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Abstract. This article is a survey of recent results on the essential coexistence of hy-

perbolic and non-hyperbolic behavior in dynamics. Though in the absence of a general

theory, the coexistence phenomenon has been shown in various systems during the last
three decades. We will describe the contemporary state of the art in this area with em-

phasis on some new examples in smooth conservative systems, in both cases of discrete

and continuous-time.

1. Introduction

The problem of essential coexistence of regular and chaotic behavior lies in the core of the
theory of smooth dynamical systems. We stress that though out this paper we shall consider
dynamical systems on compact smooth Riemannian manifolds with discrete and continuous
time – diffeomorphisms and flows – that preserve a smooth measure, i.e., a measure that is
equivalent to the Riemannian volume m.

The early stages in the development of the theory of dynamical systems were dominated
by the study of regular dynamics including presence and stability of periodic motions, trans-
lations on surfaces, etc.

Already Poincaré in 1889 discovered existence of homoclinic tangles in conjunction with
his work on the three-body problem. However, an intensive rigorous study of chaotic behav-
ior in purely deterministic smooth dynamical systems began in the second part of the last
century due to the pioneering work of Anosov, Sinai, Smale and others. This has led to the
development of hyperbolicity theory in its three main incornations: uniform, nonuniform
and partial hyperbolicity.

It was therefore natural to ask whether the two types of dynamical behavior – regular
and chaotic – can coexist in an essential way. Let us stress that coexistence phenomenon
can already be observed in systems that are non-uniformly hyperbolic: while the Lyapunov
exponents along the majority of trajectories are all nonzero, there must exist trajectories
along which some or all Lyapunov exponents are zero. However, the latter forms a set of
zero volume and hence can be “neglected”.

There are different ways in how the coexistence phenomenon can be stated and in this
paper we adapt the following approach. Recall that the Lyapunov exponent of f at a point
x ∈M of a vector v ∈ TxM is defined by the formula

λ(x, v, f) = lim sup
n→∞

1

n
log ‖dxfnv‖.

Presence of zero Lyapunov exponents on a subset of positive volume indicates a certain
regular behavior of f , while presence of nonzero Lyapunov exponents on a subset of positive
volume is a sign of certain level of chaotic behavior of the system.

1



2 JIANYU CHEN, HUYI HU, AND YAKOV PESIN

1.1. The coexistence phenomenon.

Definition 1.1. We say that a diffeomorphism f of a compact smooth manifold M exhibits
an essential coexistence of regular and chaotic behavior if

(1) the manifoldM can be split into two f -invariant disjoint subsets A and B of positive
volume – the chaotic and regular regions for f ;1

(2) for almost every x ∈ A the Lyapunov exponents at x are all nonzero;
(3) f |A is ergodic;2

(4) for every x ∈ B the Lyapunov exponents at x are all zero;
(5) the set A is dense in M.

The last requirement means that the regular and chaotic regions for f cannot be topo-
logically separated. In this case we say that we deal with essential coexistence of type I. If
Condition 5 is dropped we say that we have essential coexistence of type II. We shall see
examples of essential coexistence of both types below.

There is a weaker version of the of the above definition in which one replaces Condition 2
with the requirement that some (but may be not all) of the Lyapunov exponents are nonzero
(see the article [37] where some results on essential coexistence in this case are surveyed).

Our definition of the essential coexistence phenomenon is inspired by a discrete version
of the classical KAM phenomenon in the volume preserving category as described in the
work of Cheng and Sun [10] (in the three dimensional case) and of Herman [24], Xia [40]
and Yoccoz [41] (in the general case). We follow the approach in [40].

Consider a family of volume preserving diffomorphisms Fε : (r, θ1, . . . , θn) 7→ (r′, θ′1, . . . , θ
′
n)

from [1, 2]× Tn to R× Tn where

r′ = r + εf0(r, θ1, . . . , θn),

θ′1 = θ1 + g1(r) + εf1(r, θ1, . . . , θn),

...

θ′n = θn + gn(r) + εfn(r, θ1, . . . , θn),

g1, . . . , gn and f0, f1, . . . , fn are real analytic functions in all of their variables and ε is a small
perturbation parameter. Note that the map F0 preserves every torus {r} × Tn, r ∈ [1, 2].

Theorem 1.2. Assume that the functions g1, . . . , gn satisfy the twist condition, that is for
all r ∈ [1, 2]

det(g
(j)
i (r)) ≥ d > 0,

where g
(j)
i (r) is the j-th derivative of gi(r), 1 ≤ i, j ≤ n, and d > 0 is a constant. Then

for any sufficiently small ε > 0, there are a Cantor set S(ε) ⊂ [1, 2] and a map ψ : S(ε)→
Cω(Tn,R× Tn) such that the graph of ψ(r), for each r ∈ S(ε), is an invariant torus under
the map Fε. Furthermore, the map Fε induced on each torus can be parameterized as a
Diophantine translation. Finally, the Lebesgue measure of the set S(ε) tends to 1 as ε→ 0.

The above result still holds if the functions f0, f1, . . . , fn are assumed to be of class Cτ

for any τ > 2n+ 1. As observed in [24,41], one can embed the product space [1, 2]×Tn into

1In many interesting examples the set A is open, see below.
2Note that since the Lyapunov exponents at almost every x ∈ A are all nonzero, the map f |A has at

most countably many ergodic components of positive measure (see [4, 30]).
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an arbitrary compact smooth manifold M of dimension n+ 1 and extend the unperturbed

map F0 to a diffeomorphism F̃0 of M. Thus there exists an open neighborhood U of F̃0

in the Cτ topology such that any volume preserving diffeomorphism P ∈ U possesses a
set of codimension-1 invariant tori of positive volume. Moreover, on each such torus the
diffeomorphism P is C1 conjugate to a Diophantine translation. Furthermore, all Lyapunov
exponents of P are zero on the invariant tori.

