M.

Proof. First remark that:
My, = {23 2" € B™}.

For every x* € B*, the restriction x*|5; is continuous on M, with respect to the
Hilbert norm || - || and corresponds to Py, h,« in M. To see this, note that:

(h7 Iﬂm) = (h7 I*) = <h‘7 h‘ﬂﬁ*> = <h7 PMohac*>7

for all h € My. Moreover, the set Py, (Hp+) := {Puyyhe : o € B*} is dense in
(Mo, || - |I): if h € My is such that h L Py (Hp-), then (h,2*|5) = 0 for all * € B,
so h =0.

Now 1, is a centered, non-degenerate Gaussian measure on My and the Cameron-
Martin space Hy of (M, juaz,) is given by:

Hy={x € My : a*|3; — (z,2"|37) is continuous on M, with respect to ¢},
where ¢ is the inner product on M, induced by the covariance operator of piyy,:
02" 3555 V" lagy) = (Pasohiar s Parohy-)-
Clearly M, C Hy. Now let x € Hy. Then = € M, and there is ¢ > 0 such that:

(@, 2% [35,)| < el Paso ha

, for all z* € B*.
Therefore the linear map:
PMO(HB*> — R, PMohx* — (LC,.T*‘T[O)

is continuous on Py, (Hp~) with respect to || - ||, so it extends uniquely to M. Then
there is h € M, such that:

(z,2%|55) = (h, Pagyhes), for all 2* € B*.
But <h, P]\/]Ohx*> = (h,$*|m)7 S0:
(7, 2" |3) = (h, 2"|35), for all * € B*.

Therefore x = he_Mo, so Hy C M,. This shows that M, is indeed the Cameron-
Martin space of (My, par )- O

Note that if M, is a proper subspace of B then iy, is a centered degenerate
Gaussian measure on B. However, if My = B then (M, B, ) is an abstract
Wiener space. The distinction between these two cases will be relevant for the proof
of our next result, which shows that iy, and Wiener measure p are equivalent (in
fact, identical) if and only if My = H, and are orthogonal otherwise.
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Theorem 3.2. Let (H, B,u) be an abstract Wiener space, My be a closed proper
subspace of H, and p € My-. Then the measure par, 18 orthogonal to Wiener measure

L.

Proof. Consider first the case when M, is a proper subspace of B. By the Hahn-
Banach theorem, there is a non-zero z* € B* such that 2*|y, = 0. From (3.1), pas,
assigns full measure 1 to the set {z € B : (x,2*) = (p,z*)}, which has p-measure 0,
SO fung, L .

Now suppose My, = B. By Proposition , (Mo, B, ung,) is an abstract Wiener
space. If vy, are centered, non-degenerate Gaussian measures on a real separable
Banach space, then vy and v, are either equivalent or orthogonal; moreover, if 14 ~
Vo then vy and vy have identical Cameron-Martin spaces (see Theorem 2.7.2 and
Proposition 2.7.3 in |7] for proofs). Since M, and H are the Cameron-Martin spaces
of (B, ) and (B, u), respectively, and M, is a proper subspace of H, it follows that
pagy L po-

Finally, if 0 # p € Mg then pag, L ppg, by the Cameron-Martin theorem, so also

par, L g O
Next, we remark that, as in the classical case, the map:

Hp — L2(B,,uMp); Ry — %,

is continuous with respect to the Hilbert norm | - || for every p € M-
* 2
”aj ||%2(B“LL1\/1P) - <p7 h$*> + ”Pj\/loh’il?* 2
< plPlha 7 + 1A |1
= (IpI* + Dl |I*

For every p € Mg, we denote the extension of this map to H by:
Ing, - H— L2(B,uMp); h = Ipg,h. (3.3)
Then every IMph is, with respect to M, Gaussian with mean (p,h) and variance
| Pago I
/ et iy = PRI IPahIE, (3.4)
B

To be more specific, for every h € H let {z}},en C B* be a sequence such that
hy: converges to h in H. Then the sequence {z} }nen is Cauchy in L?(B, pa,) and
converges to Ipg h.

However, unlike the classical case, Iy h is not an isometry:

(Db Doty k) 2, ) = /B (Ing ) (Lng, ) dpag,

= lim iyt d
n—00 nYn CHM,

= Hh_EEO <Pf\/foh33;§> PMohy;‘L>

= <PMohv PM0k>v



where {2} },cn and {y} }nen are sequences in B* such that h,. and h,. converge to h
and k in H, respectively.

Proposition 3.3. Let (H, B, i) be an abstract Wiener space and Fy C F» C ... be a
measurably adapted sequence of closed subspaces of H. Then:

lim pp. [z € B:|z| > R] =0, (3.5)
n—00 n
for any R > 0.
Proof. As in the proof of Theorem , let {ex}ren be an orthonormal sequence in
H such that {ei, ..., ey, } is an orthonormal basis for F», N Fi- and {ej,41,..., €k, }
is an orthonormal basis for F, o N F- w1, for all n > 1, where ky < ky < ... is an

increasing sequence of positive integers.
As proved in Theorem , the measure pp1 is the distribution of the B-valued
random variable:

[ee] J+1
ZF,{— = E E Zlel R
j=n—1 \Il=k;+1

where {Z }ren is an independent sequence of standard Gaussian random variables on
a probability space (2, F,P). For each j, the term:

takes values in Q;1 = Fjy2 N F3 741 and its distribution measure is exactly standard
Gaussian measure 7, , on this space. By the measurably adapted property in ([2.2):

1 1
[|S | > 5 +1} < 5t (3.6)
for all j € N.
Let R > 0 and choose N € N large enough such that:
1
R > SN
Now if:
ve N [181% 5],
j=N-1
then:
SN | 1
|Zrt (w) Z |Si1 < Z 9j+1 _ oN-1°
j=N-1 j=N-1
So:
- 1
121> o] € U |18 5|
=N—1

j
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therefore:

1

j=N-1
=1
<Y o (by (53))
j=N-1
1
~ 9N-1

We showed that for all N € N such that QN%I < R:

1 N—oo
P(1Zr| > B] < gy — 0,
which translates to (3.5)). O

Corollary 3.4. Let (H, B, 1) be an abstract Wiener space and f be a bounded Borel
function on B. If F1 C F5, C ... is a measurably adapted sequence of subspaces of H,
then:

flp) = lim Gf(p+Fy)
— Jim [ fdir (3.7)
n—oo B

for all p € B such that f is continuous at p.

Proof. Using the translation property in (2.21)):

/B Fdiyers — f(p) = /B (F(z+p) — £) du (2),

for all n. Let e > 0. Since f is continuous at p, there is 6 > 0 such that |f(z + p) —
f(p)| < eforall x € B with |z| < 4. Then:

’/deupw#—f(p)‘ < /B’f(x-f—p)—f(p)’dul,#(x)
B /[ |<d] [Fl@+p) = fp)l iy (@) +
x - d L\
+/[|m>6] Fwtp) = Jp)ldp ”< )

< et / (F @+ D) + 1 ®))) durs ()
[|z|>4]

< e+ 2 flloopptlr € B : 2| > 9],
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where || f|lo := supgep | f(x)]. Since this holds for all € > 0 and, by Proposition [3.3}
lim ppi[z € B:|z| > 4§ =0,
n—00 n

we obtain (3.7)). O

Next, we look at some inequalities. The following result is the celebrated Fernique
Theorem. For a proof, see 111, Theorem 3.1 in [21].

Theorem 3.5. Let (H, B, i) be an abstract Wiener space. Then there is a > 0 such
that:

/ el du(z) < oo,
B
where | - | is the norm on B.

As a consequence:
[ Jaltdua) < o
B

for all ¢ > 0. Now suppose M, is a closed subspace of H. As noted in Proposition
m (Mo, My, pupr,) is an abstract Wiener space. By Fernique’s Theorem:

/ et dying, () = / et dpy () < 00,
B

Mo
and consequently:
[ Jalt dhan ) < .
B

for all t > 0.
Let BT denote the closed unit ball in B*:

By i={x" € B": |z"|. < 1},
where | - |, is the usual operator norm on B*. Then:

is a centered Gaussian process on (B, ). Moreover, this process is bounded (that
is, all sample paths are bounded): for a fixed x € B,

|(z, 2%)| < |z||z*]« < |z|, for all * € B;.

Recall that for every closed subspace M, of H we constructed in Theorem a
random variable: L
ZMO :Q— M, C B,

on a probability space (2, F,P) with values in the closure My of My in B, and gy,
is then defined by:
UM[)(E) = P[ZMO € E]’
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for all Borel subsets E C B. Then:

/B Fdung, = /Q f(Zn) dP,

whenever either side exists. Therefore:
{2"(Zno) }oveB;
is a bounded centered Gaussian process on (€2, F,P) and:

2

)

@ @) @ = [ (@ duss, = 1P

B

for all z* € BY. This allows us to compare properties of the Gaussian process in (3.8
considered on (B, ur,) and (B, ) for different closed subspaces Ly and M, of H
and employ another famous result, the Sudakov-Fernique inequality:

Theorem 3.6. Let { X, }ier and {Yi}ier be almost surely bounded centered Gaussian
processes such that:
E[(X; — X.)*] < E[(Y; - Y.)?],

for all s,t € T. Then:
E {sup Xt} <E {Sup Y}} .

te’T teT

See |1] for a detailed proof of this result, which we use to obtain the next theorem.

Theorem 3.7. Let (H, B, u) be an abstract Wiener space and Ly C My be closed
subspaces of H. Then:

[ leldnsata) < [ faldusg o) (3.9)

Proof. Recall that:

|z| = sup |(z,z")|,
T*€BY

for all x € B. So if we consider the Gaussian process (3.8) on (B, py,) for any closed
subspace M, of H, then:

( sup x*) (x) = sup (z,2") = sup |(z,x%)| = |z|.

z*€B} a*€B] o €B]

Now consider:
{2"(Z1,) tareny and {2 (Zny) tarens,
both bounded, centered Gaussian processes on (2, F,P). For every z*, y* € B;:
E [(+"(Z1) =y (Z1,))*] = [Pro(hor — hy)
< [ Pag (har — hy)
28
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By Sudakov-Fernique:

E | sup 2"(Zr,)| <E | sup z"(Zp,) |,
a*€B} a*€B}
SO:
/ sup z* | dur, < / sup % | dp,,
B \z*e€B; B \z*€B;
which is exactly (3.9). O

3.1 A Disintegration of Wiener Measure

In this section we focus on the measures pz, in the case when we are dealing with
subspaces of finite codimension. First, we provide a disintegration of yiy, through the
measures fi1,,, Where Ly is a subspace of M, having finite codimension. As a particular
case, we will have a disintegration of Wiener measure through the measures pq,, where
(o is a subspace of finite codimension in H.

Theorem 3.8. Let (H, B, i) be an abstract Wiener space and Ly C My be closed
subspaces of H such that Lo has finite codimension in My, that is the subspace Ko :=
Ly N My is finite-dimensional. For every p € Ky, consider the translate L, = p + Ly
of Lyg. Then the map:

Kysp— Gf(L / fdur,, (3.10)

15 Borel measurable on Ky for all non-negative Borel functions f on B. Moreover:

/deMMO = /KO (/deuLp) A, (p), (3.11)

for all Borel functions for which the left hand side exists, where vk, denotes standard
Gaussian measure on K.
In particular, if Qg is a closed subspace of finite codimension in H:

/de“: /QL (/de“%) g4 (3.12)

0
whenever the left hand side exists, where p is Wiener measure.
These results are pictured below in Figure

Proof. Let f be a non-negative Borel function on B. To prove measurability of the
map in (3.10]), consider the map g : (B, ur,) X (Ko, Vk,) — Ry given by:

g(x,p) = f(x + p), for all z € B, p € K.
By Fubini’s theorem, the map:

pH/ 9(x,p) dpry(z /fa:ﬂ? dpir,y (x /fduL =Gf(Ly),
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4 )
Ko =Ly N M,
Qo
Ly
M
o J 0
H H
- / - /
(a) Closed subspaces Ly C My C H where (b) Closed subspace Qo C H with finite codi-
Ky = Lé‘ N My is finite-dimensional. mension.

Figure 3.1: Disintegration theorem

is Borel measurable, where the second equality follows from (2.21)).
To prove (3.11)), it suffices to show that the characteristic functional of the Borel
probability measure py, on B specified by:

[ vt = [ 6oL de o),
B Ko

for all bounded Borel functions b, coincides with that of 115s,. To see this, note that
for all z* € B*:

/el(m7x*) d,u’MO(m) _/ </ ei(x@*) dlLLLp(x)) deKO(p>
B Ko B

_ / )= 31Proher I oy (1) (by (2.14))
Ko

1 2 ;
—L|Py i(p,Picy h
_ o~ HIPeghar] / i 0Prghat) o
Ko

— o HIPLg R |2 = 31 Prcy e

— 2Py hex |2
= e 2 o'tz ,

which proves our claim. Finally, (3.12) follows by taking My = H and Ly = Q) in
B.17). 0

Next, we explore some of the consequences of this result.

