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Abstract. We demonstrate essential coexistence of hyperbolic
and non-hyperbolic behavior in the continuous-time case by con-
structing a smooth volume preserving flow on a 5-dimensional com-
pact smooth manifold that has nonzero Lyapunov exponents al-
most everywhere on an open and dense subset of positive but not
full volume and is ergodic on this subset while having zero Lya-
punov exponents on its complement. The latter is a union of 3-
dimensional invariant submanifolds and on each of these subman-
ifolds the flow is linear with Diophantine frequency vector.

1. Introduction

The goal of this paper is to extend the main result in [10] to dynam-
ical systems with continuous time thus demonstrating coexistence of
regular and chaotic dynamics in an “essential” way.

Theorem 1.1 (Main Theorem). There exists a compact smooth Rie-
mannian manifold M of dimension 5 and a C∞ flow ht : M → M
such that

(1) ht preserves the Riemannian volume m on M;
(2) ht (t 6= 0) has nonzero Lyapunov exponents (except for the ex-

ponent in the flow direction) almost everywhere on an open,
dense and connected subset U ⊂ M; moreover, ht|U is an er-
godic flow;

(3) the complement U c has positive volume and is a union of 3-
dimensional invariant submanifolds; ht is a non-identity linear
flow with Diophantine frequency vector on each invariant sub-
manifold and ht has zero Lyapunov exponents on U c.

We stress that each of the 3-dimensional invariant submanifolds is in
turn a union of 2-dimensional invariant tori on which ht is a linear flow
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with Diophantine frequency vector (see Section 3 for details). This fact
makes our construction nontrivial.1

We emphasize the requirement that the open set U is everywhere
dense.2 Donnay [8] constructed an example of a surface on which the
geodesic flow exhibits the coexistence phenomenon. It is obtained by
inserting a light-bulb cap into a negatively curved surface. In this ex-
ample the set of geodesics, which are trapped in the cap, is invariant,
has positive volume and almost every point in this set has zero Lya-
punov exponents. Since it has non-empty interior, the stochastic sea
in this example, i.e., the analog of the set U in our case, is not dense.

While this paper deals only with dynamical systems with continu-
ous time, it is worth mentioned that in the discrete-time case essential
coexistence of chaotic and regular behavior have been demonstrated in
various situations by Przytycki and Liverani for area preserving diffeo-
morphisms and by Bunimovich for billiards; see the paper [5], which
surveys recent result on essential coexistence, and references therein.

We split the proof of Theorem 1.1 into several steps. In Section 2
we present some background information and basic notations from the
theory of partial hyperbolicity and in particular, introduce the notion
of pointwise partial hyperbolicity on open sets for flows. In Section
3 we construct the manifold M, the open set U and introduce the
“start-up” flow f t that satisfies the statements (3) of the theorem. In
Section 4 we construct a volume preserving flow gt, which is a small
perturbation of f t and does not affect the action of f t on the set U c.
The flow gt has nonzero Lyapunov exponents on a subset of positive
volume in U . Finally, in Section 5 we construct the desired flow ht as
a small perturbation of the flow gt. The proof of the Main Theorem is
given in Section 6.

In our construction of the flows gt and ht we use the perturbation
techniques developed in [10] for the case of diffeomorphisms (these
techniques originated in [15], [7] and [6]). However, there is a crucial
difference between the discrete-time and continuous-time cases. To

1Indeed, consider the C∞ volume preserving diffeomorphism P constructed in
[10]. It has nonzero Lyapunov exponents almost everywhere on an open, dense and
connected subset U ⊂M and P |U is ergodic. Furthermore, the complement Uc has
positive volume, P |Uc is the identity map and has zero Lyapunov exponents. A
special flow P t over P has nonzero Lyapunov exponents (except for the exponent
in the flow direction) almost everywhere on an open, dense and connected subset
U × [0, 1]/ ∼ (where ∼ means that the points (x, 1) and (Px, 0) are identified) of
not full volume, however, P t is a periodic flow on its complement Uc × [0, 1]/ ∼.