Since the set of invariant tori is nowhere dense, it is expected that it is surrounded by
“chaotic sea”, that is outside this set the Lyapunov exponents are all nonzero and the system
is ergodic. It has since been an open problem to find out to what extend this picture is true.

1.1.1. Essential coexistence of type I. A first step towards understanding this picture is to
construct a particular example of a volume preserving diffeomorphism exhibiting essential
coexistence phenomenon in the spirit of Definition 1.1.

Theorem 1.3 (Hu, Pesin and Talitskaya, [27]). Given α > 0, there exists a compact smooth
Riemannian manifold M of dimension 5 and a C∞ volume preserving diffeomorphism P :
M→M such that

(1) ‖P − Id ‖C1 ≤ α;
(2) P is ergodic on an open and dense subset U ⊂M with m(U) < m(M); in particular,

P is topologically transtive on M; furthermore, P |U is a Bernoulli diffeomorphism;
(3) the Lyapunov exponents of P are nonzero for almost every x ∈ U ;
(4) the complement Uc has positive volume, P |Uc = Id and the Lyapunov exponents of

P on Uc are all zero.

The regular region Uc is a Cantor set of invariant submanifolds. More precisely, Uc is the
direct product N × C, where N is a 3-dimensional smooth compact manifold and C is a
Cantor set of positive Lebesgue measure in the 2-torus T2. Thus Uc has codimension two.
We shall explain the construction of this theorem in Section 3.

By modifying the construction in Theorem 1.3, one can obtain a C∞ diffeomorphism P of
a compact smooth Riemannnian manifold of dimension 4 with similar properties (Chen, [8]).
In this example, the regular region Uc is the direct product of a 3-dimensional compact
manifold and a Cantor set of positive length in a circle and thus has codimension one. As
a result, the map P has countably many ergodic components in the chaotic region U .

1.1.2. Essential coexistence of type II. The fact that the set U is dense in M means that
the situation described in Theorem 1.3 presents essential coexistence of type I and makes
it significantly different from other examples demonstrating the coexistence phenomenon
of type II in which the chaotic and regular regions are topologically separated. Examples
of coexistence phenomenon of type II have been constructed and intensively studied in
dimension 2.

Przytycki [33] studied a C∞-family of diffeomorphisms of T2, which demonstrates a route
from uniform hyperbolicity to non-uniform hyperbolicity and then to coexistence of regular
and chaotic behavior. More precisely, consider a smooth one-parameter family of C∞ area
preserving diffeomorphisms Hε : T2 → T2, −ε0 ≤ ε ≤ ε0 given by

(1.1) Hε(x, y) = (x+ y, y + hε(x+ y))

where hε is such that

(a) hε is an odd function for every ε;
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(b) hε(0) = 0, hε(1) = 1, h′0(0) = h′′0(0) = 0, h
(3)
0 (0) > 0;

(c)
d

dε
h′ε(0) > 0 and h′0(x) > 0 for all x 6= 0.

One can show that

(1) for every ε > 0 the map Hε is an Anosov diffeomorphism and for every ε ≥ 0 the
map Hε is topologically conjugate to the hyperbolic automorphism given by the

matrix

(
2 1
1 1

)
;

(2) the family Hε at ε = 0 is transversal to the boundary ∂An of the set of Anosov
diffeomorphisms of T2 in the sense that there is a constant C > 0 such that

distC1(Hε, ∂An) ≥ C|ε|;
(3) for every ε < 0 there exists an elliptic island Oε - a neighborhood around 0 ∈ T2,

most of which is filled with invariant closed curves.

Furthermore, for a specially chosen hε one can show that

(4) for every sufficiently small ε < 0 the elliptic island Oε is the domain between the
separatrices connecting two saddles near 0 ∈ T2 and the map Hε behaves stochasti-
cally on Sε := T2\Oε, more exactly, the Lyapunov exponents for Hε|Sε

are nonzero
almost everywhere and Hε|Sε

is isomorphic to a Bernoulli automorphism.

O

Figure 1. Separatrices

Note that the elliptic island Oε and the chaotic sea Sε are sharply separated by the
separatrices, and therefore Sε is not dense in T2. We point out that it is still unknown
whether there exists a stochastic sea of positive measure for a general family Hε (given by
(1.1)) satisfying properties (a)–(c). By the entropy formula [4,30], this question is equivalent
to the problem of whether Hε has positive metric entropy. To this end Liverani [29] has
shown that there exists a constant C > 0 and ε0 > 0 such that for each −ε0 < ε < 0 one can
construct a C∞ area preserving diffeomorphism H̃ε : T2 → T2 with positive metric entropy
such that

distC2(H̃ε, Hε) ≤ e−Cε
− 1

2 , m({x ∈ T2 : H̃ε(x) 6= Hε(x)}) ≤ e−Cε
− 1

2 .

This means that the new family H̃ε approaches the family Hε with an exponential rate.

1.2. The standard map. We consider the most famous example of symplectic twist maps
- the Chirikov-Taylor standard map given by

fλ(x, y) = (x+ y, y + λ sin 2π(x+ y)), λ ∈ R,
where the coordinates (x, y) run over either the cylinder or the 2-torus T2. This map was
introduced and studied independently by Taylor (1968) and Chirikov (1969) using numerical
methods available at the time. Their results were published about ten years later, see [11,21].
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Since then the standard map has been studied intensively both numerically and theoretically
but a complete description of its ergodic properties are nowhere in sight. It has been shown
that for λ 6= 0 the map fλ is non-integrable and possesses a horseshoe, see [1,20,22]. Hence,
it has positive topological entropy.

Sinai [36] conjectured that the metric entropy hm(fλ) with respect to the area m is
positive for all λ 6= 0 and that hm(fλ) grows to infinity as λ → ∞. This conjecture is still
open and turns out to be very difficult. One major obstacle is that the elliptic islands may be
present for arbitrary large λ, and the set of elliptic islands seemingly forms a dense subset of
large measure (see [11,16]), which makes it hard to find invariant cones to establish nonzero
Lyapunov exponents. Nevertheless, various results in this direction for other but related
surface diffeomorphisms have been obtained. One would often observe the coexistence of
KAM invariant circles and the chaotic sea in these results.