Corollary 3.9. Let (H, B, i) be an abstract Wiener space and Qg be a closed subspace
of finite codimension in H. Then for every measurable f : B — R with fB |fI"du <
oo, where 1 < r < oo, we have:

||f||LT(B#Qp) < o0 for ygi-a.a. p € Q7 (3.13)
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and:

P GFQ) € L (Qf70) (3.14)

In particular, if f =0 p-a.e. for some measurable function f on B, then Gf(Q,) =0
for ygi-a.ap € Qp -

Proof. Using |f|" in place of f in (3.11]) we obtain:
Liran= [ ([ 1100 dio,@) a0
B Qy B

I/

b = [ W lioa s, B0y 0) < o0 (315)
0

Consequently, the map:

is voL-a.e. finite. Moreover:
Qo

p= ”fHET(B,Mpr
/ GHQI drgs () = /
Qy Qt

| /B fdug,
< /Qé (/B!ﬂ’“duczp) dyq4 (p)
|

dVQOi (p)

= / fI"dp < oo,
B
which proves (3.14). We proved above that:
IGF @i gy < Il (3,16

Now the last statement in the theorem follows readily from (3.16): if f = 0 p-a.e.
then || f||zrB,u) = 0, so:

||Gf(Qp)||LT(Qé,'yQOL) - Oa
and then Gf(Q,) = 0 for Voi-a-a. p € Qo O

Note that this result also implies that if £ C B is a Borel subset with p(E) = 0,
then pg,(£) = 0 for Yoi-a-a. p € Qs To see this, remark that 1 = 0 p-a.e. so
Glg(Qp) = pg,(E) = 0 for almost all p.

Corollary 3.10. Let (H, B, i) be an abstract Wiener space, Qo be a closed subspace

of finite codimension in H and h € H. If h is any representative of Ih in L*(B, ),

then h is a representative of Ig, h in LQ(B,MQP) for Vi -G-a. p € Qs Moreover:
for ygi-a.a. p € Qt: h(z) = (p,h) for Yoi-0-0. € B, (3.17)

holds whenever h € Qp .
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Proof. For every p € Qg, let BQp be a representative of I h in L*(B, ug,). Let
{hx,’;}kzl be a sequence in Hp« converging to h in H. Then:

kh—>I£lo ||h - xl:HLQ(B,u) =0, (318)

and:

lim ||ho, — 25|l 2B, = 0, (3.19)

k—o00 HQp

for all p € Qp . )
Now note that if h is defined p-a.e. on B, Corollary shows that for Voi-a-a.

p € Qf, h is defined pq,-a.e. on B and h e L*(B, pg,). From the disintegration

formula:
=i [ ([ =i duo, ) dras o)
B Qs B
S0:
||h - IZH%Q(B,M) = /VQL ||h - xl:”%/Q(B,qu) d’YQé- (p) = ||gk”§/2(Qéqu)7
0 0
where

ge(p) = ||h — Tl L2(B g, for all p € Q7
is defined ~q1-a.e. From (13.18):

lim g, = 0 in L*(Qy, vo: )- (3.20)
k—o0 0

Now since x} — hq, in L2(B, ug, ), (h — x}) converges to (h — hg,) in L*(B, pg,) for
Voi-a-a. p € Qs (namely for all p such that h is defined g, -a.e.). Therefore:

Jlim g (p) = 1h = 1,1 2(5,uq,) for vos-a-a. p € Qg (3.21)

From (3.20) and (3.21)), since mean-square limits and pointwise-a.e. limits agree, we
have:

A — l~1Qp||L2(B7#Qp) = 0 for ygi-a.a. p € Q7.

Therefore h is a representative of I, h for Voi-a-a. p € Qr

Finally, recall that any representative of Ig h is, with respect to pg,, Gaussian
with mean (p, h) and variance ||Pg,h||>. Therefore, if h € Qg then || Pg,h|| = 0 and
then any representative of Ig,h is yig,-a.e. equal to (p, h). Since h is a representative

of Io,h for ygi-a.a. p € Qp, (3.17) follows.
U

Remark 3.1. In light of these calculations, it is very tempting to say something like

“Ih = Ig,h for almost all p.”
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However, ITh and Ig h are elements of L*(B,u) and L*(B, pig,), respectively, and
these are spaces whose elements are functions defined almost everywhere with respect
to different measures - so the statement above makes little sense. For the sake of

accuracy, we remained sensitive to the true quotient-space structure of L2-spaces and
stated the result as in Corollary

We can also use the disintegration theorem to give an alternate proof of the
inequality in Theorem [3.7] and in fact strengthen it. Instead of using the Sudakov-
Fernique inequality approach, we will use Anderson’s inequality, which we state next
and for which a proof can be found in [7].

Theorem 3.11. Let yu be a centered Gaussian measure on a real separable Banach
space B. Then for every symmetric convexr Borel set C' C B and p € B:

u(C) > u(C —p).
Now suppose (H, B, ) is an abstract Wiener space and Lo C M, are closed

subspaces of H and Ly has finite codimension in M. By taking f = 1 in (3.11)) for
some Borel subset E of B:

iaiy () = /K iz, (E) dvic ().

where 7k, is standard Gaussian measure on Ky := Ly N My. If C is a symmetric
convex Borel subset of B, Anderson’s inequality gives us:

IULO(O) > L, (C - p) = ML, (0)7
for all p € Ly. Then:

i (C) < [ 1aa(C) iy 9) = 1),

Ko
for all symmetric convex Borel subsets C' of B. For every real ¢, the set:

[z € B: x| <t
is symmetric, convex and Borel in B, so:
panle € B ol <4 < pnyle € Bt fa] < 4]
Then for all p > 0:

p/ t' pp v € B |z > t]dt < p/ ' g [v € B 1 |x| > t] dt,
0 0
which is equivalent to:
[ 1ol dirf@) < [ 1ol g (o)
B B

We have just proved the following:

Theorem 3.12. Let (H, B, ) be an abstract Wiener space and Ly C My be closed
subspaces of H such that dim(Ly N My) < co. Then:

[ 1ol () < [ JoP dpa ) (3.2
B B
for all p > 0.
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3.2 The Gaussian Radon Transform and Conditional
Expectation

In this section we show how the Gaussian Radon transform may be interpreted as a
conditional expectation. We begin with a short review of conditional expectations.

Definition 3.1. Let (2, F,P) be a probability space, G C F be a subfield and X be
an integrable random variable on (Q, F,P). The conditional expectation of X given
g, denoted

E[X|d],

is any random variable Y that is G-measurable and satisfies:
/ Y dP = / X dP, for all A € G. (3.23)
A A

It can be shown that the conditional expectation E[X|G] exists and is unique, in
the sense that if Y and Y’ are G-measurable random variables satisfying then
Y =Y’ almost surely. Any such random variable is called a version of E[X|G]. Note
that whenever we write:

CCE[X|g] — Y777

this is to be understood in the sense of equality a.s.

The expectation E[X] of a random variable X is often used as the “best guess”
of the value of X, given no other information. However, if we do have some other
information, this guess can be replaced by a more useful one - the conditional ex-
pectation. Intuitively, the subfield G above represents the information that we have
available (that is, for every event A in G, we know whether or not A occurred) and
then E[X|G] is our “best guess” for the value of X given our knowledge of G.

The most common occurrence of conditional expectations is conditioning on an-
other random variable (or more). Specifically, if {Y;};cr is a collection of random
variables on (£, F,P) and X is integrable, we define:

E[X|Y, :teT] :=E[X|o(Y; : t € T)], (3.24)

where o(Y; :t € T') is the o-algebra generated by the collection {Y;}er.
Now suppose Y7, Ys, ..., Y, are random variables on (2, F,P), where n is a positive
integer. In this case, there is a Borel measurable function g : R — R such that:

E[X|Y1,..., Y] =9g(Y1,....Y,),
almost surely (see [6, Theorem 20.1]). We denote the conditional expectation:
EXYi=y1,.... Y0 =ya] = 9(y1, -, yn),
to illustrate this point.
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There are many interesting and useful properties of conditional expectations, such
as “conditional” versions of the major convergence theorems and inequalities of mea-
sure theory (see [6, Section 34| or [11, Section 4.1]). One such property that will be of
particular interest to us is the geometric interpretation of conditional expectations in
the Hilbert space setting of L2-spaces. Specifically, let (2, F,P) be a probability space
and G C F be a subfield. Then L*(Q,G,P) is a closed subspace of L*(Q, F,P), so
for every f € L?(Q, F,P) we may consider its orthogonal projection onto L*(2, G, P).
This is the point Y in L?(Q, G, P) that is “closest” to f:

-Y = inf — .
If = Y207 p) geL;gz7g7P)||g flzz@.7p)

It turns out that this is exactly the conditional expectation:
E[f|G] = Pr2ogp f in L*(Q, F,P). (3.25)

For a proof of this fact, see |11}, Section 4.1, Theorem (1.4)].

Now suppose that X, Y], ... Y, are random variables on (2, F,P) and X is inte-
grable. Then if X’ Y/, ... Y/ are any other random variables such that X = X’ a.s.
and Y, = Y/ a.s. for 1 < k < n, any version of E[X|Y],...,Y,] is also a version of
E[X'|Y; ...,Y,]. In light of this fact and (3.25), conditioning over elements of L?(2) -
which are equivalence classes of functions, not functions - is usually defined as follows.

Definition 3.2. Let (2, F,P) be a probability space and f, fi,..., f, € L*(Q). Let
M(f1,..., fn) be the closed subspace of L*(Q) consisting of all g(fi,..., f.) where
g : R" — R is Borel and E[¢*(fi, ..., fn)] < co. The conditional expectation of f
given fi,..., f, is defined as the element of M (f1,..., f,) that is closest to f:

E[f|f1,- s fa] = Pr(pr, oy f in L2(Q). (3.26)

In this case, for yq,...,y, € R, we write as before:
Elflfi=v1,.--, fon = Un (3.27)
as a (more intuitive) notation for a function g(y1,...,y,) such that go (f,..., fn) is

a version of E[f]|f1,..., fal-
We now turn to the relationship between the Gaussian Radon transform and
conditional expectation.

Lemma 3.13. Let (H, B, i) be an abstract Wiener space, Qo be a closed subspace of
finite codimension in H and f € L*(B,u). For every yi,...,y, € R let:

F(yla"'7yn) = Gf<y1u1 ++ynun+Q0)7

where {uy, ..., u,} is an orthonormal basis for Q. Then F(Iuy,. .., Tu,) is a version

of E[f|[Tuy, ..., Tuy,]:

E[f|Tur = y1,... ., Ju, = yp| = Gf(yhur + ... + Yt + Qo). (3.28)
35



Recall from Corollary [3.9| that if f € L*(B, 1) then the map p — G f(Q,) belongs
to L*(Qg, Vg ), so the function I above is defined almost everywhere on R™.

Proof. For simplicity of notation, let u; be a representative of Iuy in L*(B,u) for
every 1 <k < n. Since u, € Qg by (3.17):

For ypi-a.a. p € Qy: k() = (p,wy) for pg,-a.a. z € B. (3.29)

Let g(uy, ..., u,), where g : R" — R, such that E[¢g?(uy, ..., u,)] < co. By (3.11) and
(13.29):

[ ot wsdn = /@OL ([ ot@i....as dua, ) vy
= [ ot 0w CHQ gy ). (330

0

Now consider the map:
Pos B — Qg; o = WUy + ...+ Uy,

(defined p-a.e. on B). Since uy,...,u, are independent standard Gaussian random
variables on B, he distribution measure of PQ({ on Qg is exactly standard Gaussian
measure o4 . Then (3.30]) yields:

[ ot = [ g(Foru....(Poou)) Gf (Pos + o) du
B B
= /g(m,...,a;)p(m,...,a;)du.
B
Therefore:

(f = F(, ), 6) om0 = 05

forall ¢ € L*(B,o(uy, ..., uy,)). Since this holds for any representatives uy, . . . , u,, by
Definition [3.2) we have that F'(Ius, ..., Iu,) is indeed a version of E[f[luy, ..., [u,).
[l

Theorem 3.14. Let (H, B, i) be an abstract Wiener space, f € L*(B, u) and linearly
independent elements hy, ..., h, of H. For every yi,...,y, € R" let:

Then F(Ihy,...,1hy) is a version of B[f|Ihy,..., Thy]:

Elf{lhi =y, ..., Thy =y =Gf (ﬂ (P, ) = yk]) : (3.31)

k=1
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Proof. Let {uy,...,u,} be an orthonormal basis for M =span{hs,...,h,}. Then:
h :a’fu1+a§u2+...+aﬁun, forall 1 < k <n,

where aé? = (hi,u;) for all 1 < j,k < n. Let:

ap oy ap,
A= :
ar oy o,
Note that A is invertible, since hq, ..., h,, are linearly independent. Then:

Thy, = ¥ (Tuy) + o (Tug) 4 ... 4+ oF(Tuy,), for all 1 < k < n,
so for y1,...,y, € R:

E[f|]h1=y1,>]hn=yn] - E[fuulzpl»vlun:pn] (332)
= Gf(plul—k...—i—pnun—i—ML),

where the last equality follows from Lemma and p = [p1...p,]7T € R is given
by p = A~ly, with y = [y ...y,|T. Then:

n

prus+ A patty + M= () [, ) = w]
k=1

and so (3.31]) follows readily from (3.33). O

3.3 The Gaussian Radon Transform and the Classi-
cal Wiener Space

In this section we compute some concrete examples of the Gaussian Radon transform
on the classical Wiener space. Recall from Example that this is the triple:

(H7C7 ILL)’

where H is the space of all absolutely continuous functions h : [0,1] — R with
h(0) = 0 and A’ € L?[0,1], C is the space of all continuous functions f : [0,1] — R
with f(0) = 0, and p is classical Wiener measure. The space H is a real separable

infinite-dimensional Hilbert space with norm || - || induced by the inner-product:
1
(hi,ho) = / Ry (x)hy(x)dx, for all hy, hy € H. (3.33)
0
The measure u results by completing H with respect to the supremum norm || - ||,

a measurable norm on H, and obtaining C.
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Consider for a moment the space Cla, b] of continuous real-valued functions on
a closed interval [a,b], a Banach space with the supremum norm. The dual space
C*[a, b] is isomorphic to the space

NBV(a,b]

of normalized functions of bounded variation on [a, b], that is the space of all bounded
variation functions ¢ : [a,b] — R that are right-continuous and satisfy g(a) = 0.
Specifically, for every A € C*[a,b] there is a unique g € NBV]a,b] such that Af is
given by the Lebesgue-Stieltjes integral:

Afz/abfdg,

for all f € Cla,b]. Moreover, ||A|| = Vb(g), where V?(g) denotes the total variation of
g. See Chapter 13 of [3] for details.
Since C = &, (0), where:

do : C[0,1] = R; o f := f(0)

is a continuous linear functional on C[0, 1], C is a closed subspace of C[0, 1]. Therefore
the dual space C* consists exactly of the restrictions of elements of C*[0, 1] to C:

1
C*={A,:g € NBVI[0,1]}, where (f,A,) = / fdg, for all feC. (3.34)
0

We know that to every Ay € C* there corresponds a unique element hy, € H such
that:
(h,Ag) = (h, hy,) for all h € H.

Then: ) )
/ hdg = / W (z)h}, () dz, for all h € H. (3.35)
0 0

Recall that if fi, fo : [a,b] — R are right-continuous functions of bounded variation
that have no common points of discontinuity, then:

b b
/ fidfs +/ fadfi = f1(b) f2(b) — fi(a) fa(a).
Since every h € H is continuous on [0, 1]:
1 1
[ hdg+ [ gdn=hwg) - b)g(0)
0 0

and since h(0) = 0: 1 1
/0 hdg = h(1)g(1) —/0 gdh. (3.36)
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Now recall that if f : [a,b] — R is absolutely continuous, then:

/ f(t (x) — f(a), for all z € [a,b].

Moreover, the Lebesgue-Stieltjes measure p; on [a,b] induced by an absolutely con-
tinuous function f on [a, b] is absolutely continuous with respect to Lebesgue measure
[, and the Radon-Nikodym derivative is given by the derivative of f:

dﬂf_/
dl_f'

[ nar= [ nwrw

whenever the Lebesgue-Stieltjes integral on the left hand side exists.

Therefore and vield, for all h € H:
[ i, @ = ao - [ gan
_ g(l)/olh’(:c) d:z:—/olg(ac)h’(x) do
-/ W) (9f1) - 9(a) d,

In other words:

/1 K () (h’Ag (z) — g(1) + g(a:)) dr =0, for all h € H. (3.37)

If we let:

Then (3.37) becomes:

0 = /1 W (z) (ha,(z) — g(1)z + G(x))/ dx
= <2, ha, — g(1)id + G),
for all h € H, where id denotes the identity function. Then necessarily:
ha, = g(1)id — G,

for every A, € C*. Note that:



and since constant functions have zero variation:

[ aw, =~ [ sa

We summarize these conclusions in the following:

Theorem 3.15. Let (H,C,u) be the classical Wiener space. Then the dual space
C*={A,: g € NBVI0,1]} is continuously embedded as the dense subspace Hex of H.:

He- = {hn, : A, €C},

where for every Ay € C*:

(o) = g()a = [ a0t = [ (600) = gt0) at, (3.38)

for all x € [0,1], and:

1 1
Uﬂﬁzéfwz—lf%@ (3.39)

for all f €C.

Example 3.1. For every ¢ € [0, 1], we let §; denote the Dirac functional on C:
0 :C = R; 6(f) = f(t), for all f €C.

Clearly d; € C* for every t € [0,1]. For every t € (0,1], the function g := 1, 3 belongs
to NBV[0, 1] and:

1
s =50 = [ s
0
for all f € C. From (3.38)), d; corresponds to the element h; := hs, € Hex, given by:

hi(s) = g(1)s — / g(x)dr = s — / L q) de,
0 0

for all s € [0,1]. If s <, then hy(s) = s, and if s > ¢ then hi(s) = s — (s —t) = t.
Therefore:
hi(s) = s At, for all s € [0,1], (3.40)

where s At denotes min{s,t}. If ¢ = 0 then dy(f) = f(0) = 0 for all f € C, so
ho =0=sA0forall s €[0,1], and (3.40) holds for all ¢ € [0, 1].

We make a few observations about these functionals. First note that for every
te0,1]:
hy = Loy a.e.

SO.
1 1
I = [ i) e = [ v de =t
0 0
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Then d;, as a random variable on (C, i), is centered Gaussian with variance ||| = t:
6t ~ N(0,t) on (C, ).

Now suppose s,t € [0, 1]. Then:

1
(hs, hy) =/ LMoy dz,
0

S0:

COV((SS, 515) = <hs, ht> =S A t,

for all s,t € [0,1].

In fact, as we show next, the functionals §; define a Brownian motion on (C, u).
Recall that a stochastic process {B(t,w) : t € [0,00),w € 2} on a probability space
(Q, F,P) is a Brownian motion provided that it satisfies the following conditions:

i. The process starts at 0, that is B(0) = 0 almost everywhere.

ii. For any 0 < s < ¢, the random variable B(t) — B(s) is centered Gaussian with
variance ¢t — s.

iii. The process has independent increments, that is for any 0 < t; <ty < ... < t,,
the random variables:

B(t1), B(t2) — B(t1), - .., B(ta) — B(ta-1)
are independent.
iv. With probability 1, the function ¢t — B(t,w) is continuous in t.

Proposition 3.16. Let (H,C,u) be the classical Wiener space and 6; € C* be the
Dirac functional for every t € [0,1]. Then:

is a Brownian motion on (C, ).

Proof. Since 0y = 0, the process starts at 0. Let 0 < s < t < 1. By our previous
calculations:

ds ~ N(0,s), 6; ~ N(0,t), and Cov(ds, 6;) = s.

Then:
0r — 0 ~ N(0,t + 5 — 2pV/ts),
where: ( )
Cov(ds, 0 s S
= Corr(d,, ;) = = =4/
P Orr( t) \/g \/E n
So indeed:

0 — 0s ~ N(0,t —s), forall 0 < s <t <1.
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Now let 0 <ty <ty <...<t, <1 Foranyj<k:

COV((Stk - 5%717 5tj - 5tj—1> = ]E[(Stkétj o 6tk6tj—l o 6%71515]' + 5151@715%'—1]
- t]’ - t]’_l - tj + tj—l

= 0.
So the increments d;,, 0, — ¢y, . . ., 0y, — 0y, , are pairwise independent, and since they
are also jointly Gaussian, they are mutually independent. Finally, continuity of paths
follows trivially since ¢ — f(¢) is continuous in ¢ for every f € C. O]

Remark 3.2. Originally, the classical Wiener measure ;o on C was defined as follows:
first define p on all cylinder subsets of C, that is for every subset A C C of the form:

A={feC:(f(t), f(ts), ... f(t) € UY, (3.41)

where 0 < t; <ty <...<t, <1and U € B(R"), define:

n 1 _(9%—5%—1)2
A ::/ e U1 | dxydxsy. .. dr,, 3.42
) = [ (H T ) L do (3.42)

where to := 0 and zy := 0. The collection R of all cylinder subsets of C forms an
algebra, but not a o-algebra. However, the o-algebra o(R) generated by R is the
Borel o-algebra B(C) of C. In 1923, Wiener proved that u is a countably additive
measure on R (see [30]), and therefore ;1 extends uniquely to a measure, also denoted
i, on B(C). Wiener called the space (C, uu) the “differential space”.

To see that the measure p induced by H on C in the abstract Wiener space sense
coincides with the original definition, note that any cylinder subset A C C of the form

(3.41) can be expressed as:
A= [(575175152) v 75tn> S U]

Since the increments d;,, 0, — 04y, ..., 01, — 0y, , are independent, their joint density
function is the product of the individual density functions, so:

M(A) = M[(5t17 5?527 B 75tn) € U}
M{(dtm 6t2 - 51‘/17 s 75tn - 5257171) € T<U)]

" 1 vk
— ——————¢ %1 | dy; ... dy,, (3.43)
/T(U) <,!_Il 2(ty — ti—1) )

where T'(z1,...,2,) = (X1, 22 — 21, ..., Tp — Ty_1) and tog = yo = 0. Performing the
change of variables:

Y =T1,Y2 =22 — 1y, Yn = Tn — Tp-1,

we obtain a Jacobian matrix with determinant 1 and (3.43) becomes exactly the
expression in ({3.42)), proving that p coincides with the original definition of classical
Wiener measure.
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Let us now look at some examples of the Gaussian Radon transform on the classical
Wiener space (H,C, ).

Example 3.2. Consider h; € Hex, given by hy(s) = s At, corresponding to the Dirac
functional §; € C* for a fixed ¢ € (0,1]. Let o € R and:

My := hi- C H.

Then:
My, = ahy + My = ahy + h-

is a hyperplane in ‘H, and, since h; € He-, its closure M, ; in C is a hyperplane in C
(see the discussion following Theorem [2.6)). In fact, since h L h; in H if and only if
0= (h,hy) = (h,d;) = h(t):

M, ={h € H:h(t) = at},
and by Lemma [2.5}

Mo ={f €C: f(t) = at}.

The measure fiyy, , resulting from Theorem [2.4]is concentrated on the hyperplane

M, in C and has characteristic function:

/ e dpny | = eiohehag)=HIPughs, I?
C

for all A, € C*. Consider now 0, € C* for some s € [0, 1]. Then, with respect to s, ,:
b5 ~ N (alhy, hs), || Payhs?) -
Since (hy, hs) = s At and ||h,||* = r for all r € [0, 1]:

sAt)?
I Paohll® = [l = 1Pyl = s = C2EE
s0: )
At
5y ~ N (a(s At),s — %) , (3.44)
with respect to py, . We then obtain:
GO, (ahy + hy) = a(s At), (3.45)
and: )
Nt
Go? (ahy + hy) = s — (s A1) +a?(sAt)% (3.46)

Note that if we consider E[ds|d; = y| for some y € R, where the conditional
expectation is with respect to classical Wiener measure i, by Theorem [3.14}

E[0s0r = y] = Gos([(he, ) = y])
— G, (%ht + hti)

)
= =(sAt
(s A1),
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where the last equality follows from (3.45]). We showed that:

SNt
EM@=m=yt-

Now let s1, 9 € [0,1]. By (3.2):
COV(551, 532) - <PM0hS17 PMth2> )

where we are once again working on (C, py, ,). Now for every s € [0, 1]:

<h5,ht> SNt
Py hs = hy — ~——~h; = hy — ——hy.
My'ls S ||ht||2 t S n t
Then: Nt Nt
Cov(ds0.,) = (51 A 5a) — 1 )t(SQ ), (3.47)

In turn, this gives us the Gaussian Radon transform of the product d,,0,, on M, ;:
1
G(65,6s,) (hy + b)) = (51 A 52) 4 (51 A t) (59 A ) <a2 - Z) : (3.48)

Next, we obtain a Brownian bridge on (C, fia,,) as an almost immediate conse-
quence of the above calculations.

Definition 3.3. Let a,b € R and L > 0 be fixed. A Brownian bridge of length L
from a to b is a Gaussian process {X(t) : 0 < t < L} that has continuous paths,
starts at a (that is, X(0) = @ a.s.) and satisfies:

E[X(t)] = a+ (b— a)% and Cov(X(s), X (1)) = (s A ) — S—Lt

for all s,t € [0, L.

Proposition 3.17. Let (H,C, ) be the classical Wiener space and:
Mgy = ahy + b,

for some a € R. Then the process:
{0,:0<s <t}

considered on (C, pin, ), is a Brownian bridge of length t from 0 to ot.

