Name: \qquad
December $9^{\text {th }}, 2014$.
Math 2401; Sections D1, D2, D3.
Georgia Institute of Technology
FINAL EXAM

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
Total	140	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [10 points] Consider the lines:

$$
\begin{gathered}
L_{1}: x=1+t ; \quad y=2-t ; \quad z=3 t \\
L_{2}: x=2-s ; y=1+2 s ; \quad z=3+s
\end{gathered}
$$

(a). Find the point of intersection of these lines.
(b). Find an equation for the plane determined by these lines.
2. [10 points] Consider the curve:

$$
\vec{r}(t)=(2 \sin t) \vec{i}+\left(t^{4}-4 \cos t\right) \vec{j}+\left(e^{2 t}\right) \vec{k}
$$

(a). Find the velocity vector $\vec{v}(t)$ for this curve.
(b). Find the acceleration vector $\vec{a}(t)$ for this curve
(c). Find the angle θ between $\vec{v}(0)$ and $\vec{a}(0)$.
3. [10 points] Find the length of the curve:

$$
\vec{r}(t)=\left\langle\cos ^{3} t, \sin ^{3} t\right\rangle, \quad \frac{\pi}{2} \leq t \leq \pi .
$$

4. [10 points] Find the directions \vec{u} such that the directional derivative:

$$
D_{\vec{u}} f(1,1)=-1,
$$

where $f(x, y)=x^{2} y-2 y+x y^{2}$.
5. [10 points] Find the points where extrema occur for the function:

$$
f(x, y)=x^{3} y^{5}
$$

subject to the constraint:

$$
x+y=8
$$

6. [10 points] Find the minimum and maximum of the function:

$$
f(x, y)=(x-3)^{2}+(y-1)^{2}
$$

on the triangular plate in the first Quadrant determined by the lines $y=0, x=4$, and $y=x$.
7. [10 points] Sketch the region of integration and reverse the order of integration:

$$
\int_{0}^{9} \int_{y / 3}^{\sqrt{y}} d x d y
$$

Do not evaluate the integrals.
8. [10 points] Evaluate:

$$
\int_{1}^{e^{10}} \int_{1}^{e^{4}} \int_{1}^{e^{3}} \frac{1}{x y z} d x d y d z
$$

9. [10 points] The following field is conservative:

$$
\vec{F}(x, y, z)=(2 x y+\cos (x)) \vec{i}+\left(x^{2}\right) \vec{j}+\left(-\sin (z) e^{\cos (z)}\right) \vec{k} .
$$

(a). Find a potential function f for this field.
(b). Evaluate:

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where C is a smooth curve from $(\pi, 0,0)$ to $(\pi, 0, \pi)$.
10. [10 points] Find the outward flux of the field:

$$
\vec{F}(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}(x \vec{i}+y \vec{j}+z \vec{k})
$$

over the boundary of the region D in space, given by:

$$
D: 4 \leq x^{2}+y^{2}+z^{2} \leq 5
$$

11. [10 points] Find the circulation of the field:

$$
\vec{F}(x, y, z)=x^{2} \vec{i}+3 x \vec{j}+z^{2} \vec{k}
$$

around the ellipse:

$$
C: 16 x^{2}+y^{2}=3
$$

in the $x y$-plane, oriented counterclockwise when viewed from above (from the positive side of the z-axis). You may use the fact that the area of an ellipse with axes a and b is $\pi a b$.
12. [10 points] Find:

$$
\oint_{C} x^{2} y^{3} d x+\left(x^{3} y^{2}+x\right) d y
$$

where C is the counterclockwise oriented boundary of a square of side length 3 in the $x y$-plane.
13. [10 points] Find the limit, if it exists:

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2} y-x y^{2}}{\sqrt{x}-\sqrt{y}}
$$

14. [10 points] Find:

$$
\int_{0}^{\infty} e^{-3 x^{2}} d x
$$