1.2.1. Piecewise linear perturbation of the standard map. Note that by the symplectic coor-
dinate change q = x, p = x+ y, the standard map fλ is equivalent to the map

f̃λ(q, p) = (p,−q + 2p+ λ sin(2πp)).

In [38], Wojtkowski considered the map Tλ with sin(2πp) in the above formula replaced by
the function

h(p) =

{
−p− 1

4 , − 1
2 ≤ p ≤ 0

p− 1
4 , 0 ≤ p ≤ 1

2

One can view Tλ as a piecewise linear perturbation of the completely integrable map f̃0.
For some specific values of λ, Wojtkowski showed that

(1) if λ ≥ 4 then Tλ is almost hyperbolic in the 2-torus T2; moreover, Tλ is Bernoulli if
λ > λ0 ≈ 4.0329;

(2) if λ = 2(cos πn + 1), n = 2, 3, . . . , there is an elliptic island D around the elliptic

fixed point (− 1
4 ,

1
4 ) such that Tλ is almost hyperbolic in T2\D. Furthermore, D is a

2n-sided convex polygon centered at (− 1
4 ,

1
4 ), and Tλ|D has period n for n odd and

period 2n for n even;
(3) for λ = 1, the 2-torus is divided into two invariant parts M1 and M2. There is a

hexagonal elliptic island D in M1 such that T1 is almost hyperbolic in M1\D.

Clearly, the last two cases demonstrate the coexistence of chaotic and integrable behavior.
Wojtkowski [39] considered a sequence of arbitrarily small values of λ and showed that the
stochastic sea exists and has asymptotic Lebesgue measure 1

16λ log 1
λ (1 + o(1)) as λ→ 0.

1.2.2. Hausdorff dimension of the stochastic sea. Duarte [16] showed that there exists λ0 > 0
and a residual subset R ⊂ [λ0,∞) such that for every λ ∈ R there exists a basic set Ωλ, i.e.,
a transitive locally maximal hyperbolic set, for the map fλ satisfying:

(1) Ωλ is dynamically increasing, i.e., Ωλ+ε contains the continuation of Ωλ at parameter
λ+ ε;

(2) Ωλ is 4

λ
1
3

-dense;

(3) the Hausdorff dimension dimH(Ωλ) ≥ 2
log 2

log(2 + 9

λ
1
3

)
;

(4) each point in Ωλ is an accumulation point of elliptic islands of fλ.
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Gorodetski [23] found a transitive invariant set Ω̃λ containing Ωλ such that the Hausdorff

dimension dimH(Ω̃λ) = 2. It is worth pointing out that the construction in [16, 23] utilizes
the unfolding of a homoclinic tangency, which can create similar scenarios for some other
generic surface diffeomorphisms, such as the area preserving Hénon family [17,23].

1.3. Other examples of coexistence. Aside from smooth conservative systems, the co-
existence phenomenon has been discovered for other classes of dynamical systems (see [37]).
In particular, for billiards the coexistence of “elliptic islands” and “chaotic sea” has been
shown to be present in Bunimovich mushrooms [6]. However, this case differs substantially
from the smooth case due to the presence of singularities.

We emphasize that Theorem 1.3 requires some delicate techniques from the theory of
nonuniform and partial hyperbolicity. In fact, Fayad [18] constructed an example of a dif-
feomorphism exhibiting a weaker version of essential coexistence phenomenon: some but not
all Lyapunov exponents are zero in the regular region. Let us briefly outline his construc-
tion. By the conjugation method introduced in [2,19], given ε > 0, one can construct a C∞

area preserving diffeomorphism T of T2 such that

(1) T is arbitrarily close to the identity in the Ck topology for every k > 0;
(2) T is topologically transitive;
(3) T is not ergodic; moreover, T has a closed invariant subset K of Lebesgue measure

greater than 1− ε and such that K ⊂ T2\[0, ε]2.

Fix an Anosov automorphism A of T2. Using various perturbation techniques in partial
hyperbolicity theory, one can construct a C∞ partially hyperbolic volume preserving diffeo-
morphism P of the 4-dimensional torus T4 such that

(1) P is arbitrarily close to A× T and hence, A× Id in the C1 topology;
(2) P has an open and dense ergodic component U and the central Lyapunov exponents

are strictly negative for almost every point in U ;
(3) the closed set K = T2 ×K ⊂ Uc is invariant under P and has measure greater than

1− ε; P |K = (A× T )|K; almost every point in K has one strictly positive Lyapunov
exponent, one strictly negative and two equal to zero.

We stress that ensuring that all Lyapunov exponents are zero on the exceptional set Uc
of positive measure is a substantially more difficult problem, which requires a completely
different set of techniques. The matter is that if all Lyapunov exponents in Uc are zero,
then a typical trajectory that originates in U will spend a long time in the vicinity of Uc
where contraction and expansion rates are very small. This should be compensated by even
longer periods of time that the trajectory should spend away from Uc thus gaining sufficient
contraction and expansion and ensuring nonzero Lyapunov exponents.

The coexistence phenomenon has been numerically observed in various examples in smooth
conservative dynamics, most of which come from simple systems of difference or differential
equations in small dimension (see [37]).

1.4. Coexistence phenomenon for other classes of dynamical systems. Theorem
1.3 can serve as ground for further study of essential coexistence phenomenon for other
classes of dynamical systems:

(1) Symplectic diffeomorphisms: note that area preserving surface diffeomorphisms, in-
cluding the standard maps, Przytycki example (1.1), etc. are 2-dimensional symplec-
tic diffeomorphisms. The coexistence phenomenon of first or second types has been
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studied to certain degree but for symplectic diffeomorphisms in higher dimensions
the problem remain completely open and seemingly much more difficult.