2To some extent this justifies to view our example as of “KAM-type” despite the
fact that the flow ht is not close to a completely integrable one.
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effect our construction we ought to make perturbations of the vector
fields that generate the required flows but we want these perturbations
to produce similar effects on the time-1 maps of the flows as in [10].
This is made possible due to the crucial fact that the “start-up” flow f t

has a global cross-section and in our construction we ensure that both
perturbation flows gt and ht preserve this cross-section. We achieve
this by using specific formulae for perturbations of the vector fields. At
the core of our construction lies a new concept of pointwise partially
hyperbolic flows on open sets. In Section 2 we introduce such flows
and we study their ergodicity.

2. Preliminaries

See [2, 10,13] for more details.
Consider a diffeomorphism f acting on a compact smooth Riemannian
manifold M. It is called uniformly partially hyperbolic on a compact
invariant subset Λ ⊂M if

(1) for every x ∈ Λ the tangent space at x admits an invariant
splitting

(2.1) TxM = Es(x)⊕ Ec(x)⊕ Eu(x)

into stable Es(x) = Es
f (x), central Ec(x) = Ec

f (x) and unstable
Eu(x) = Eu

f (x) subspaces;

(2) there are numbers 0 < λ < λ̃ ≤ 1 ≤ µ̃ < µ such that for every
t = 1, 2, . . .

‖df tv‖ ≤ λt‖v‖, v ∈ Es(x),

λ̃t‖v‖ ≤ ‖df tv‖ ≤ µ̃t‖v‖, v ∈ Ec(x),(2.2)

µt‖v‖ ≤ ‖df tv‖, v ∈ Eu(x).

In this paper we need a weaker property than uniform partial hyper-
bolicity. Let S ⊂ M be an invariant open subset. We say that a
diffeomorphism F is pointwise partially hyperbolic on S if for every
x ∈ S the tangent space at x admits an invariant splitting (2.1) and

there are continuous functions 0 < λ(x) < λ̃(x) ≤ 1 ≤ µ̃(x) < µ(x)

such that (2.2) holds with constants λ, λ̃, µ̃ and µ replaced with these
functions. Pointwise partially hyperbolic diffeomorphisms on compact
manifolds were introduced in [4] where their ergodic properties were
studied. If a diffeomorphism is pointwise partially hyperbolic on an
open subset of a compact manifold then it could fail to have “nice”
properties and in particular, could be not ergodic (see the discussion
below).
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We now consider a smooth flow f t on M which is generated by the
vector field Xf (x) = d

dt
f t(x)|t=0. We say that the flow is uniformly

partially hyperbolic on a compact invariant subset Λ ⊂ M if for every
x ∈ M the tangent space at x admits an invariant splitting (2.1) into
stable Es(x) = Es

f (x), central Ec(x) = Ec
f (x) and unstable Eu(x) =

Eu
f (x) subspaces such that the vector field Xf (x) is contained in the

central subspace Ec(x) and there are numbers 0 < λ < λ̃ ≤ 1 ≤ µ̃ < µ
such that (2.2) holds for all t ∈ [0, 1]. Note that if a flow f t is uniformly
partially hyperbolic, then for every t 6= 0 the time-t map is uniformly
partially hyperbolic with the same invariant splitting.

Given an invariant open subset S ⊂ M we call a flow f t pointwise
partially hyperbolic on S if its time-1 map f 1 is pointwise partially
hyperbolic on S.

Given δ > 0, we say that a flow gt is (C1, δ)-close to f t on an invariant
set Λ if Xg = Xf outside Λ and ‖Xg − Xf‖ ≤ δ. Uniformly partially
hyperbolic flows form an open set in the C1 topology (see Lemma B.8
in the Appendix B).

Given a an open subset S ⊂ M, we call a partition P of S a (δ,
q)-foliation with smooth leaves if there exist continuous functions δ =
δ(x) > 0, q = q(x) > 0, and an integer k > 0 such that for each x ∈ S:

(1) There exists a smooth immersed k-dimensional manifold W (x) con-
taining x for which P(x) = W (x) where P(x) is the element of the
partition P containing x. The manifold W (x) is called the global
leaf of the foliation at x; the connected component of the intersec-
tion W (x) ∩B(x, δ(x)) that contains x is called the local leaf at x
and is denoted by V (x);

(2) There exists a continuous map φx : B(x, q(x)) → C1(D,M) (where
D is the unit ball) such that V (y) is the image of the map φx(y) :
D →M for each y ∈ B(x, q(x)); the number q(x) is called the size
of V (x).