Proof. Clearly {6, : 0 < s < t} is a Gaussian process with continuous paths, and

6o = 0. By (3.44): s
E[d] = as = (ozt);,
and by (T):

Cov(d,,,0s,) = (51 A s3) — %

for all sq,s9 € [0, 1]. O
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Example 3.3. To generalize the results in Example let 0 <t; <ta<...<t,<
1. Then the functions Ay, , hy,, .. ., by, are independent in H, and if we let:

MO = [Span{ht17 ceey htn}]L ?
then:

1
(b,
{vtk_tkl( e )}1§k§n

is an orthonormal basis for M-, where ¢, := 0. To see this, recall from Proposition
that {0, 01, — 0¢yy---,0:, — O, _, } are independent in L?(C, i), so:

0 Jif g £k
e R e ) B (T 5tj—1>L2(C,u) - { tr —tp_ if; i k

For any s € [0, 1]:
<hs, htk — htk71 = (S A tk) — (S N tkfl),

S0:
. u (S /\tk) — (S /\tkfl)
PMOLhS - kz:; th — tpq (htk - htk—l)’
If we let:

My = arhy + ...+ anhy, + Mo, (3.49)
for some real aq, ..., a,, a closed subspace of codimension n in C, then with respect
to M]V[a,t:

- - N tk) — (8 VAN tk_l))Q

0y ~ N sAtg), s — (s ,
(Benme-Flern=i

for all s € [0,1]. More precisely:

tj—tj—1

5.0 d N (23;11 ety 4+ D S, L1+ @> Jif s etig,ty), j=1,...,n
N (O, ous, t,) ,if s € [ty 1].
For any si, 52 € [0, 1]:

COV((SSU 552) - <PMoh81> PM0h82>
- <h51 - PMOthU h52 - PMOLhS2>7

so, with respect to py, ,:

n

((81 A\ tk) — (81 AN tk—l)) ((82 A\ tk) — (82 N tk—l))‘

Cov(ds,,0s,) = (51 A 89) — P—
— lp—1

k=1
Example 3.4. Now consider Ajq € C* given by Aiq f = fol f(x)dx for all f € C. This
corresponds to hyg € Hex given by:
T 1.2
o) = [ (L= tydt =z - 3.
0 2
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for all z € [0,1]. Then hiy(z) =1 — z and [|hy||* = §. For every s € [0, 1]:
s
(Pid, hs) = (hia, 0s) = 5 — 5

so if M, is as in (3.49), then, with respect to pyy, ,:

n

t% 1 2 3
AidNN<Zak (tk—E) sttty ——t ——Ztk et — tet) | -

k=1
Example 3.5. Let Py = hij and consider the hyperplane in H:
Pa id — ah/ld + hlda

for some o € R. Remark that:

Po={heH: / r)dr =0} and Pyju ={h e H: / de = —}.
For any s € [0, 1]:
s, hig)|? 35t
Po h 2 _ h 2_|< sy Ilid e 2 3__‘
|| Py SH || s|| ||—hid||2 S 35 + 3s 1

So, with respect to up, -

2 34
5s~/\/'(oz(s—%> s — 35> +3s° —%),

for all s € [0,1], and:

82 32
Cov(ds,,0s,) = (51 A\ 52) =3 (31 - 51) (52 N 52) '

Example 3.6. The continuous linear functional Agyy € C* given by:

Ao f = /0 ) dva

2
hsgri(x) = 2 — 37 2%2 for all x € [0,1]

for all f € C corresponds to:

in He«. Then:
! 2 7
(e i) = (s sa) = [ (= 20%%) do =
0
[
IPrsanl” = | = P50 = o

Thus, with respect to up,

Tao 1
As rt 7 ) .
art N(so 300>
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3.4 An Inversion Procedure for the Gaussian Radon
Transform

The focus of this section is to develop a way to recover a function f from its Gaussian
Radon transform. Our procedure will involve the Segal-Bargmann transform for
abstract Wiener spaces, which we review next. We begin with the classical Segal-
Bargmann transform for finite-dimensional spaces.

Let f € L*(R",~,), where v, is standard Gaussian measure on R". The Segal-
Bargmann transform of f is the function Sf : C* — C given by:

(Sf)(2) = e~ 2> / e f(z) dyn(z), for all z € C", (3.50)

where:
n

(z,w) := Z 23 Wi,

k=1
for all z,w € C™.
Next, we introduce the Segal-Bargmann space over C™, denoted by:

HL?*(C),

and defined as the space of all holomorphic functions on C” that are square-integrable
with respect to the measure A\, on C" given by:

1
dA,(2) == —ne’|Z‘2 dz,

™

where dz is 2n-dimensional Lebesgue measure. Then HL?(C") is a closed subspace
of L?(C", \,,), therefore a Hilbert space itself, and:

S L*(R"™,~,) — HL*(C"); f +— Sf

is a unitary operator, that is SS* = S*S = id. For more details, see |26], [4], or [5].
Now let (H, B, i) be an abstract Wiener space and Hc := H @ iH be the com-
plexification of H. This is a complex Hilbert space with inner-product:

(h+ik,u+1v)c = ((h,u) + (k,v)) + i ({(k,u) — (h,v)), for all h, k,u,v € H,

and norm ||h+ik||% = ||h]|*+||k||*. For any 21, 2o € Hc let (21, 22) denote the complex
bilinear extension of the H inner-product:

(h+ik,u+iv) = (h,u) +i(h,v) +i(k,u) — (k,v), for all h, k,u,v € H.

For every f € L*(B, u) the Segal-Bargmann transform of f is the function Spf :
H¢ — C defined by:

(S5f)(2) = 36 / 1@ f(2) dpu(a), (3.51)

B
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where [z := Ih + ilk for all z = h+ ik in Hc and I : H — L*(B, u) is the map
defined in (L.21)).

Let J(Hc) be the collection of all finite-dimensional subspaces of Hc. We say that
a function g : Hc — C is holomorphic provided that ¢ is locally bounded and the
restriction g|z of g to any F' € J(Hc) is holomorphic. Consider for every F' € J(Hc)
the Gaussian probability measure Ar on F' given by:

1
dA\p(2) == Fe_”Z”% dz,

where n =dim(F') and dz is Lebesgue measure on F. With these notations, we are
ready to define the Segal-Bargmann space over Hc, denoted by:

HL*(He),

as the space of all holomorphic functions g on H¢ that satisty:

lgls = sup / 9(2)? dA(z) < oo.
FEJ(Hc) F

Then || - ||sp as defined above is a complete inner-product norm on HL?(H¢), which
is thus a complex Hilbert space. As in the classical case, the map:

Sp: L*(B,p) — HL*(He); f = Spf

is unitary. For details and proofs of these facts, see [26], [9], [14], or [8].

The next theorem, our inversion procedure, shows that for a function f € L?(B, p)
the Segal-Bargmann transform Spf coincides with the finite-dimensional Segal -
Bargmann transform of G f(p + Qo) on the complexification of Qg, for any closed
subspace () of finite codimension in H.

Theorem 3.18. Let (H, B, i) be an abstract Wiener space, f € L*(B,u) and Qqy be
a closed subspace of finite codimension in H. Consider the function Gg,f defined on

Qy by:
GQof(p) = Gf(]? + Qo); for all p € Qé
Then:
(5%(%0]”)) (2) = (Spf)(2), for all z € (Qy)c, (3.52)

where Squ and Sp are the Segal-Bargmann transforms on L*(Qr, 7@3) and L*(B, 1),
respectively. In other words:

SQ&(GQOJC) = (SBf)’(QOl)C- (3.53)

Proof. Recall that, from (3.14), Gq,f € L*(B,u), so we may consider the Segal-
Bargmann transform Sq1 of G, f. From (3.17), if h € Qg then for Vos-almost all
p € Qg

Ih = (h,p), jg,-almost everywhere.
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Then if 2 = h + ik € (Qf)c for some h, k € Qf, we have for Vos-almost all p € Qi
Iz =Ih+ilk = (h,p) +i(k,p) = (2,p), pg,-almost everywhere. (3.54)

For any z € (Qp)c:

(Sqs(Gau) (2) = 46 [ c0Ga, 1) gy o)

0

SR N K LT
et [ [ @ g @)y ) by @50
— ¢z /e 2 f(x) du(z) (by Theorem [3.§)
B
= (Spf)(2)
which proves our claim. O

Now suppose u € H is a unit vector. Taking Qo = u* in Theorem we obtain:

SRu(GuJ-f) = (SBf)(Cu

In particular:
(Sru(Gyur f)) (tu) = (Spf)(tu), for all t € R,

which translates to:

(Se(Gurf)) (t) = (Spf)(tu), for all t € R, (3.55)

where Sy is the Segal-Bargmann transform on L*(R, 7). Recall that any hyperplane
in H is of the form:

Ypu = PU + ula

for a unit vector v and p > 0. The equation (3.55) tells us that if we know the
Gaussian Radon transform of f:

Gf(’yp,u) = GuJ-f(p)7

for all hyperplanes in H, then we know (Spf)(h) for all h € H. Taking the holo-
morphic extension to H¢, we know Spf and can then obtain f using the inverse
Segal-Bargmann transform.
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Chapter 4
The Gaussian Radon Transform and Machine
Learning

Suppose we are observing an experiment, recording the outputs corresponding to
certain inputs. The central task of machine learning is to predict the outputs cor-
responding to future, yet unobserved, inputs. More precisely, suppose that all input
values are contained in a set X, called the input space, or sample space. We will
assume that all outputs are real numbers. If there is a finite (or countable) number
of possible outcomes, this problem is known as classification; otherwise, it is known
as regression. Moreover, suppose we have collected a set:

D={(ti, ), (tn,yn)} CAXR

of input values t; together with their respective output values yx, known as the train-
ing data. A classical example of a classification problem is handwriting recognition.
For instance, say we feed a computer a large number of handwritten digits together
with their corresponding labels “07, “17, “2” and so on; the goal of a learning algorithm
would then be for the computer to correctly label new images of handwritten digits.

So the goal is to use the training data to find a “prediction” function f: X — R
such that f(¢) is a close approximation of the output y resulting from a future input ¢.
An important point to make is that we are not trying to find a function that matches
the training data exactly, but one that yields good approximations of future outputs.
In fact, modeling the training data too closely is known as owverfitting; the “quality”
of a prediction model is determined by its accuracy in predicting future outcomes,
and not by its accuracy in fitting the training data.

Some of the most popular learning methods are support vector machines (SVM’s),
and a crucial assumption of these methods is that one searches for the prediction
function within a special kind of Hilbert space of functions, known as a reproducing
kernel Hilbert space (RKHS). We review this next. First, recall that a function
K : X x X — R is said to be positive definite provided that:

K(s,t) = K(t,s), for all s,t € X,
and: .
Z OéiOéjK(ti,tj) 2 0,
ij=1
for all n € N and any choice of ay,...,a, € R and t,...,t, € X. The following

important result, known as the Moore-Aronszajn Theorem, may be found in Chapter
4 of [28].

Theorem 4.1. Let X be a non-empty set and K : X X X — R be a positive definite
function. Then there is a unique Hilbert space H, whose elements are functions

f: X =R, such that:
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i. The function K, := K(t,-) is contained in H for everyt € X.
1. For every function f € H:

f(t) = (K, f), forallt € X, (4.1)

where (-,-) is the inner-product in H.
Moreover, the linear span of {K; :t € X'} is dense in H.

The Hilbert space above is called the reproducing kernel Hilbert space over X with
reproducing kernel K. Note that (4.1)) yields:

K(s,t) = (Ks, Ky), for all s,t € X,
and also implies that the Dirac functional:
0t H = Ry 6,(f) := f(1),
is continuous for every t € X

16:(1) = [F O] = [{EK, )] < [

Another interesting, often useful, property of RKHS’s is that norm convergence
implies pointwise convergence. Specifically:

If f, = fin H, then lim f,(¢t) = f(¢), for all t € X.
n—oo

This follows readily from continuity of d;.

4.1 Ridge Regression

Suppose we have the training data D = {(t1,41),. .., (tn,yn)} C X X R and a RKHS
H with reproducing kernel K : X x X — R. The method known as ridge regression
seeks to find a prediction function in H by minimizing the quantity:

n

Ran(f) = D (g5 = F(t;))* + Al S|, for all f € H, (4.2)
j=1
where t1,...,t, are the given input values in D, yq,...,y, are their corresponding

collected outputs, and A > 0 is a regularization parameter. The main role of this
parameter is to avoid modeling the training data too closely, or overfitting.

The following result, showing that a unique solution to this problem exists, is a
well-known result in machine learning theory. For completeness, we include here a
geometrical proof of this result, with roots in the works [19], [20] of Kimeldorf and
Wahba.
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Theorem 4.2. Let X be a non-empty set,

D= {(t,91), -, (tn,yn)} C X xR

be a finite subsel of X x R, and H be a RKHS over X with reproducing kernel
K : X xX — R. Then for every A > 0 there is a unique element f\p € H such that:

Ran(frp) = }QIER/\,D<f) = J}g}; (Z(yj — f(t;)* + >\||f||2> :

Jj=1

Specifically, fA,D s given by:

n

Fap=> &Ky, (4.3)

j=1
where K; denotes the function K(t,-) for all t € X, and the vector ¢ € R™ is given

by:
¢=(Kp+\,) 'y, (4.4)

with Kp being the n x n matriz with entries [Kpl; j = K(t;,t;), I, the n X n identity
matriz, and y = [y ...y,] € R™.

Proof. Let H, denote the space H with the scaled inner-product:

(fs@) g, = Mfr9,), forall f,g € H.

