Worksheet 3 - Chapter 15

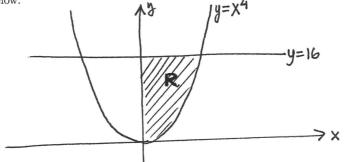
1. Sketch the region R described by:

$$-5 \le y \le 5; y^2 \le x \le 25$$

and write $\int \int_R dA$ using both vertical and horizontal cross-sections.

2. Sketch the region R described by:

$$0 \le y \le e^x$$
; $-1 \le x \le 2$


and write $\int \int_R dA$ using both vertical and horizontal cross-sections.

3. Sketch the region R described by:

$$e^x \le y \le e$$
; $0 \le x \le 1$

and write $\int \int_R dA$ using both vertical and horizontal cross-sections.

4. Write the double integral $\int \int_R dA$ using both vertical and horizontal cross-sections, where the region R is drawn below.

5. Sketch the region R bounded by the curves:

$$y = \sqrt[5]{x}$$
; $y = 0$; $x = 32$

and write $\int \int_R dA$ using both vertical and horizontal cross-sections.

6. Sketch the region R bounded by the curves:

$$y = e^{-x}$$
; $y = 1$; $x = \ln(2)$

and write $\int \int_R dA$ using both vertical and horizontal cross-sections.

7. Find:

$$\int \int_{R} \frac{xy^4}{x^2 + 1} dA,$$

where R is the region described by: $0 \le y \le 10, 0 \le x \le 1$.