We say that a foliation with smooth leaves is absolutely continuous if
for almost every x ∈ S and almost every y ∈ B(x, q(x)) the conditional
measure on the local leaf V (y), generated by the volume m on M and
the partition of B(x, q(x)) by the local leaves, is absolutely continuous
with respect to the leaf volume mV (y) on V (y). 3

Let W1 and W2 be two foliations of S with smooth leaves that are
transversal to each other at every point z ∈ S. Let also S1 ⊂ S be
an open subset. We say that the pair W1 and W2 has the accessibility

3The leaf volume mV (y) is generated by the restriction of the Riemannian metric
on M to the smooth submanifod V (y).
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property on S1 if any two points z, z′ ∈ S1 are accessible via a (u, s)-
path in S, that is

(1) there exists a collection of points z1, . . . , zn ∈ S such that z = z1,
z′ = zn and zk ∈ Wi(zk−1) for i = 1, 2 and k = 2, . . . , n;

(2) the points zk−1 and zk can be connected by a smooth curve γk ⊂
Vi(zk−1) in S for i = 1 or 2 and k = 2, . . . , n. 4

The collection of the leaf-wise paths γk is called a (u, s)-path and is
denoted by [z1, . . . , zn].

For a uniformly partially hyperbolic flow f t one can construct stable
and unstable local manifolds of uniform size at every point in Λ. This
may not be true for a flow that is pointwise partially hyperbolic on an
open set S. However, all pointwise partially hyperbolic flows that we
consider in this paper will have global stable and unstable transverse
foliations with smooth leaves. We denote these foliations by W s = W s

f

and W u = W u
f respectively.

More precisely, let f t be a flow that is pointwise partially hyperbolic
on an open set S and let gt be a sufficiently small perturbation of f t

in the C1 topology.

Definition 2.1. We call the perturbation gt gentle if there exists an
open set U ⊂ S such that Ū ⊂ S, U is invariant under both f t and gt

and f t|U c = gt|U c.

Theorem 2.2. Assume that the strongly stable and unstable subspaces
Es

f t and Eu
f t for f t are integrable to continuous strongly stable and

unstable foliations W s
f t and W u

f t respectively with smooth leaves and
that these foliations are transverse. Then for any sufficiently small
gentle perturbation gt in the C1 topology the strongly stable and unstable
subspaces Es

gt and Eu
gt for gt are integrable to continuous strongly stable

and unstable foliations W s
gt and W u

gt respectively with smooth leaves and
these foliations are transverse.

We call a flow f t that is pointwise partially hyperbolic on an open
set S dynamically coherent if the subbundles Ecu = Ec ⊕ Eu, Ec,
and Ecs = Ec⊕Es are integrable to continuous foliations with smooth
leaves W cu, W c and W cs, called respectively the center-unstable, center
and center-stable foliations. Furthermore, the foliations W c and W u

are subfoliations of W cu, while W c and W s are subfoliations of W cs.
The following result is an extension of the classical result in [9, 14]

to the case of flows that are pointwise partially hyperbolic on an open

4We stress that Vi(zk−1) is the local leaf of Wi at zi. In particular, the length of
the curve γk (the leg of the path) does not exceed δ(zk−1).
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subset. It shows that dynamical coherence is a robust property within
the class of gentle perturbations. The proof of this result is a simple
modification of the argument in [9].

Theorem 2.3. Suppose that f t is a flow that is pointwise partially hy-
perbolic on an open set S. Assume that f t possesses transverse strongly
stable and unstable foliations with smooth leaves. Assume also that the
center distribution is integrable to a smooth center foliation W c. Then
f t is dynamically coherent. Moreover, any flow that is close to f t in the
C1 topology and is a gentle perturbation of f t is dynamically coherent.

Since both subbundles Ecu and Ecs vary continuously with the map,
so does Ec and the corresponding center foliation W c.