Consider the linear map:
1
A

where {ej,...,e,} is the standard orthonormal basis of R™. Then for all f € Hj:

T:R" — Hy; ey T(ej) = - Ky, forall 1 < j <n,

(T Lt = 1T, = A (15, ) = 1(0)

for every 1 < 7 <mn, so:
T*f =Y ft))e;.
j=1

Then we may express Ry p as:

n

Ran(f) = D (= f(t))> + A7

j=1
= Ny =T fllgn + /117,

If we consider the direct sum of Hilbert spaces H) @ R", the norm in this space is:

1(f, Ol mnorn = llellin + 1£11Z,
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for all c € R" and f € H), so R, p(f) may be viewed geometrically as the distance
between the points (f,7*f) and (0,y) in Hy & R™

Rap =dist ((f,77f),(0,y)) in Hy & R".

In other words, minimizing R p(f) is the same as finding the point closest to (0, y)
on the subspace {(f,T*f) : f € H,}, which is simply the graph of T*:

Gr(T") ={(f, T"f) - f € H\} C Hy O R".
Now note that for any ¢ € R™:

<(f7 T*f>7(_TC’ C))HA@]R” = <f7 _TC>H)\ + <T*f’ C>R”
= —(/, TC>HA + ([, TC>H/\
0.

Conversely, if f € Hy and d € R" are such that ((f,d),(=Tc,¢))y, ggn = 0 for all
c € R", then (f,Tc)y = (d, ¢)ga, sO:

(T*f,c) = (d,c), for all c € R",
meaning that d = T f. Therefore:
Gr(T*) = {(~Tc,c) : c € R*}*. (4.5)

~So Gr(T") is a closed subspace of Hy @ R", and then there is unique point
(fap, T* frp) in Gr(T™) that is closest to (0,y). This point is of the form (0, y)+(f, ¢),
where (f,c) € Hy®R™ is orthogonal to Gr(7*). This is pictured below in Figure

Rn

____

(b)

Figure 4.1: A geometric interpretation of Theorem [4.2

From (4.5): A A
(fop, T"fap) = (=Tc,y +¢),
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for some ¢ € R". Then f)\’D = —T'c and:
y+c=T"fip=-T"Tc,

S0
y=—(T"T+I,)c. (4.6)

Note that (T*T + I,)d = 0 if and only if d = 0, since ((T*T + I,,)d, d)p. > ||d||%.
for all d € R™, so the operator T*T + I, is invertible. So we may solve (4.6) for ¢

c=—(T"T + I,) 'y.

Since f,\,D = —Tec:
f)\,D =T [(T*T + In)—ly} .
For any 1 <14,5 <n:

<(T*T)€i7ej>]Rn = <T€i,T€j>H>\

1 1
= )\<XKti’XKtj>

1
1
5Bl

so T*T = %KD. Then:

. n 1 -1
oo = T [(XKD—i_In) ] Yi€;j

J=1 =1
n
= E CjKt77
=1
where ¢ is as in (4.4]). O

4.2 Probabilistic Interpretations

Remark that the ridge regression problem described above contains no randomness
at all. Our work in this area is motivated by a recent increase in the machine learning
literature interest in probabilistic interpretations of support vector machines - see for
instance [27], [24], [2], [23], [31], or [18].
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Suppose we are performing an experiment and S is the set of all possible out-
comes, a set known as the sample space. The outcome of the experiment follows an
unknown probability distribution on S. A statistical model is a collection of proba-
bility distributions on S, where we suspect the “true” distribution lies. In particular,
a parametric statistical model is a collection {p(y|0)}gco of probability distributions
on §, indexed by a parameter set ©. For example, a Gaussian model might take
© ={(m,0):m € R,o > 0} and for every § = (m, o) € © the Gaussian distribution

on R: {
e_ﬁ(y —m)?.

p(ylo) =

The principal assumption of Bayesian inference is that the parameters themselves
are also considered random, that is we assume that © is also equipped with a fixed
probability distribution p(6), called the prior distribution. The goal is then to use
the collected data to “update” our knowledge of the best parameter, by finding the
conditional distribution p(f|y) of 6 given the data y, a quantity known as the posterior
distribution. These quantities are all connected by Bayes’ formula:

p(y|0)p(0)
m(y)

oV 2T

p(0ly) =

Y

where m(y) = [ p(y|0)p(0) d is the marginal distribution.

The mazimum a posteriori (MAP) estimator seeks the value Oprap of O that max-
imizes the posterior:

Orrap = arg max p(6]y) = arg max p(y|0)p(6),

where the last equality follows because m(y) is a positive quantity that does not
depend on 6, so it has no influence on the maximum over © of p(d|y).

Let us now give a Bayesian perspective on the ridge regression problem: suppose
our sample space is R and our parameter space is a RKHS H over the input space X,
with reproducing kernel K : X x X — R. If H is finite-dimensional, we may equip
H with standard Gaussian measure 7y as our prior distribution:

1
p(f) = —=¢ 2P for all f € H,

V27

where d is the dimension of H. Let f denote the continuous linear functional:
f~ = <f7 >

on H for every f € H. Then, with respect to vy, every f is Gaussian with mean 0
and variance || f||?, and Cov(f,g) = (f,g) for all f,g € H.
Recall that H contains the functions K; = K(¢,-) for all £ € X and also:

f(t) = (K, f) = K,(f), for all f e H teX.

Then {K;}icx is a centered Gaussian process on H with covariance function K:

Cov(f(t, f(s) = (K, Ks) = K(t,s), for all t,s € X.
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Now suppose D = {(t1,11),-- -, (tn,¥n)} C X X R is the training data we collected.
The relationship f(t) = K;(f) suggests that we could model our data y as arising
from:

U = f(t(f), for every t € X.

But suppose every measurement y; contains some measurement error which we
model as Gaussian noise. We would need a Gaussian process {€1,...,€,} on H, with
covariance:

COV(EZ‘, Ej) = )\52"]‘

for some parameter A > 0, which is also independent of {K,,,..., K, }. To achieve
this, we consider an orthonormal set {ey,...,e,} C H such that:

{e1,...,en} C [span{Ky,,... ,Ktn}]L.

Then {f(tjhgjgn and {€;}1<j<n are independent, and we model our data as:

;= f(tj(f) + \/Xéj, forall 1 <j <n,

for every f € H, where A > 0 is a fixed parameter. Then g; is Gaussian with mean
f(t;) and variance A, and {@i,...,J,} are independent. This gives rise, for every
f € H, to the statistical model of distributions on R" given by:

n

pap(z|f) = H

J=1

1
2T\

6-%(@1-]‘(#7))2’

for every x = (x4,...,2,) € R™
Replacing = with the vector y = [y; . .. y,] of observed values, the posterior distri-
bution is then proportional to:

o5 =1 W= f () =3I I — e—i[2?21(yj—f(tj))2+>\HfH2]’
so finding the MAP estimator is equivalent to minimizing R, p in (4.2]). Therefore:
Jfvap = fap,

where fA,\7 p is the ridge regression solution in (4.3).

This Bayesian approach clearly depends on H being finite-dimensional; however,
reproducing kernel Hilbert spaces used in practice are often infinite-dimensional (such
as those arising from Gaussian RBF kernels). The ridge regression SVM previously
discussed goes through regardless of the dimensionality of the RKHS, and there is
still a need for a valid stochastic interpretation of the infinite-dimensional case.

We now explore another stochastic approach to ridge regression, which is equiv-
alent to the Bayesian one, but which can be carried over in a sense to the infinite-
dimensional case, as we shall see later. Suppose again that H is a finite-dimensional
RKHS over X, with reproducing kernel K, and equipped with standard Gaussian
measure. Recall that {K;}cx is a centered Gaussian process on H with covariance
function K. If we assume that the data arises from some unknown function in H,
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then the relationship f(t) = K;(f) again suggests that the random variable K, is a
good model for the outputs. Moreover, the training data D = {(t1,%1), .- -, (tn, ¥n)}
provides some previous knowledge of the random variables K, which we can use to

refine our estimation of K, by taking conditional expectations. In other words, our
first instinct would be to estimate the output of a future input ¢t € X by:

]E[];(t’}?h =Y. .. 7Ktn = yn] (47)

But if we want to include some possible noise in the measurements, we will again
“attach” to {K;,,..., Ky, } an independent centered Gaussian process.

So fix t € X, a future input whose output we’d like to predict. To take mea-
surement error into account, we let again an orthonormal set {e;,...,e,} C H such
that:

{e1,...,en} C [span{K,,, ..., K, , K}]",

and A > 0, and set: )
y; = K, + \/Xéj7 forall 1 <j<n.

Then we estimate the output §(¢) as the conditional expectation:
J(t) = E[K,| Ky, + VA& = y;,1 < j <nl.
As shown in Lemma [4.3] below:

:lj(t) = a1Yx 4+ ...+ AnYn,

where a = (ay,...,a,) € R" is:

0= A" [Cov(R,, K, + ﬁéj)] ,

1<j<n

with:

[A]i,j = COV(ktj + \/Xéj, Kti + \/Xél)
- K(t“tj) + A(Si’j

for all 1 <14,5 < n. Moreover:
Cov(Ky, Ky, + V&) = (K, Ky) = Ky (1)

Note this last relationship is why we required that {ey,...,e,} also be orthogonal to
K. This yields:

n

G(t) = D _[(Kp + M)yl B, (1),

j=1
showing that:
9(t) = fu(t).
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Lemma 4.3. Let Zy, Z1, ..., Z, be centered jointly Gaussian random variables on a
probability space (2, F,P) and let A € R™"™ be the matriz with entries:

(Al ; = Cov(Z;, Zj), for all 1 < i,j <n.
If A is invertible, then:
E[Zo|Z1,. .., 20 = 121 + ...+ anZo,
where a = (ay,...,a,) € R is given by:
a= A" [Cou(Zy, Z1) Cov(Zy, Z5) ... Cov(Zy, Z,)]

Proof. Let Y = Zy — Z,, where Z, is the orthogonal projection in L*(Q2,P) of Z,
onto the linear span of Z;,...,Z,. ThenY L Z; forall1 <j<n,so0Y,Z;,...,2Z,
are jointly Gaussian and Y is independent of the random vector (71, ..., Z,). Then
if S is any set in the o-algebra o(Zy, ..., Z,) generated by Z1,..., Z,:

/Zod]P _ /(ZLJrY)d]P’
S S
_ /ZldIPHL/Yd]P’
S S
= /ZJ_dP.
S

Since this holds for all S € 0(Z;,...,Z,) and Z, is 0(Z, ..., Z,)-measurable (being
a linear combination of Z3,...,7,), the conditional expectation E[Zy|Z1, ..., Z,] is
exactly Z,:

E[Zg|Zl, .. ,Zn] = ZL = a121 + ... —I—anZn,

for some aq,...,a, € R. Note that, since all variables have mean 0:
E(ZoZ;) = B[Z.Z;] =Y E[ZiZj]a; = [Ad];,
i=1

for all 1 < 5 <n. So:
Aa = [COV(Z@, Zl) COV(Z(), ZQ) N COV(Z(), Zn)] s
which proves the claim. O

If H is infinite-dimensional, the absence of standard Gaussian measure prevents
us from having the Gaussian process {K;}cx directly on H. In what follows, we
show that the Gaussian Radon transform offers a stochastic interpretation to the
ridge regression problem when H is infinite-dimensional, by considering the Gaussian
process and conditional expectation approach on an abstract Wiener space rather
than on the Hilbert space itself.

Specifically, suppose X is a separable topological space and H is a real infinite-
dimensional RKHS over A with reproducing kernel K. The assumption that X is
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a separable topological space ensures that H is also separable. Complete H with
respect to a measurable norm and obtain an abstract Wiener space (H, B, ). Then

for every t € X, consider: )
K, :=IK, € L*(B, p),

where I : H — L*(B, 1) is the map described in ([.21). Since K(f) = (K, f) = f(t)
for all f € H, we choose K; as the model random variable for the outputs. Note
that since [ is an isometry, {K;}icx is a centered Gaussian process with covariance

function K: o
Cov(Ky, Ks) = (K, Kg) = K(t,s), for all t,s € X.