(2) Hamiltonian flows: there is an example by Donnay and Liverani [15] of a particle
moving in a special potential field on the 2-torus which demonstrates an essential
coexistence of the second type – the system has positive metric entropy but is not
ergodic and the chaotic sea is not dense.

(3) Geodesic flows on compact Riemannian manifolds: Donnay [14] constructed an ex-
ample of a surface on which the geodesic flow exhibits a coexistence phenomenon of
the second type. It is obtained by inserting a light-bulb cap into a negative curved
surface. In this example the set of geodesics, which are trapped in the cap, is in-
variant, has positive volume and almost every point in this set has zero Lyapunov
exponents. Since it has non-empty interior, the stochastic sea (the set of geodesics
that leave the cap) is not dense.

Equator

Figure 2. Light-bulb cap

Although the essential coexistence is not yet achieved in either Hamiltonian systems
or geodesic flows, it has been established in the category of volume preserving flows by
extending Theorem 1.3 to the continuous-time case (see [9]).

Theorem 1.4. There exists a compact smooth Riemannian manifold M of dimension 5
and a C∞ flow ht :M→M such that

(1) ht preserves the Riemannian volume m on M;
(2) ht(t 6= 0) has nonzero Lyapunov exponents (except for the exponent in the flow direc-

tion) almost everywhere on an open, dense and connected subset U ⊂M; moreover,
ht|U is an ergodic flow;

(3) the complement Uc has positive volume and is a union of 3-dimensional invariant
submanifolds. ht is a non-identity linear flow with Diophantine frequency vector on
each invariant submanifold and ht has zero Lyapunov exponents on Uc.

We stress that each 3-dimensional invariant submanifold, i.e., N × {y} for y ∈ C, is in
turn a union of 2-dimensional invariant tori on which ht is a non-identity linear flow with
Diophantine frequency vector. This fact makes the construction of the flow nontrivial. We
will describe the construction of the flow ht in Section 4.
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2. Pointwise partial hyperbolicity and Lyapunov exponents

One of the principle elements of the constructions in Theorems 1.3 and 1.4 is the notion
of point wise partial hyperbolicity on open sets.

Let f be a diffeomorphism of a compact smooth Riemannian manifold M and S ⊂ M
an f -invariant open subset. We say that f is pointwise partially hyperbolic on S if for every
x ∈ S the tangent space at x admits an invariant splitting

TxM = Es(x)⊕ Ec(x)⊕ Eu(x)

into strongly stable Es(x) = Esf (x), central Ec(x) = Ecf (x), and strongly unstable Eu(x) =

Euf (x) subspaces. More precisely, there are continuous positive functions λ(x) < λ′(x) ≤
1 ≤ µ′(x) < µ(x), x ∈ S such that

‖dfv‖ ≤ λ(x) ‖v‖, v ∈ Es(x),

λ′(x) ‖v‖ ≤ ‖dfv‖ ≤ µ′(x) ‖v‖, v ∈ Ec(x),

µ(x) ‖v‖ ≤ ‖dfv‖, v ∈ Eu(x).

Diffeomorphisms that are ointwise partially hyperbolic on the whole manifold M were
introduced in [7]. They have properties that are similar to those of uniformly partially
hyperbolic systems:

(P1) Strongly stable and unstable subspaces Es and Eu are integrable to continuous
strongly stable and unstable foliations W s and Wu respectively with smooth leaves
and these foliations are transverse;

(P2) Strongly stable and unstable foliations are absolutely continuous;3

(P3) Lyapunov exponents along stable (unstable) subspaces are negative (positive);
(P4) Any sufficiently small perturbation of a pointwise partially hyperbolic diffeomor-

phism is also pointwise partially hyperbolic.

These properties may fail if we consider pointwise partially hyperbolic diffeomorphisms on
proper open subsets S ⊂M thus providing one of the major obstacles for our construction.
To overcome this difficulty we introduce a special kind of perturbations.

Definition 2.1. Given a diffeomorphism f that is pointwise partially hyperbolic on an open
set S, we call its small perturbation g in the C1 topology gentle if there exists an open set
U ⊂ S such that

(1) Ū ⊂ S;
(2) U is invariant under both f and g;
(3) f |Uc = g|Uc.

It is easy to see that a gentle perturbation of a diffeomorphism g that is pointwise partially
hyperbolic on an open set S is also pointwise partially hyperbolic on S.

If the center distribution Ecf is integrable to a smooth center foliation W c
f , then f and its

small gentle perturbation are dynamically coherent4 (see [25,34]).

3We say that a foliation W on S is absolutely continuous if for almost every x ∈ S there is a neighborhood

B(x, q(x)) such that for almost every y ∈ B(x, q(x)) the conditional measure generated on the local leave

V (y) by volume m is absolutely continuous with respect to the leaf volume mV (y) on V (y).
4A diffeomorphism f that is pointwise partially hyperbolic on an open set S is called dynamically coherent

if the subbundles Ecu = Ec ⊕ Eu, Ec, and Ecs = Ec ⊕ Es are integrable to continuous foliations with

smooth leaves W cu, W c and W cs, called respectively the center-unstable, center and center-stable foliations.
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Let f be a diffeomorphism that is pointwise partially hyperbolic on an open set S and

has Property (P1). Let also S̃ ⊂ S be an open subset.

Definition 2.2. We say that f has the accessibility property (with respect to S̃ and S) if

any two points z, z′ ∈ S̃ are accessible via the strongly stable and unstable foliations W s and
Wu, that is,

(1) there exists a collection of points z1, . . . , zn ∈ S such that x = z1, y = zn and
zk ∈ V i(zk−1) for i = s or u and k = 2, . . . , n;

(2) the points zk−1 and zk can be connected by a smooth curve γk ⊂ V i(zk−1) for i = s
or u and k = 2, . . . , n. 5

The collection of such points zk and curves γk is called the (u, s)-path connecting z and
z′.