Given a smooth flow f t, we denote by

λ(x, v) = λ(x, v, f t) = lim sup
t→∞

1

t
log ‖df tv‖

the Lyapunov exponent of a nonzero vector v at x ∈M and by λi(x) =
λi(x, f t), i = 1, . . . , dimM, the values of the Lyapunov exponents at
x in the decreasing order. We also denote by

(2.3) Lk(f
t) =

∫

M

k∑
i=1

λi(x, f t)dm(z),

where m is the Riemannian volume. We call this number the k-th
average Lyapunov exponent of f t.

Consider a C2 flow f t of a compact smooth manifoldM that is point-
wise partially hyperbolic on an open invariant set S. Assume that f t

preserves a smooth measure on M. We say that f t has positive central
exponents if there is an invariant set A ⊂ S of positive measure such
that for every x ∈ A and every v ∈ Ec(x)\Span{Xf (x)} the Lyapunov
exponent λ(x, v) > 0. The following theorem plays an important role
in the proof of our Main Theorem.

Theorem 2.4. Assume that the following conditions hold:

(1) f t has strongly stable and unstable (δ, q)-foliations W s and W u

where δ = δ(x) and q = q(x) are continuous functions on S;
(2) the foliations W s and W u are absolutely continuous;
(3) f t has the accessibility property via the foliations W s and W u on

S;
(4) f t has positive central exponents;
(5) The Lyapunov exponents in the stable subspace Es(x) are all neg-

ative and the Lyapunov exponents in the unstable subspace Eu(x)
are all positive for almost every x.
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Then f t has positive central exponents at almost every point x ∈ S and
f t|S is an ergodic flow.

Proof. Following Theorem 2.2 in [10], we first show that f t has positive
central exponents at almost every point x ∈ S and f t|S is an ergodic
flow.

There is a set A ⊂ S of positive measure such that the flow f t|A has
nonzero Lyapunov exponents except along the flow direction. Hence,
it has at most countably many ergodic components of positive measure
in A (see [2]). Each such component contains the set

A(x) =
⋃

y∈V cu(x)

V s(y),

where x is the density point of A and V cu(x) is a center-unstable local
manifold at x. Since the strong stable foliation W s is continuous, the
set A(x) is open (mod 0) in M5 and hence, the set A is itself open
(mod 0). We will show that the trajectory of almost every point in S
is dense, which yields that A = S (mod 0) and that f t|S is ergodic.

The proof of this claim for partially hyperbolic diffeomorphisms is
given in [1] and can be extended to our case literally. We present the
argument here for the reader’s convenience. We call a point p good
for a given open set U if p has a neighborhood in which the orbit of
almost every point enters U . It suffices to show that an arbitrary point
p is good. Since f t is accessible, there is a (u, s)-path [z0, . . . , zk] with
z0 ∈ U and zk = p. We will show by induction on j that each point zj

is good. This is obvious for j = 0. Now suppose that zj is good, then
zj has a neighborhood N such that Orb(x) ∩ U 6= ∅ for almost every
x ∈ N . Let B be the subset of N consisting of points with this property
that are also both forward and backward recurrent. It follows from the
Poincaré recurrence theorem that B has full measure in N . If x ∈ B,
any point y ∈ W s(x) ∪W u(x) has the property that Orb(y) ∩ U 6= ∅.
The absolute continuity of the foliations W s and W u means that the
set ⋃

x∈B

W s(x) ∪W u(x)

has full measure in the set⋃
x∈N

W s(x) ∪W u(x).

The latter is a neighborhood of zj+1. Hence, zj+1 is good. ¤
5That is there is an open set V ⊂ M such that A(x) = V (mod 0) with respect

to the volume m.
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3. Construction of the “start-up” flow f t

Let A be an Anosov automorphism of the 2-torus X = T2 with
expanding rate η > 1 along the unstable direction. Consider the sus-
pension flow St on the suspension manifold N = X × R/ ∼, with the
identification (x, τ + 1) ∼ (Ax, τ). The action of the suspension flow
on N is exactly St(x, τ) = (x, τ + t). See Appendix A for more details
of the geometric structure of N .

Given α ∈ T2, let T t
α : N → N be a linear flow defined by (x, τ) 7→

(x + tα, τ). It preserves each level set X × {τ}.

Set Y = T2 and M = N × Y . To effect our construction we choose:

(A1) a Cantor set C ⊂ Y of positive area whose complement U =
Y \C is a non-empty open and connected set;

(A2) an open square U0 such that U0 ⊂ U ;
(A3) an open neighborhood U1 of U0 such that U1 ⊂ U , whose choice

will be specified in Section 5.2.1.