As before, we account for noise in the training set D = {(t1,vy1),.-., (tn,yn)} C
X x R by taking an orthonormal set {e1,...,e,} C H such that:

{e1,...,en} C [span{K,,,..., K, , K}, (4.8)

where ¢ € X is the future input whose output we want to predict. For a fixed
parameter A > 0, we model the data as:

Y; = ng + \/Xéj, forall 1 <j <n,
and then estimate the output (t) corresponding to ¢ by the conditional expectation:
§(t) = B[R Ky, + VAE; = 5,1 < j <,

where ¢; = Ie; for all 1 < j < n.
By our assumption in (4.8]) and the isometric property of I:

COV([(tj + \/Xéj, Kti + \/Xél) = <Ktj + \/X@j, Kti + \/X€1>
= K(ti,t;) + A\oij,

for every 1 <¢,7 <n. Similarly:

Cov(Ky, Ky, + V&) = K(t),t) = K (1),

By Lemma 4.3}
E[K| Ky, + VA =y 1 <j<n] = [Ky@t)... K, O|(Kp+M,) "y
= Y &K, (t), where ¢ = (Kp + A,) 'y
j=1
= fA)\,D(t)a 3 (49)

where fA, p is the ridge regression solution in (4.3).
Now note that { Ky, +v/Aey, ..., K, +v/ e, } are linearly independent. For suppose
ai,...,a, € R are such that:

a1 Ky, + \/Xalel + ... Fa, K, + \/Xanen = 0.
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Then:

a Ky + .. 4 a, K, = —\/X(alel + ..t ane,),
but from (4.8), both sides of the equality above must be 0. So aje; + ...+ ane, =0,
and since {ey,...,e,} are orthonormal, a; = ... = a, = 0. By Theorem the

conditional expectation above may be expressed as the Gaussian Radon transform of
K, on the closed affine subspace determined by (K, + \/Xej, =y for1 <j<mn

]E[f(t]f(tj + \/Xéj =y;,1 <j<n]=GK, (ﬂ [(Ktj + \/Xej, = yj]> .
j=1

Combined with (4.9), we see that the value f)\vD(t) predicted by ridge regression can
be expressed in terms of the Gaussian radon transform. We summarize these findings
in the following theorem.

Theorem 4.4. Let H be a RKHS over a separable topological space X, with repro-
ducing kernel K : X X X — R, and B be the completion of H with respect to a
measurable norm, with Wiener measure u. Let D = {(t1,11), ..., (tn,yn)} C X x R
and t € X be fized. Let {e1,...,e,} C H be an orthonormal set such that:

{er,...,en} C [span{Ky,, ..., K, Ki}*, (4.10)
where Ky = K(s,-) € H for all s € X. Then for every A\ > 0:

Fp = EIK|K, + VA =y, 1< j<n (4.11)
= GK, (ﬂ (Ko, + Ve, ) :yj}), (4.12)
j=1

where Ky = IK, for all s € X and f,\,D is the ridge regression solution in (4.3).

Let us know briefly go back to our “first instinct” approximation in (4.7) and take
simply:

EIK| Ky, = w1, .., Ky, = ) (4.13)

as our estimation of the output corresponding to ¢t € X, basically ignoring noise and
taking A = 0 above. Note that we are assuming that we are still in the setting of an
abstract Wiener space (H, B, i), where H is an infinite-dimensional separable RKHS
with reproducing kernel K, and K, = IK, above. Then, again by Theorem
assuming that the functions Ky ,..., K, are linearly independent, the quantity in
(4.13]) may be expressed as:

Bl Ko, = ... Ko, = ] = OF, (m o) ) w10
Applying Lemma, |4.3¢
~ ~ ~ d A
EIK|K, =y, Ky, =y =Y diK (1), (4.15)
j=1
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where d = [dy...d,] = Ky, where Kp is again the n x n matrix given by the
covariances: [Kpl;; = K(t;,t;), forall 1 < j <n.

As shown below in Theorem 4.5 . the quantity to the right of (4.15) - is in fact the
element fs of H of minimal norm which satisfies the interpolation conditions:

f(t;) =y;, forall 1 <j <mn,

which is exactly the setup in the more traditional spline theory (see [19], [20]). In other
words, the spline solution f; may also be expressed as a Gaussian Radon transform:

£ =GR, (ﬂ 1) — m) |

j=1

The fact that we may obtain the predicted value through a conditional expecta-
tion and the Gaussian Radon transform suggests that a broader class of prediction
problems could be approached in this fashion. For instance, suppose one is interested
not in predicting the value at a particular input ¢, but in predicting the maximum or
minimum value attained on a set of future inputs. The predicted value would be:

GF(L), (4.16)

where L is the closed affine subspace of the RKHS reflecting the training data, and
F is, for instance, a function of the form:

F(zx) =sup f(t(x),
tes
for some given set S C X of future inputs one is interested in. Note that the predic-
tion in (4.16) is generally not the same as taking the supremum over the individual
predicted values, that is not the same as:

sup Gf(t(L),

tes

where GK,(L) is the SVM prediction as in Theorem .
We now return to the spline setting result discussed earlier; this is a known result
in the literature, but we include a proof here for completeness.

Theorem 4.5. Let H be a real RKHS over a non-empty set X, with reproducing ker-
nel K, and D = {(t1,11),- -, (tn,yn)} C X XR be such that the functions Ky, , ..., Ky,
are linearly independent. Then the element of H of minimal norm which satisfies
f(t;) =y; for all 1 < j <mn is given by:

fs = ZdAjKtja (417)
j=1
where d = [dy ...d,) = K5y, with y = [y1...ya] and Kp the n X n matriz with
entries [Kplij = K(t;,t;) for every 1 <i,j <n.
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Proof. The proof will be similar to the geometrical flavor of Theorem[4.2] Once again,
we let T : R” — H be the linear operator that takes e; — T'(e;) = K, for every
1 < j < n, where {ey,...,e,} is the standard orthonormal basis of R". The adjoint
is then given by:

T f = Z (f, Ky,)ej = Zf(tj)ej, for all h € H.
j=1 j=1

Then:
{feH:flt)=yi,....f(tn) = ya} = (T") ().
The assumption that the functions Kj, are linearly independent is crucial be-
cause it guarantees that the affine subspace above is non-empty. For assume that
(ay,...,a,) € R™is orthogonal to the range of T™*. Then:

ar f(t1) + ...+ anf(t,) =0, for every f € H,

which is equivalent to a1 Ky, + ... + a,K;, = 0. But since {K,,..., K, } are linearly
independent, a; = 0 for all 1 < i < n, so Im(T*) = R" and then (7%)"*(y) is
non-empty.

Since (T*)7!(y) is a translate of the closed subspace Ker(T*) of H, there is an
clement f, in (T%)~'(y) of minimal norm, specifically the point on (T*)~(y) that is
orthogonal to Ker(7™*). This is pictured below in Figure

{fEH:T'f=y}

Figure 4.2: The point on (T*)~!(y) closest to the origin.

Since:

Ker(T") = [lm(T)]",

the orthogonal complement [Ker(7*)]* is the closure of the subspace Im(T). But
Im(7) is a finite-dimensional subspace of H and is therefore closed, so:

[Ker(T*)]" = Im(T).
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Therefore our point f, € Im(7T) N (T*)~*(y). Then f, = T¢ for some ¢ € R™ and
(T*T)c =y, so: )

fo=Tc=T(T*T) 'y.
It follows readily that T*T is given by the matrix Kp, so indeed:

n

fo= Z[(KD)_I]i,jyiKtj-

i,j=1

4.3 Direct Sums of Abstract Wiener Spaces

One disadvantage of Theorem is that, given the training data:
D = {(thyl)a SR (tn7yn)} C XX R)

for every input ¢t € X whose outcome we’d like to estimate, we must choose an
orthonormal set {ej,...,e,} € H such that every e; is not only orthogonal to each
Ky, ..., Ky, , but also to K;. In other words, our choice of {ey,...,e,} could change
with every training set and every future input ¢t € X. Since span{K; : t € X'} is dense
in H, we cannot find a set {ey,...,e,} that would “universally” work. This suggests
that we would like to “attach” a Hilbert space to H, which could be our “repository”
for errors, that is orthogonal to H. This is precisely the idea behind direct sums of
Hilbert spaces.

Let Hy and H; be Hilbert spaces with inner-products (-, ), and (-, -),, respectively.
The orthogonal direct sum of H; and H, is the space

Hy @ Hy = {(h1,hs) : hy € Hy, hy € Hy},
which is a Hilbert space with the inner-product:

((h1, ha), (g1, 92)) = (h1, 91), + (2, ga)s,

for all hy, g1 € Hy and hs, go € Hy. Note that H; and Hs are continuously embedded
as subspaces of H; & Hy through the maps:

H — H & Hg;hl — (hl,O) and Hy — Hi & Hg;hg — (O, hQ),

and H; @ Hs is the orthogonal direct sum of these subspaces.

Next, we investigate whether the abstract Wiener space construction over a direct
sum of Hilbert spaces yields a direct sum of Banach spaces, where if B; and B, are
Banach spaces with norms |- |; and | - |9, respectively, their direct sum:

Bl D B2 = {(.Tl,IQ) 1T € Bl,JZQ € Bg}
is a Banach space with the norm:
(71, 22)| == |z1]1 + | 722,

for all 1 € By and x5 € B».
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Proposition 4.6. Let (Hy, By, i11) and (Ha, By, pi2) be abstract Wiener spaces, where
(Hy, ||-|l1) and (Haz, ||-||2) are real separable infinite-dimensional Hilbert spaces and By,
By are the Banach spaces obtained by completing H,, Hy with respect to measurable
norms | - |1, | - |2, respectively. Then:

(Hy @ Hy, By © Ba, ji1 X pig)
1s an abstract Wiener space.
Proof. Let x* € (By ® By)*. Then define for every z; € By and every x5 € By:
(x1,27) == ((21,0),2%) and (z9,25) := ((0,22),2") .
Since x* is continuous on B @ Bs:
(21, 27)] = [((21,0), 27)| < ¢f(21,0)] = clz1}s,

for some ¢ > 0, and z7 is clearly linear, so x7 € Bf. Similarly, 25 € B;. Thus every
continuous linear functional on By @& By is of the form z* = (27, 23):

(21, 22), (27, 23)) = (21, 2]) + (22, 25), for all x1 € By, x5 € Bs,

for some z7 € B} and z; € Bj.
Now recall that the measurable norms |- |;, |- |2 are weaker than the Hilbert norms
| - 1l1, || - [|]2 on Hy, Ha, respectively, so there is C' > 0 such that:

|hi]1 < C||ha|ly and [ho|z < Cllhsl]2,
for all hy € H; and hy € Hy. Then:

(b1, ho)|> = (Jha1 + |hal2)?
C*(||hall1 + [[hell2)?

<
< 2C%(|| a3 + [[hall3),

SO:
(R, ha)| < V2C||(hy, ho)||, for all hy € Hy, hy € Hy,

which shows that |(-,-)| is a weaker norm than ||(-, )| on H; & Hy. Consequently, we
may associate to every x* = (xf,z3) in (B; @& B2)* a unique element h,- € Hy & Ho
such that:

((hl, hg),l'*) = <(h1, hg), hx*> s for all (hl, hg) € H1 D HQ.
This element is exactly hy« = (her, hey), where hyr € (Hy)p: and hy; € (Hz)ps:

((hh h2)’ (ZL‘T,ZL’;)) = (hth) + (h27x§)

<h1> hx’{>1 + <h27 h:v§>2

= <(h17 h2)7 (hx’l‘7 hx;))»
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for all hy € H; and hy € H,.
Therefore the characteristic functional of the product measure 11 X o on By @ By
is:

S ey = [ ) i) dp )
BI®BQ B1xBa

— ¢ =5l I3 +I1e5113)

2
¢ Hlthag byl

for all 7 € By, x5 € B;. Therefore p; X 9 is a centered non-degenerate Gaussian
measure on B; & By with covariance operator:

jgulxuz((xi71§)v(yfvy;)):: <(hZT’h%§) (hy17h >>7

for all x7,y; € By and z3,y; € B5. We then consider the Cameron-Martin space H
of (By @ Ba, p1 X pa):

|((21, 22) (27, $2))|

EB* *eB* ”
o} hiﬁl
$1,$2

H = (z1,29) € B1 @ By : ||(x1,22)]|" :=

Then note that for any hy € Hy and hy € Hy:
|((ha, ha), (27, 23)) | (I$hs hay )y | + [ (he, x2>2|)2

(a2 [ 72z
(Il 17

2)°

«
Lo

<
<

2):

||§)(||hx’{ f
for any «7, 25, so Hy & Hy, C H and:
|(hy, ho)||” < |[(hy, ho)||, for all hy € Hy, hy € Hs.
Conversely, suppose (z1,x2) € H. Then by letting 25 = 0 we have that:

*
o @Dl

z’fEBi‘ ||hl’i< 1

x]#0

therefore 21 belongs to the Cameron-Martin space of (By, u11) - which is H;. Similarly,
T9 € Hy, so H = H; ® H, as sets. Now to see that the norms are the same, note that
for any y; € By and y5 € B3, not both 0:

| _ sup ’<hyi‘7 hxf>1 + <hy§> h’x’2‘>2|

z’fGBi‘,z;GB; \/Hhm* 2
(x’{,z;);s(o 0) !

’< y17 > < y27 >2‘

\/thf

= [(hyz Ayl
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SO:

| (R )||” > [|hg<]|, for all 0 # 2" € (By @ Ba)*. (4.18)
To every z* = (z1,73) € (B1 ® Bz)" we may associate a unique hy. = (., hi,) €

H = H; & Hy such that (hy,27) + (ha,23) = (h1, lye) + (B2, hay), for all by € Hiy,
hy € Ho, and {hl. : a* € (By @ By)*} is dense in H. But since (hy,x}) + (he,x3) =
(h1, her)y + (ha, hey)y for all hy, hy, it follows that h;f = hy: and h;z = hy; for all
xy, x3. Then, since {h,« : * € (B; @ By)*} is dense in both H and H; & H,, (4.18))
yields:
(R, ha) I = [[(ha, Bo) |,

which proves that H and H, & H, are the same as Hilbert spaces, and so H, & Hs is
the Cameron-Martin space of By & Bs. O

Now consider the map I : Hy & Hy — L*(By @ By, iy X pg) described in ((1.21]).
Let {(z})*}nen C B and {(z2)*},en C B3 be such that:

h(x}t)* — hl in H1 and h(x%)* — hg in Hz.