We denote by λi(x) = λi(x, f), i = 1, . . . ,dimM, the values of the Lyapunov exponents
at x, counted with their multiplicities and arranged in the decreasing order. We also denote
by

(2.1) Lk(f) :=

∫
M

k∑
i=1

λi(x, f) dm(z),

the k-th average Lyapunov exponent of f with respect to volume m. Note that Lk(·) is
upper-semicontinuous in the space of C1 diffeomorphisms on M.

Consider a volume preserving C2 diffeomorphisms f of a compact smooth manifold M
that is pointwise partially hyperbolic on an open set S.

Definition 2.3. We say that f has positive central exponents if there is an invariant set
A ⊂ S of positive volume such that for every x ∈ A and every v ∈ Ec(x) the Lyapunov
exponent λ(x, v) > 0.

The following result plays an important role in the proof of Theorem 1.3.6

Theorem 2.4. Assume that the following conditions hold:

(1) f has strongly stable and unstable foliations W s and Wu on S;
(2) the foliations W s and Wu are absolutely continuous;
(3) f has the accessibility property via the foliations W s and Wu;
(4) f has positive Lyapunov exponents in the strongly unstable directions and negative

Lyapunov exponents in the strongly stable directions almost everywhere;
(5) f has positive central exponents.

Then f has positive central exponents at almost every point x ∈ S, f |S is ergodic and indeed,
is a Bernoulli diffeomorphism.

All the above notions and results can be extended to the continuous-time case, for ex-
ample, a flow f t is pointwise partially hyperbolic on an open subset S if its time-1 map
f1 is pointwise partially hyperbolic on S. We point out two important differences between

Furthermore, the foliations W c and Wu are subfoliations of W cu, while W c and W s are subfoliations of
W cs.

5We stress that V i(zk−1) is the local leaf of W i at zk−1. In particular, the length of the curve γk (the

leg of the path) does not exceed the size of V i(zk−1).
6In the case when f is uniformly partially hyperbolic on the whole manifold M, has positive central

exponents and the accessibility property this result was proved in [3].



10 JIANYU CHEN, HUYI HU, AND YAKOV PESIN

the desecrete- and continuous-time cases: (1) the Lyapunov exponent in the flow direction,
which is part of the central direction, is always zero; and (2) in Theorem 2.4 restated to
the case of flows one can occlude that the flow is ergodic but may not be isomorphic to a
Bernoulli flow.

3. Essential coexistence: the discrete-time case

We outline the construction in Theorem 1.3. It starts with a C∞ volume preserving
diffeomorphism T of a compact smooth 5-dimensional manifold M given as follows. Let A
be an Anosov automorphism of the torus X = T2 and T t the suspension flow over A with
a constant roof function. The flow acts on the suspension manifold

N = {(x, t) : x ∈ X, τ ∈ [0, 1]}/ ∼,

where “∼” is the identification (x, 1) = (Ax, 0).
Set Y = T2 and M = N × Y . We endow M with the product metric and denote by m

its Riemannian volume. This is the desired manifold.
Next we choose a Cantor set C ⊂ Y of positive area whose complement U = Y \ C is an

open connected subset and we also choose a C∞ function κ : Y → R, which vanishes on C,
is positive on U and is constant on an open subset U0 with U0 ⊂ U .

The set U = N ×U is open, dense and of positive but not full volume. This is the desired
open set U and its complement Uc = N × C is the desired Cantor set of positive volume.

Define the “start-up” map T : M→M by

T ((x, τ), y) = (Tκ(y)(x, τ), y),

where (x, τ) ∈ N and y ∈ Y . It is easy to see that the map T is a C∞ volume preserving
diffeomorphism of M such that

(T1) given δ > 0, one can choose the function κ such that ‖T − Id‖C1 ≤ δ;
(T2) T preserves the fibers N × {y};
(T3) T |Uc = Id and dTz = Id for any z ∈ Uc; in particular, the Lyapunov exponents of

T |Uc are all zero;
(T4) the map T is pointwise partially hyperbolic on an open set U with one-dimensional

strongly stable EsT (z), one-dimensional strongly unstable EuT (z) and three-dimensional
center EcT (z) subspaces;

(T5) for every z ∈ U the map T has one negative, one positive and three zero Lyapunov
exponents.

In our construction of the desired map P we follow the perturbation scheme

T → Q→ P,

where both maps Q and P are pointwise partially hyperbolic on U with one-dimensional
stable, one-dimensional unstable, and three-dimensional central subspaces. The map Q is
a gentle perturbation of T and hence has Properties (P1)–(P3). We shall ensure that Q
has positive central exponents on a subset of positive measure. Although the map P is
not a gentle perturbation of Q it is obtained in a way that allow us to maintain Properties
(P1)–(P3). We shall ensure that P has the accessibility property on U which allows us to
apply Theorem 2.4.
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3.1. Construction of the map Q. The map Q is a gentle perturbation of T and is con-
centrated in the open set N ×U0 ⊂ U which is “far away” from the Cantor set N ×C. The
construction of the map Q is described by the following proposition.

Proposition 3.1. Given δ > 0, there is a C∞ volume preserving diffeomorphism Q :M→
M such that

(1) ‖Q− T‖C1 ≤ δ;
(2) Q = T on the set N × (Y \ U0) and Q preserves each fiber N × {y} for y /∈ U0;

in particular, Q is a gentle perturbation of T and hence, it is pointwise partially
hyperbolic on U and has Properties (P1)–(P3);

(3) there is an invariant set A ⊂ U of positive volume such that for every z ∈ A,

λu(z,Q) = λ1(z,Q) > λ2(z,Q) > λ3(z,Q) > λ4(z,Q) > 0

while λ5(z,Q) = λs(z,Q) < 0.