We also choose a C∞ function κ : Y → R such that

(κ1) κ(y) > 0 for y ∈ U and κ(y) = 0 for y ∈ C;
(κ2) κ(y) = 1 for y ∈ U1;
(κ3) ‖κ‖C1 ≤ 1

(the existence of such a function κ follows from the specific construction
of the Cantor set and the choice of the set U1 in Section 5.1) and a C∞

map α : Y → R2 such that

(α1) α(y) = 0 for y ∈ U1;
(α2) α(y) = α0 > 0 for all y ∈ C where α0 is a Diophantine vector;
(α3) supy∈Y ‖α(y)‖ ≤ ᾱ, where ᾱ is a positive number determined

in Section 5.2.

We now set U = N × U and U c = N × C and define the flow f t on
M by the formula

(3.1) f t((x, τ), y) = ((x + tα(y), τ + tκ(y)), y)

where (x, τ) ∈ N and y ∈ Y . The following proposition describes the
properties of the flow f t and its proof follows immediately from the
definitions.

Proposition 3.1. The following statements hold:

(1) f t is a C∞ volume preserving flow;
(2) f t preserves each fiber N ×{y}, on which f t is the composition

of the scaled suspension flow Stκ(y) and the linear flow T t
α(y); in
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particular, f t is exactly the suspension flow St on N × {y} for
y ∈ U1;

(3) f t is pointwise partially hyperbolic on U with one-dimensional
stable Es

f , one-dimensional unstable Eu
f and 3-dimensional cen-

ter Ec
f subbundles; Es

f and Eu
f are integrable to strongly stable

and unstable foliations W s
f and W u

f with smooth leaves, which
are absolutely continuous, uniformly transversal and have local
leaves of uniform size;

(4) f t is uniformly partially hyperbolic on N × A where A ⊂ U is
a subset, and hence f t is dynamically coherent with the central
foliation W c

f = W c
St × Y ;

(5) f t preserves every 2-dimensional torus X × {τ} × {y} (τ ∈
[0, 1], y ∈ C are fixed) and acts on it as a linear flow with
a Diophantine frequency vector; moreover, f t|U c has all zero
Lyapunov exponents on U c;

(6) for every z = ((x, τ), y) ∈M the Lyapunov exponents of f t are
as follows:

λ1(z, f
t) = κ(y) log η ≥ 0 = λ2(z, f

t) = λ3(z, f
t) = λ4(z, f

t)

≥ λ5(z, f
t) = −κ(y) log η;

moreover, if z ∈ U , then λ1(z, f
t) = λu(z, f t) > 0 is the Lya-

punov exponent in the Eu
f (z) subspace, λ5(z, f

t) = λs(z, f t) < 0
is the Lyapunov exponent in the Es

f (z) subspace, and λ2(z, f
t),

λ3(z, f
t) and λ4(z, f

t) are Lyapunov exponents in the flow di-
rection and two directions in Y respectively.

4. Removing zero exponents

In this section we will construct a gentle perturbation gt of the orig-
inal flow f t with positive central Lyapunov exponents on a set of pos-
itive volume but not necessarily ergodic. Then we will perturb gt to
the desired flow ht of the main theorem in Section 5.

Given z ∈M, there is a local Cartesian coordinate system (u, s, τ, a, b)
(see Appendix A) such that

F u(z) :=
∂

∂u
= Eu

f (z), F s(z) :=
∂

∂s
= Es

f (z), F τ (z) :=
∂

∂τ
= Eτ

f (z)

are the unstable, stable and flow directions of f t respectively, and

F a(z) :=
∂

∂a
= Ea

f (z), F b(z) :=
∂

∂b
= Eb

f (z)

are the other two central directions tangent to Y .
The following statement describes properties of the flow gt.
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Proposition 4.1. Given δg > 0, there is a C∞ volume preserving flow
gt on M such that the following hold.

(1) gt is (C1, δg)-close to f t, i.e., ‖Xf − Xg‖ ≤ δg, where Xf and
Xg are the vector fields of the flows f t and gt respectively.