Then:

(h(z%)*, h(m%)*) — (hl, hg) in Hy @& Ho,
s0 I(hy, hy) is the L?(By & Ba, 11 X pi2)-limit of {((z})*, (22)*) }nen. For every k = 1,2,
Iihy, is the L2(By, py)-limit of {(2%)*}nen. Let (I1hy, Ihs) denote the map:

B¢ By > (wl,xg) — (Ilhl)(l‘l) + (Ighg)(l'g)

Then:
||(]1h17 ]2h2) - ((I&L)*7 (x31,>*)||%2(31@32,u1 XMQ)
= [ [ = () + (b = (2)7)(w)] di X g, o)
B1®B2
< by = (@) 2By + H2ha = (22) 728y 40)
+2|[Iihy = (21)* | 2By H2he — (22) | L2(Baus) —— 0.
So:

I(hl, hg) = ([1h1, [th).

Let us re-analyze the ridge regression problem from this perspective. So let
(H, B, 1) be an abstract Wiener space, where H is a real infinite-dimensional RKHS
over a separable topological space X', with reproducing kernel K. Let

D={(t,y1),---,(tayn)} CX xR

be our training data. Recall that we would like a “repository” for the measurment
errors which is orthogonal to H, so let (H', B, ii') be another abstract Wiener space,
where H' is a real separable infinite-dimensional Hilbert space.

For every t € X let K; = K(t,-) € H and:

Ky = Ig(K,,0) € (B® B, x pf),
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where I, : H® H' — L*(B ® B',u x p') is the Paley-Wiener map in (1.21)). As
previously noted: )
Ki(z,2) = (1K) (2),

where I : H — L*(B, u) is the Paley-Wiener map for (H, B, u). Let {e;}jeny be an
orthonormal basis for H' and X\ > 0. For every j € N, let:

ej = I(0, ej); éj($’ x/) = ([’6j)(1‘/),
where I' : H — L*(B', /) is the Paley-Wiener map for (H', B', ii’). Then:
I@(Kt, \/Xej) = Kt + \/Xéj,

for all t € X and j € N. Then Lemma [4.3| and Theorem yield:

Fo(t) = E[K| Ky, + VAE = y;,1 < j <] (4.19)
- GF (m[«mj, Vie). ) = yj]> , (1.20)

where f,\7 p is the ridge regression solution in and both the conditional expecta-
tion and the Gaussian Radon transform above are on B & B’. Remark that, in this
approach, for any n training points and any future input ¢ € X, we can just work
with the same {é;,...,é,}, and we no longer need to choose {ej,...,e,} based on
the training set and the input ¢.
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Appendix A
Category Theory and the Kolmogorov Exis-
tence Theorem

A.1 Kolmogorov’s Existence Theorem

Let T be an infinite index set and J be the collection of all finite non-empty subsets
of T. Suppose that

{(Qt> ]:t)}teT

is an indexed family of measurable spaces. For every non-empty set J C T let §2;
denote the product:

QJ = HQt: {$2J—>Ut€JQtlx(t) = Wt GQt,VtG J}

teJ

We denote such elements x of Q0; as w = (w;)ies. In particular, let ' denote Qp:

QO = HQt.

teT

For any non-empty subsets I C J C T let 7 denote the projection map from €2
onto €1;:

7] Q= Q] (W)ees) = (We)er. (A.1)

Note that if 0 £ HCc I C JCT:
nhomd =mf. (A.2)

For every non-empty subset J C T define the collection &; as follows:

Er = {HBt . By € F,,Vt € J, and B; = €, for all but finitely many ¢ € J},

teJ

and let F; = 0(&;) be the g-algebra generated by £;. In particular, let £ denote Er
and F' = o(&’). Then (Q;, F;) is a measurable space for every () # J C T, called the
product of the family {(€2, F;)},., and denoted:

(5, Fy) = Qe (S, Fr).

Note that F; is the smallest o-algebra on 2; with respect to which Wé} is Fr- Fiy
measurable for every t € J.
Now for every non-empty finite subset F' € J of T' let the collection Cr be defined
as:
Cr = {r-"(B): Be€ Fr}C,
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where 7 denotes the projection map 7%. Elements of Cr are called F-cylinders.

Finally, define the collection C of cylinders by:

C:= U CF.

FeJg

The collection C is an algebra of subsets of ', and in fact it generates F':
F'=0o(C).
With these notations, we may now give the following definition.

Definition A.1. Suppose that pp is a probability measure on (Qp, Fr) for every
F € J. We say that (up)res is a projective family of probability measures if:

5 (ug) = pr, for all F,G € J with F C G, (A.3)
where the left-hand side is the image measure of ug under 7%:
% (ue)(B) = pe [(78)"1(B)] , for all B € Fp.

A probability measure i/ on (€', F') is called a projective limit of the projective family

(1r)reyg if:
(i) = pp, for all F € J, (A.4)

where, once again, the left-hand side is the image measure of ' under 7. In this
case, we write:
p = lim pp.
FeJg

It is easily shown that any projective family of probability measures has at most
one projective limit. Perhaps the most important example of a projective limit is
the product measure: suppose (€, F¢, i) is a probability space for every t € T. We
can quickly form a projective family by letting pup = ®icpp be the finite product
measure for every F' € J. Then (ur)res has a projective limit p/, which is the unique
measure on () such that:

w(B) = H,ut(Bt), for all B = HBt e

teT teT

In general, it may not be possible to determine whether or not an arbitrary pro-
jective family of probability measures has a projective limit. However, if each €,
is a Polish space - a separable topological space which is metrizable by means of a
complete metric - and F; is the Borel o-algebra of €2;, the celebrated Kolmogorov
Ezxtension Theorem shows that this is indeed possible. We state this result next.

Theorem A.l. Let T be an infinite index set, J denote the collection of all non-
empty finite subsets of T, and X; be a Polish space with its Borel o-algebra B; for
every t € T'. Then any projective family (ur)rey of probability measures on (g, )
for F' € J has a projective limit.

Next, we will “translate” this fundamental result in the language of category the-
ory. Before we proceed, we review some of the basic concepts of this theory.
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A.2 Category Theory

Suppose we have a collection Obj of objects and a collection Mor of morphisms, or
arrows, where to each morphism f there is associated an object s(f) called its domain,
or source, and an object t(f) called its codomain, or target. We express this as:

s(f) <L t(f) or £ s(f) = t(f).

We let Mor(a,b) denote the set of all morphisms with source a and target b, for any
objects a and b. A composition rule is defined by associating to each f € Mor(a,b)
and g € Mor(b,c) a morphism gf € Mor(a,c), for all objects a, b, c.

We say that Obj and Mor specify a category provided that the composition rule
satisfies the following axioms (pictured in Figure [A.1):

i. Associativity: f(gh) = (fg)h for all h € Mor(a,b), g € Mor(b,c) and f €
Mor(c,d) and all objects a, b, ¢, d.

ii. Identity Morphism: For each object a there is an arrow i, € Mor(a,a) such that
fia =1ipf = f for any f € Mor(a,b).

(a) Associativity. (b) Identity Morphism.

Figure A.1: Axioms of category theory.

An arrow f € Mor(a,b) is said to be an isomorphism if there is an arrow g €
Mor(b,a) such that gf = i, and fg = i,. An initial object is an object o with the
property that for any object a there is a unique arrow o — a. Similarly, a final object
is an object 0 such that for any object a there is a unique arrow a — 0. It is easily
shown that any two initial (final) objects are isomorphic. Let us look at some basic
examples of categories.

Example A.1. The category Set:

e Objects: Sets.
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e Morphisms: Functions.

The initial object of this category is the empty set () (with the empty functions
) — A as morphisms) and every singleton set {a} is a final object (with morphisms
the functions that map all the elements of the source set to the single target element).

Example A.2. The category Vecty:
e Objects: All vector spaces over a fixed field F.
e Morphisms: Linear transformations.

The zero vector space {0} is both the initial object (with morphisms 0 — 0) and the
final object (with morphisms v — 0) in this category.

Example A.3. The category Top:
e Objects: Topological spaces.
e Morphisms: Continuous functions.

The initial object in this category is () (as a topological space) and any singleton (as
the topology {0, {a}}) is a final object.

Example A.4. A category on a poset: Let I' be a non-empty set equipped with a
partial order <, that is:

. a<aforallael.

ii. f a < and g <« for some «a, 5 € T', then a = 5.
iii. If « < and § < k for some o, 3,k € I', then a < k.
We form a category as follows:

e Objects: The elements of I'.
e Morphisms: We let a — 3 denote o < 3.

Note that for any «, 5 € I' we either have a unique arrow o — 3 or there is no arrow
from «a to 5. A rule of composition is provided by transitivity of the partial order.
Any minimal object is an initial object, and any maximal elements is a final object
in this category.

Next, we define a special type of map between categories, called a functor.

Definition A.2. Suppose that C; and C5 are categories. A functor F : C; —
Cy associates to every object a € Obj(C}) an object F(a) € Obj(Cy) and to each
morphism f :a — bin C; a morphism F(f) : F(a) — F(b) in Cy such that:

i. F(fg)=F(f)F(g), whenever fg is defined.

ii. F(iq) = ip(a), for all objects a in C.
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Similarly, a contravariant functor F' : C7 — Cy associates to each object a € Obj(Ch)
an object F(a) € Obj(Cy), but to each morphism f : ¢ — b in C; a morphism
F(f): F(b) — F(a) in Cy such that:

i. F(fg)=F(g9)F(f), whenever fg is defined.
ii. F(iq) = ip(a), for all objects a in C.
Another important concept for our discussion is that of diagram.

Definition A.3. A diagram in a category C' is a non-empty set D of objects and
arrows between these objects in C' such that D is itself a category, that is D contains
composites whenever they are defined in C' and D also contains i, for all objects
a in D. We say that a diagram is commutative if fifs... f, = g192...¢g, for all
arrows f;, g; in D for which these composites are defined - in other words, all directed
paths within the diagram D that have the same endpoints lead to the same result by
composition.

An important type of diagram is an indered diagram. Suppose I' is a non-empty
set equipped with a partial order < and C' is a category. Consider a contravariant
functor F' : T' — C, where T is considered a category as in Example [A.4 Then F
associates to every o € I' an object F,, in C, and to every a <  in ' a morphism
fap : F3 — I, that satisfies:

fapfoe = fan, foralla < B <k inT.

Note that F' associates to a < a in I the identity morphism f,, = ig,. Therefore
the objects F, along with the morphisms f,g form a commutative diagram in C. We
denote such an indexed diagram by:

D(F)7

whenever F': I' — (' is a contravariant functor from a poset into the category C.
Finally, we discuss the concept of cone in a category.

Definition A.4. Let D be a commutative diagram in a category C' and v be an
object in C. A cone with vertex v and base D is specified by arrows p, : v — b for
every object b in D such that the combined diagram of D along with the object v
and all the arrows p,, is commutative. We denote such a cone by v * D.

The collection of all cones with base D can be thought of as the objects of a
category we denote Conep. The morphisms in this category are defined as follows: if
v+ D and w D are cones with base D and vertices v and w, respectively, a morphism
of cones f : (vx D) — (w* D) is an arrow f : v — w in the category C' such that the
combined diagram [(v x D), f, (w x D)] is commutative. We are now ready to define
the concept of projective limit in the sense of category theory.

Definition A.5. Let D be a commutative diagram in a category C. A projective
limat of the diagram D is a final object in the category Conep, that is a cone 6% D
such that for any cone v x D there is a unique morphism of cones v x D — 6% D.
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We will deal in particular with cones whose base is an indexed diagram D(F'),
where F': ' — C'is a contravariant functor from a poset I' to the category C'. Then,
as pictured in Figure [A.2] the cone v« D(F) is specified by morphisms p, : v — F,
for all o € T" that satisf fosps = p, foralla < gin I

Fa f“lﬂ FB v faBpB = pa
D
P \pe N
Lo tai p
B .
Fy " ] v
Lo f,
aSBSK; faﬂfﬂlc:fmc i
Fa
(a) An indexed diagram. (b) An indexed cone.

Figure A.2: An indexed diagram and an indexed cone.

If v« D(F) and wxD(F') are indexed cones with base D(F'), specified by morphisms
Po : v — F, and ¢, : w — F, respectively, a morphism f : v+ D(F) — wx D(F)
is an arrow f : v — w in C that satisfies ¢of = pa = fappp for all @ < B in I, as
pictured in Figure

Py il £ P qﬂ
F, o ,b; FB
N«A %ﬁ
Fa

Figure A.3: A morphism of indexed cones.
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A.3 A Categorical Interpretation of Kolmogorov’s

Existence Theorem
In an attempt to “translate” Kolmogorov’s Existence Theorem into the language of
category theory, we posed the question of forming a category of Polish probability
spaces - that is, probability spaces (F, B, u) where X is a Polish space and B is its
Borel o-algebra - and investigate whether or not every diagram has a projective limit.
However, one issue quickly arises: while countable products of Polish spaces are also
Polish spaces, arbitrary products of Polish spaces are not necessarily so. We therefore
worked within the larger category P whose objects are probability spaces and whose
morphisms are measurable functions, with regular composition of functions. We work
with a special type of diagram in this category, which we call a Kolmogorov diagram

and define next. Essentially, this is an indexed diagram whose objects are Polish
probability spaces and some extra assumptions are made on its morphisms.