The last property implies that Q has distinct average Lyapunov exponents, i.e.,

L1(Q) < L2(Q) < L3(Q) < L4(Q) = L4(T )

and L5(Q) = 0 where Lk(·) is the k-th average Lyapunov exponent defined in (2.1). While
individual values of the Lyapunov exponents may vary widely under small perturbations,
average Lyapunov exponents are upper semi-continuous and thus can be controlled.

The construction of the map Q exploits some methods from [5,12,13,28,35] but requires
substantial modifications and new arguments due to nonuniform hyperbolicity of the map
T . Note that the restriction Q|U is not ergodic.

To construct the map Q, we follow the perturbation scheme

T → S = hS ◦ T → R = hR ◦ S → Q = hQ ◦R,

where hS , hR and hQ are gentle perturbations. Observe that

L1(T ) = L2(T ) = L3(T ) = L4(T ) > 0.

The perturbations hS , hR and hQ are designed to achieve that

L1(S) < L2(S)

then

L1(R) < L2(R) < L3(R)

and finally,

L1(Q) < L2(Q) < L3(Q) < L4(Q).

The perturbations hK , k = S,R,Q, are concentrated on pairwise disjoint sets Ωk, ‖hk −
Id‖ ≤ δ and hk = Id outside the set Ω = ΩS ∪ ΩR ∪ ΩQ. Furthermore, Ω ⊂ N × U0.

The first perturbation hS creates positive Lyapunov exponent in the τ -direction - the
direction of the special flow on a subset A ⊂ U of positive volume. This can be achieved
by applying a small rotation in the Euτ -plane at every point in a small neighborhood ΩS
of some point z0 ∈ N × U0. The idea originated in the work of Shub-Wilkinson [35] and of
Dolgopyat-Hu-Pesin [12].

More precisely, we choose the coordinate system (s, u, τ, a, b) around a given point z0 ∈
N × U0 and the set ΩS = {(s, u, τ, a, b) : |s| ≤ ε, u2 + τ2 ≤ ε2, |a|, |b| ≤ α}, and switch to
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the cylindrical coordinates (r, θ, s, a, b) where u = r cos θ and τ = r sin θ. For small σ > 0
set

hS(r, θ, s, a, b) = (r, θ + σα2ε2ψ(
r

ε
)ψ(

s

ε
)ψ(
|a|
α

)ψ(
|b|
α

), s, a, b)

if the point (r, θ, s, a, b) ∈ ΩS and set hS = Id otherwise. Here ψ is a C∞ function ψ on R+

such that ψ(r) is constant on [0, 0.9], ψ(r) > 0 for r ∈ [0, 1] and ψ(r) = 0 for r ≥ 1.
The second perturbation hR creates positive Lyapunov exponent in the a-direction of Y

on a subset B ⊂ A of positive volume leaving the Lyapunov exponent in the τ -direction
still positive. This map is a composition of very small rotations in the τa-plane along long
segments of non-periodic orbits of the map S so that the total rotation is π

2 . In this way, the
map R = hR◦S interchanges the τ - and a-directions making the average Lyapunov exponents
along these directions non-zero. The idea goes back to some work of Mané (unpublished)
and of Dolgopyat-Pesin [13].

To explain this idea we pick λ > 0 such that λ2(z, S) ≥ λ for all z ∈ A and consider a
segment of trajectory at a typical point z of length 2k+m where both k and m are very large
and k is much larger than m. Given a vector v ∈ EuτaS (z), if v is close to the EuτS -subspace,
then the length of the uτ -component under the first k iterations becomes at least about λ−k

times longer than the length of v. Since dR does not contract vectors in the EuτaS -subspace
very much during the remaining m + k iterations, the length of the uτ -component stays
about the same. On the other hand, if v is close to the EaS-subspace, then the length of the
a-component of v does not change under the first k iterations. During the next m iterations
we apply very small rotations in the τa-plane so that the vector dRkv is rotated by π/2
degree into the EτS-subspace. During the next k iterations the length of the vector becomes
at least about λ−k times longer. It follows that every vector in Euτa(z) expands by about
λ−k times under dR2k+m.

The last perturbation hQ creates positive Lyapunov exponent in the b-direction in Y on a
subset C ⊂ B of positive volume leaving the Lyapunov exponents in the τ - and a-directions
still positive. It is constructed in a way similar to the construction of the map hR. Thus
the map Q has positive Lyapunov exponents in the three-dimensional central direction.

3.2. Construction of the map P . The desired map P is obtained as a limit of some
specially chosen gentle perturbations of T . It is not a gentle perturbation on its own and
therefore, additional arguments are needed to establish Properties (P1)–(P3) for P .

As a small perturbation of Q, the map P still has positive Lyapunov exponents in the
central directions on a subset of positive volume and has zero Lyapunov exponents on the
Cantor set Uc = N × C. Moreover, we shall construct P in such a way that it has the
accessibility property on the open set U via its strongly stable and unstable foliations. In
order to do this, we use some techniques developed in [12,28].

To effect the construction, we regard the 2-torus Y as the square [0, 8] × [0, 8] whose

opposite sides are identified and choose two special collections of squares Z
(n)
j and Z̃

(n)
j for

n ≥ 1 and j = 1, . . . , kn such that they form two open covers of the torus by “slightly

overlapping” squares and Z̃
(n)
j ⊂ Z(n)

j . Set

Un =
⋃
j

Z
(n)
j , Ũn =

⋃
j

Z̃
(n)
j .
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By this specific construction, we have that Ũn and Un are connected sets,

U0 ⊂ Ũ1, Ũn ⊂ Ũn ⊂ Un ⊂ Un ⊂ Ũn+1

and ⋃
n≥1

Un =
⋃
n≥1

Ũn = U.

Then we set

Un = N × Un, Ũn = N × Ũn.
The sets Un are nested and exhaust the open set U .