(2) gt = f t outside N × U0, and hence gt is a gentle perturbation
of f t and satisfies Statements (3)-(5) of Proposition 3.1.

(3) gt preserves the subbundles Eω
f , ω = uab, uabτ ; moreover,

(4.1) det(dgt|Eω
f (z)) = det(df t|Eω

f (z)), for all z ∈M.

(4) The average Lyapunov exponents of gt satisfy

(4.2) L5(g
t) = 0 < L1(g

t) < L2(g
t) < L3(g

t) = L4(g
t).

To prove this proposition, we extend the approach in [10] to the case
of flows and obtain the flow gt as a result of two consecutive pertur-
bations. First, we perturb the start-up flow f t to a flow g̃t by adding

a rotational vector field X̃R to the vector field Xf .
6 This produces two

positive average Lyapunov exponents for the flow g̃t in the Eua
f sub-

bundle, i.e., L1(g̃
t) < L2(g̃

t). Next, we perturb g̃t to the desired flow gt

by adding another rotational vector field XR to the vector field Xg̃ for
the flow g̃t. As a result the flow gt has three positive average Lyapunov
exponents in the Euab

f subbundle, i.e., L1(g
t) < L2(g

t) < L3(g
t).

The vector fields X̃R and XR are chosen to be supported on disjoint

open subsets Ω̃R and ΩR of N × U0 respectively such that X̃R = 0

outside Ω̃R, XR = 0 outside ΩR and ‖X̃R‖C1 , ‖XR‖C1 < δg/2. Since
N ×U0 is invariant under f t, we have that gt = g̃t = f t outside N ×U0.

Our construction utilizes the following crucial feature of the flow f t:
the set

(4.3) Π0 = X × {0} × U0

is a global cross-section of f t|N × U0, and the time-1 map restricted
to Π0 is exactly the Poincaré return map of f t to Π0. Furthermore,

we make the construction of vector fields X̃R and XR in such a way
that Π0 is also a global cross-section for both flows g̃t and gt with the
time-1 maps to be the Poincaré return map to Π0. This fact allows us
to apply arguments similar to those in [10] to our flow case by focusing
on the time-1 maps.

6That is the flow generated by X̃R is concentrated in a small neighborhood of a
point in M where it acts as a small rotation around this point; see (4.6).
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4.1. Construction of the flow g̃t. In this section we construct the
flow g̃t by perturbing the vector field Xf inside the set N × U0.

To effect our construction we choose distinct periodic points q, pa,
pb and pτ of the Anosov automorphism A of X, which are close to each
other. Let V s

A(q), V u
A (q), V s

A(pi) and V u
A (pi), i = a, b, τ be the stable

and unstable local manifolds at these periodic points. We may assume
that each intersection V u

A (q) ∩ V s
A(pi) and V u

A (pi) ∩ V s
A(q) consists of

a single point, which we denote by [q, pi] and [pi, q] respectively. Let
γi denote the closed quadrilateral path with the collection of points q,
[q, pi], pi, [pi, q] and q, and let

γ(q) = V u
A (q) ∪ V s

A(q), γ(pi) = V u
A (pi) ∪ V s

A(pi).

Choose ν > 0 and set for i = a, b, τ ,

Ωi
0(ν) =(

⋃

t∈[0,ι(pi)]

BN (f t(pi, 0), ν))× U0,

Ω̂i
0(ν) =(

⋃

(x,τ)∈(γ(q)×[0,ι(q)])∪(γ(pi)×[0,ι(pi)])

BN ((x, τ), ν))× U0,

Ω0 =Ω0(ν) = (
⋃

i=a,b,τ

Ωi(ν)) ∪ (
⋃

i=a,b,τ

Ω̂i(ν)),

(4.4)

where ι(q) and ι(pi) are the periods of q and pi respectively, and
BN ((x, τ), r) is the ball in N of radius r centered at the point (x, τ) ∈
N . We choose a sufficiently small number ν to ensure that

m(ProjΠ0
Ω0) ≤ 0.05m(Π0),

where Π0 is given by (4.3), and ProjΠ0
: N × U0 → Π0 is the natural

projection onto Π0 given by the formula

ProjΠ0
((x, τ), y) = ((x, 0), y).