Definition A.6. Let I" be an infinite index set equipped with a directed partial order
<, that is for every a,, 3 € I"thereis k € 'suchthat a < kand S < k. Let /' : ' = P
be a contravariant functor, so for every a € I' we have a probability space (4, By, (o)
and for every a < 8 in I' there are measurable functions p,s : {25 — €2, such that:

DapDsr = Par, for all a < g <k in I (A.5)

We say that the resulting indexed diagram D(F) is a Kolmogorov diagram pro-
vided that the following conditions hold:

i. For every a € I, €}, is a Polish space and B, is its Borel o-algebra.
ii. Each map p,g is continuous and surjective.

ili. The maps p,s satisfy the Kolmogorov Consistency Condition:

s (p;é(B)) = pio(B), for all « < B in T and B € B,. (A.6)

Suppose now that D(F) is a Kolmogorov diagram as in Definition and let:

QO = HQQ.

acl

The set ' is unfortunately too large to be truly useful, so we concentrate instead on
a special subset Q of €V, defined by:

Q= {(wa)aer € Q : pas(ws) = wa,Va < B in T'}. (A.7)
If we let 7, : QO — Q4; w — w, denote the projection map for every a € I' and
Pa = 7Ta|§2
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denote the restriction of each projection map to €2, the condition in the definition of

) becomes:
Paplp = Pa, for all a < g in I'. (A.8)

As pictured in Figure [A.4] this makes us think of a cone. However, we do not yet
have a cone, because we need a probability space for the vertex. So our goal will be
to construct a o-algebra and a probability measure on (). Before we proceed though,
one important issue remains: 2 could be empty! To avoid this possibility, we impose
the Sequential Maximality Condition, first introduced by Bochner. As we shall see
below, this condition ensures that € is non-empty.

Q

Py P af

Figure A.4: A possible cone based on a Kolmogorov diagram.

Definition A.7. Let D(F') be a Kolmogorov diagram as in Definition and € be
the set defined in (A.7). We say that D(F) satisfies the Sequential Maximality
Condition provided that for every increasing sequence a; < ap < ... 1in I' and every
sequence {wy, }neny with wy, € Q,, for every n such that:

Wn = Danans: (Wnt1), for all n € N,

there exists w € €2 such that p,, (w) = w, for all n.

The next result shows that imposing these conditions on a diagram in P leads to a
projective limit in the sense of category theory. Moreover, we will see how this result
implies Kolmogorov’s Existence Theorem.

Theorem A.2. Let D(F) be a Kolmogorov diagram, as in Definition which
satisfies the Sequential Mazimality Condition. Then:

i. The set Q defined in (A.7) is non-empty. Moreover, the projection maps pe :
Q — Q, are surjective for all « € T'.
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1. For every a € I' consider the o-algebra of subsets of ) generated by p,:

B, :=p,' (Ba) = {p.'(B) : B € B},

and let:
A= U B...
aecl’
Then A is an algebra of subsets of Q) and:
' (p;I(B)) = pa(B), for alla € T, B € By, (A.9)

defines a countably additive probability measure on A.

iti. Let p denote the estension of (' to F := o(A). Then the cone Q% D(F), with
vertez (0, F, p) and base D(F'), is the projective limit of the diagram D(F).

Proof. 1. Let a; < as < ... be an increasing sequence in I' and pick for every n € N
a non-empty Borel set B,, € B, such that:

inf B,) =

f fia,(Bn) = ¢,
for some ¢ > 0. For instance, we can choose B,, = €1, for all n and ¢ = 1. Now
recall that any finite Borel measure on a Polish space is reqular, so for every n we

may choose a non-empty compact set D,, C B,, such that:
€

fan (B \ Dn) < ST (A.10)
Let:
Cni=p, 1 (D) Np o (Do)N...Np,t, (Dy), for all n € N, (A.11)

Recall that pa,a, = lq,, , so C, C D,. Since every map pq,q, is continuous, C;, is a
closed subset of the compact space D,,, therefore C,, is compact.
To see that each C, is non-empty, note that for all n:

lgn‘\(jn -

p%an Dj),

SO.

fou B\ C) < Z pow (vien (B D))

= Zuaj(Bj \Dj)  (by (A.G))

o)
€

2n+1

=1

<.

[NRINe
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Then:
/’Lan (Cn) > /’Lan(Bn) -

which proves that C), cannot be empty.
Now let n < m be positive integers. Then:

> —>0,

N
N

Panam(Cm) = Panam (ﬂ pajlan(Dj)> C ﬂpanamp;jlam(Dj)-

j=1 j=1

If 1 <j<mn, then a; < a, < Ay SO PayanPanam = Pajan,- Lhen:

panamp;jlam (D]) = p(;jlan (Dj)7

by surjectivity of pa,a,,. S0:

panam(cm) - ﬂp;j-lan(Dj) =Ch.
j=1

We have shown that:

Danam (Cm) C Cp, for all n < m. (A.12)
Consider now:
c=]]c.ce,
neN

a compact set by Tychonoff’s theorem. For every n set:

K, = {w € C : Papanys (Wnt1) = wn} )

Remark that each K, is non-empty: by (A.12)), we may simply pick w, 1 € C,41 and
Wn = Dananst (Wnt1) € Cy. For every n consider the map:

fn O — Cn X Cn; fn(w) = (wn7panan+1(wn+l)) .

Then f, is continuous, so the diagonal A, of f, is closed. Therefore K, = f.1(A,)

n
is closed in C, so K, is compact. If we can show that the collection { K, },en has the

Finite Intersection Property, we will have that (), .y Ky # 0. In turn, this gives us a
sequence {w,} with w,, € C, C §),, and:

Ponanit (wn+1) = Wp

for all n. Since our diagram satisfies the Sequential Maximality Condition, there is
w € Q such that p,, (w) = w, for all n, proving that 2 is non-empty.
So consider positive integers n; < ny < ... < n,,, pick any

unm+1 S Cnm+17
and let:

u; = Poziocnjﬂ(unjﬂ) cCyforalln;; +1<i<n;,1<j5<m,
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where ng = 0. Let w € C' be given by:

* | arbitrary in Cj, if i > n,, + 1.

Then for any 1 < j <m:
pajanj+1 (Wn]-—l-l) - unj - Wn]-7

which proves that w € K; for all 1 < j < m, so {K,}, has the Finite Intersection
Property, as desired.

To prove that the projection maps are surjective, let o € I' and w!, € Q,. Choose
ag > ap = a in I'. Since p,,q, is surjective, choose wy € €2, such that w; = W/, =
Payas(w2). Continuing this process inductively, we obtain a sequence oy < ap < ...
in I and w,, € Q,, for all n such that w,, = pa,an,, (Wnt1). Then from the Sequential
Maximality Condition there is w € §2 such that p,(w) = W/, or pa(w) = wl,.

ii. We begin by noting that if « < 8 in ' and F = p_'(B) for some B € B,, we
may express F as:

E = (pagps) " (B) = p5" (025(B)) »

where we used (A.8). Since p,s is measurable, this means that £ € Bj:
B, C By, foralla < ginT. (A.13)

Now A is clearly closed under complementation. If A, B € A then there are o, 5 € I’
such that A € B, and B € Bj. But since I is directed, there is x € I" such that o < &
and 8 < k. From (A.13), both A and B are in B, so AUB € B, C A. So indeed A
is an algebra.

Let £ € A and a € T such that F € B/. Note that since p, is surjective,
B = p,(FE) is the unique element of B, such that E = p_!(B). Now suppose § € T’
is such that E' € Bj; as well. Pick x € T" such that o < k and 3 < k. As above, we
may express:

W(E) = i (0. (pan(B)))
= p(po5(B))
= ,Ua(B)a

where the last equality follows from the Kolmogorov Consistency Condition. Simi-
larly, we see that p/(E) = ug(C), where C' € Bj is such that £ = pgl(C). So ' is
well-defined. To see that y' is a finitely additive measure, note that:

W (0) = pa(0) =0 and /() = (1a(Qa) =1, for any ar € T,

and if A,B € A with AN B = ( then there is a € T such that A = p_!(C) and
B = p_ (D), for disjoint elements C, D in B,, so:

W(AUB) = pa(CUD) = p1a(C) + pa(D) = ('(A) + 1/ (B).
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Finally, to see that u' is countably additive on A, it suffices to prove that if
E1 D Ey D ... is a decreasing sequence of non-empty sets in A such that:

: /

inf 4 (En) =€ >0,
then N, E, is non-empty. Because I is directed, we may produce a sequence a; <
ay < ...in T such that E, € B}, foraln. Solet B, € B,, besuch that F, = p;i(Bn)
for all n. We use regularity of u,, to choose for every n a non-empty compact subset
D,, C B, such that pu,, (B, \ D) < Yon+1 and let C,, be defined as in (A.11)). Then
we proceed exactly as in the proof of part 4. of this theorem, and produce an element
w € Q with p,, (w) € C,, C B,,. Then w € N, E,, which proves the claim.

i17. Now that we proved p' is countably additive on A, the Hopf Extension Theo-

rem shows that there is a probability measure u on F = o(A) such that:

1 (pi'(B)) = pa(B), for all « € T', B € B, (A.14)

We now have a legitimate cone in the category P, as in
Suppose that (X, B, ) is the vertex of another cone in P with base D(F'), with
maps ¢, : X — €1, for every a € I'. For every x € X', consider:

f(@) =y = (¢a())acr € "
Then pas(ys) = Pas(qs(7)) = ga(x) = Yo for any o < fin I, so f(x) € €. So:
[(XB,A) = (Q,F, 1); 2 = (qa(2))aer
is well-defined. Moreover:
Paf(x) = qu(z), forall z € X, a €,

so the combined diagram (Q2x D(F), f, X x D(F)) is commutative. Therefore f is a
morphism of cones with base D(F') in P.

If g : X — Q is another such morphism of cones, then for all z € X and o € I":
Pag(x) = qo(z), 50 g(2) = (¢a(T))aer = f(x). Thus for every cone X+« D(F') with base
D(F') there exists a unique morphism (X, B,\) — (Q, F, u), proving that Q x D(F')
is indeed the projective limit of D(F).

[

Let us see how this result implies Kolmogorov’s Existence Theorem. So let T be
an infinite index set, J be the collection of all finite subsets of T', and suppose (X}, B;)
is a Polish space with its Borel o-algebra for every t € T. Now let ug be a probability
measure on every finite product (Xp, Br), where F' € J, such that (up)pcs is a
projective family, that is:

e () = pr, (A.15)

where 78 : Xo — X is the projection map for every F' C G in J. Note that inclusion
is a directed partial order on J and for every F' € J we have a Polish probability
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space (Xp, Br, pr) and surjective maps prg = 7% given by projection for all F C G
in 7, that satisfy:
rSrld =7l forall FC G C Hin J.

Finally, translates to the Kolmogorov Consistency Condition in , so the
collection D of objects (Xr, Br, ur) for F' € J, together with the maps 7%, forms
a Kolmogorov diagram in the category P.

If w = (w¢)ier is an element of the product space '

Wg(WG) = Wg((wt)teG) = (Wi)ter = WF,

so in this case the space €2 in Theorem is the whole product space €', and the
Sequential Maximality Condition is trivially satisfied. Moreover, the algebra A in
Theorem is the algebra of cylinder subsets of €, so 0(A) = F' is the classical
o-algebra of subsets of €)' mentioned in Section The measure p obtained in
Theorem [A.2] satisfies:

p(7m'(B)) = pr(B), for all F € J, B € By,

which translates exactly to (A.4). So u is the projective limit of the family (up)recs
in the sense of Definition [A.1] and the cone ' x D7 with vertex (€', F', ) and base
D 7 is the projective limit of the diagram D7 in the sense of category theory.
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Appendix B
Permission for Use

The main results presented in this thesis have previously appeared in the journal
articles [16] and [17].

The first article, [16], appeared in the Elsevier Inc. Journal of Functional Analysis.
According to the “Author Rights” webpage of Elsevier:

hittp:/ /www. elsevier.com /journal-authors/author-rights-and-responsibilities,

authors may use “either their accepted author manuscript or final published article”
for a range of purposes, which include “inclusion in a thesis or dissertation.”

The second article, [17], appeared in the World Scientific journal Infinite Dimen-
stonal Analysis, Quantum Probability and Related Topics. According to the World
Scientific “Author Rights” webpage:

http:/ /www.worldscientific.com/page/authors/author-rights,

authors “may post the preprint anywhere at any time,” provided that it is accompanied
by the acknowledgement that the printed version appears in the particular World
Scientific journal.
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