We then construct a sequence of diffeomorphisms {Pn} each acting on the corresponding
set Un, whose limit is the desired map P . More precisely, in the 2-torus X we choose quadru-
ples of periodic points {qi, piτ , pia, pib}, i = 1, . . . , 8 for the linear hyperbolic automorphism A
and small neighborhoods Πi

` of qi containing pi`, ` = τ, a, b. One can associate i = i(n, j) for

each square Z
(n)
j and define the domains

Ω`n,j = {z = (x, τ, a, b) : x ∈ Πi
`, |τ | ≤ ε, (a, b) ∈ Z(n)

j }.

Switching to the coordinate (u, `, ∗, ∗, ∗), ` = τ, a, b, we define the vector fields in Ω`n,j by

X`
β,j,n(z) = βψ`(s)

(
−
∫ u

0

φ`(r) dr, φ`(u), 0, 0, 0
)

for sufficiently small β = βn > 0, where the C∞ functions φ` and ψ` on R satisfy:

• φ`(r) = const. and ψ`(r) = const. for r ∈ (−r`0, r`0);
• φ`(r) = 0 and ψ`(r) = 0 for |r| ≥ r`0;

•
∫ ±r`0
0

φ`(τ)dτ = 0 and ψ`(x) > 0 for any |x| < r`0;

• ‖φ`(·)‖Cn < 1 and ‖ψ`(·)‖Cn < 1.

Let h`β,j,n be the time-1 map of the flow generated by the vector field X`
β,j,n and set

h`β,j,n = Id on the complement of Ω`n,j . Clearly, X`
β,j,n is divergence free and of class C∞

and hence, h`β,j,n preserves volume and is a C∞ diffeomorphism. Composing the maps

h`β,j,n over ` and j for each n ≥ 1, we obtain the desired perturbation hn = hn,βn
so that

Pn = hn ◦hn−1 ◦ · · · ◦h1 ◦Q. One can show that the maps Pn have the following properties.

Proposition 3.2. Given δ > 0, there are two sequences of positive numbers {δn} and
{θn} satisfying δn ≤ δ/2n and δn ≤ d(C,Un)2 and a sequence of C∞ volume preserving
diffeomorphisms Pn :M→M such that for n ≥ 1:

(1) ||Pn − Pn−1||Cn < δn;
(2) Pn(Un) = Un, Pn = T on M\ Un, and Pn = Pn−1 on Un−2;
(3) Pn is a gentle perturbation of T and hence, is pointwise partially hyperbolic on U

and has two transverse stable and unstable foliations W s
Pn

and Wu
Pn

;
(4) each map Pn is accessible via W s

Pn
and Wu

Pn
; more precisely, any z, z′ ∈ Un can be

connected via a (u, s)Pn-path in Ũn;
(5) for all z ∈ Uj, j = 1, . . . , n and i = u, s, c,

∠(EiPn−1
(z), EiPn

(z)) ≤ θj/2n−j .
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We outline the argument allowing to achieve the accessibility property in Statement (4).
First, it is not difficult to show that the accessibility property holds if for a certain point
z ∈ Un every point in its local central manifold V c(z) is accessible from z. To this end using
the well-known Brin’s quadrilateral argument ,one can construct a function from the unit
cube in R3 to V c(z) such that every point in the image of the function is accessible from
z. Furthermore, one can show that this function is continuous, which guarantees that it is
onto V c(z), and hence every point in V c(z) is accessible from z.

Statements (1) and (2) of Proposition 3.2 imply that the limit P = limn→∞ Pn exists.
Indeed, for any k ≥ 1 and any n > k,

||Pn − Pn−1||Ck ≤ ||Pn − Pn−1||Cn < δ/2n.

It follows that Pn converges to P in the Ck topology. Since k is arbitrary, P is a C∞

diffeomorphism. Clearly, P preserves volume and ‖P − Id‖ ≤ δ and the first statement of
the theorem follows.

If the sequence δn decays sufficiently fast then for any n > k, any z ∈ Uk, and i = s, u, c
we have

∠(EiPn
(z), EiPk

(z)) ≤ θk(1− 1

2k
) < θk.

Thus the sequence of subspaces {EiPn
(z)} is Cauchy and hence converges as n → ∞ to a

subspace EiP (z). These subspaces form an invariant splitting for P at z. Moreover, since
||Pn−Pn−1||Cn ≤ δn, letting δn → 0 sufficiently fast as n→∞ we can ensure that the map P
is pointwise partially hyperbolic with one-dimensional strongly stable EsP , one-dimensional
strongly unstable EuP and three-dimensional central EcP subspaces. This shows that the limit
map P is very flat near the Cantor set N × C and thus ensures zero Lyapunov exponents
in the directions transversal to the Cantor set.

We use the fact that the strongly stable subspace EsP (z) is one-dimensional to show that
the Lyapunov exponent λs(z, P ) in the stable direction is negative at almost every point
z ∈ U . Indeed, let Z ⊂ U be the set of points at which λs(z, P ) = 0. If m(Z) > 0 then

0 =

∫
Z

λs(z, P ) dm =

∫
Z

lim
n→∞

1

n
log

n−1∏
i=0

λ(P i(z))

= lim
n→∞

1

n

∫
Z

n−1∑
i=0

log λ(P i(z)) dm(z) =

∫
Z

log λ(z) dm(z) < 0,

where λ(z) is the contraction coefficient along EsP (z). This contradiction proves the claim.
Similarly, one can prove that the Lyapunov exponent λu(z, P ) in the direction EuP (z) is
positive at almost every point z ∈ U .

The strongly stable EsP and unstable EuP subbundles are integrable to invariant strongly
stable W s

P and unstable Wu
P foliations with smooth leaves, which are transverse. Indeed,

given z ∈ U , the size of the local stable manifold V sPn
(z) through z is larger than a certain

number r > 0, which is independent of z and n. Hence, the sequence of local manifolds
V sPn

(z) converges in the C1 topology to a local manifold of size at least r. This manifold is
tangent to the stable subspace at z and is a local stable manifold for P at z.

Further, the map P has the accessibility property on Ũk. Since k is arbitrary, we obtain
that the map P has the accessibility property on U via its invariant foliations W s

P and Wu
P .

To prove that the map P has nonzero central Lyapunov exponents on a set of positive
volume we let c = L4(Q)−L3(Q) > 0. By semicontinuity of Lk(·) with respect to the map,
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we may take δ so small that L3(P ) < L3(Q) + c/2. Then for all n ≥ 1,

L4(Pn) =

∫
U

log |det(dPn|EutabPn
(z))| dm

=

∫
U

log |det(dQ|EutabQ (z))| dm = L4(Q).

Since Pn converges to P in the C1 topology, L4(Pn)→ L4(P ) as n→∞ and hence L4(P ) =
L4(Q). It follows that L4(P )− L3(P ) ≥ c/2 > 0. Therefore,∫

U
λ4(z, P )dm(z) ≥ c/2 > 0.

It follows that there is a subset A ⊂ U of positive volume such that λ4(z, P ) > 0 for every
z ∈ A. Hence,

λ2(z, P ) ≥ λ3(z, P ) ≥ λ4(z, P ) > 0.

Thus P has positive central exponents at every point in a set of positive volume. Since
P is volume preserving, the total sum of the Lyapunov exponents is zero at every point.
Therefore, λ5(z, P ) < 0 for every z ∈ A.

Since δn ≤ d(C,Un)2, we obtain that P = Id on the set N × C and that dPz = Id for all
z ∈ N × C. In other words, all Lyapunov exponents at every point in the set N × C are
zero. Since this set has positive volume this completes the proof of the Theorem.

4. Essential Coexistence: the continuous-time case

Now we explain how to obtain a flow with the essential coexistence in Theorem 1.4 by
modifying the construction in Section 3. We consider the same compact manifold M and
the open subset U but we introduce a start-up flow f t by the formula

f t((x, τ), y) = ((x+ tα(y), τ + tκ(y)), y),

where κ : Y → R is the same function as in Section 3 and α : Y → R2 is a C∞ map such
that

(1) α vanishes on the set U0;
(2) α equals to a constant Diophantine vector on the Cantor set C;
(3) supy∈Y ‖α(y)‖ ≤ ᾱ, where ᾱ is a small positive number.

Clearly, f t is a C∞ volume preserving flow of M satisfying properties similar to (T1)–(T5)
in Section 3. Furthermore, each three-dimensional fiber N × {y}, y ∈ C, is a union of
teo-dimensional invariant tori X × {τ} × {y}, τ ∈ [0, 1], on which f t acts as a linear flow
with a Diophantine frequency vector.

We perturb the flow f t gently by the following scheme

f t → gt → ht

such that both flows gt and ht are pointwise partially hyperbolic on U . The flow gt has
positive central Lyapunov exponents on a set of positive volume but is not necessarily
ergodic. Then we create the accessibility property for the desired flow ht.
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4.1. Construction of the flow gt. We extend the approach introduced in Subsection 3.1
to the case of flows and obtain the flow gt as a result of two consecutive perturbations

f t → g̃t → gt

such that

L1(g̃t) < L2(g̃t)

then

L1(gt) < L2(gt) < L3(gt).

Note that L3(gt) = L4(gt) since the flow direction must have zero exponent. In fact, we
apply perturbations of corresponding vector fields

Xf → Xg̃ = Xf + X̃R → Xg = Xg̃ + XR,

where Xf is the vector field that generates the flow f t, and X̃R and XR are two rotational

vector fields supported on pairwise disjoint open subsets Ω̃R and ΩR of N ×U0 respectively

such that X̃R = 0 outside Ω̃R, XR = 0 outside ΩR and ‖X̃R‖C1 , ‖XR‖C1 < δ.

The role of these two vector fields X̃R and XR is similar to that of perturbations hS , hR, hQ
in Subsection 3.1. The perturbation via X̃R produces two positive average Lyapunov expo-
nents for the flow g̃t in the Euaf subbundle, and then the perturbation via XR makes the

flow gt have three positive average Lyapunov exponents in the Euabf subbundle.

The construction utilizes the following special and crucial feature of the flow f t: the set

Π0 = X × {0} × U0

is a global cross-section of f t|N × U0, and the time-1 map restricted to Π0 is exactly the

Poincaré return map of f t to Π0. Furthermore, we make the construction of vector fields X̃R
and XR in such a way that Π0 is also a global cross-section for both flows g̃t and gt with the
time-1 maps to be the Poincaré return map to Π0. This fact allows us to apply arguments
similar to those in Subsection 3.1 to our flow case by focusing on the time-1 maps.

4.2. Construction of the flow ht. Similar to the construction of the map P in Subsec-
tion 3.2, we obtain our desired flow ht as a limit of properly chosen gentle perturbations
htn. We guarantee that ht is C1-close to the flow gt such that ht still has positive central
exponents (except for the flow direction) on a subset of positive volume. Moreover, ht has
the accessibility property on the open set U via its strongly stable and unstable foliations.

Note that the perturbations in Subsection 3.2 indeed come from the construction of
perturbed vector fields. Therefore, we can adjust this construction to the continuous-time
case such that the sequence of flows htn satisfy properties similar to those in Proposition 3.2.

There is however an important modification in constructing the perturbations htn: instead
of choosing 8 quadruples of periodic points (as in Subsection 3.2), we choose for each square

Z
(n)
j centered at y0 = y0(n, j) a quadruple of periodic points {q(n,j), p(n,j)τ , p

(n,j)
a , p

(n,j)
b } in

the 2-torus X for the Anosov affine map A+α(y0)/κ(y0). Moreover, we can guarantee that
the corresponding domains Ω`n,j , ` = τ, a, b, are pairwise disjoint. In this way, we can obtain
accessibility property by applying a small perturbation supported in each domain, which do
not interrupt each other.
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