To construct the vector field X̃R we choose a C∞ function ψ : R→ [0, 1]
such that

(1) ψ = 1 on (−0.9, 0.9);
(2) ψ > 0 on (−1, 1) and ψ = 0 outside (−1, 1);
(3) ‖ψ‖C1 ≤ 10.

Observe that N × U0 is invariant under the flow f t and that

f t((x, τ), y) = ((x, τ + t), y)

for ((x, τ), y) ∈ N × U0. In other words, f t|N × U0 is the product
of the suspension flow on N and the identity map on U0. It follows
that Π0 is a global cross-section for the flow f t|N ×U0, and the time-1
map restricted to Π0 is f 1 = A× Id and is exactly the Poincaré return
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map of f t to Π0. Given a subset Π ⊂ Π0, we call a set Π × [τ1, τ2] ⊂
Π0 × R/ ∼= N × U0 a tube if

f t(Π× {τ1}) ∩ (Π× {τ1}) = ∅ for all t ∈ [0, τ2 − τ1].

It is easy to check that Π × [τ1, τ2] is a tube if and only if the sets
Π, f 1(Π), f 2(Π), . . . , f l(Π) are pairwise disjoint, where l = bτ2 − τ1c.
Choose a non-periodic point z0 = (x0, 0, y0) ∈ Π0\ProjΠ0

Ω0, where x0

is a non-periodic point of the Anosov automorphism A, y0 is the center
of the square U0 and Ω0 is the set given by (4.4).

In what follows we will use the local Cartesian coordinate system
in a neighborhood of Π0 originated at z0 given by (u, s, t, a, b) where
(u, s) are the coordinates in X along the stable and unstable directions
of the hyperbolic diffeomorphism A, t is the coordinate along the time
direction and (a, b) are coordinates in Y . In this coordinate system
a point z ∈ Π0 is given as z = (u, s, 0, a, b). We will also use the
ua-cylindrical coordinates (r, θ, τ, s, b), where u = r cos θ, a = r sin θ.
Given ε > 0, one can choose a ua-cylinder B ⊂ Π0 centered at z0 of
size ε, i.e.,

B = {(r, θ, 0, s, b) : r ≤ ε, |s| ≤ ε, |b| ≤ ε}.
Given a sufficiently large N0 ≥ 20k0 (the number k0 is defined below
in Lemma 4.5), we can choose ε so small that f i(B) ∩ B = ∅ for
i = 1, . . . , N0. Consider the tube

(4.5) Ω̃R = B × [0, 1/2].

Since z0 6∈ ProjΠ0
Ω0, we can further reduce ε to ensure that B ∩

ProjΠ0
(Ω0) = ∅. Hence, Ω̃R ∩ Ω0 = ∅.

Given β > 0, define a C∞ rotational vector field X̃R = X̃R,β on M
as follows:

(4.6) X̃R,β(z) =





βψ̃(z)
∂

∂θ
, z ∈ Ω̃R,

0, z ∈M\Ω̃R,

where

ψ̃(z) = ψ̃(r, θ, τ, s, b) = ψ

(
r2

ε2

)
ψ

(s

ε

)
ψ

(
b

ε

)
ψ

(
τ − (1/4)

1/4

)
.

It is easy to see that ‖ψ̃ ∂

∂θ
‖ ≤ c where c > 0 is a constant, which is

independent of ε. Hence, ‖X̃R,β‖ → 0 as β → 0. Furthermore, X̃R,β is
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divergence free. Let g̃t = g̃t
β be the flow generated by the vector field

Xg̃ = Xg̃,β = Xf + X̃R,β.

Proposition 4.2. There exists β > 0 such that g̃t = g̃t
β is a C∞ volume

preserving flow with the following properties:

(1) g̃t is (C1, δg/2)-close to f t, i.e., ‖Xf −Xg̃‖C1 ≤ δg/2, where Xf

and Xg̃ are the vector fields corresponding to flows f t and g̃t

respectively;
(2) g̃t = f t outside N × U0, and hence g̃t is a gentle perturbation

of f t and satisfies Statements (3)-(5) of Proposition 3.1;
(3) g̃t preserves the subbundles Eω

f , ω = ua, uab, uabτ ; moreover,

(4.7) det(dg̃t|Eω
f (z)) = det(df t|Eω

f (z)) for all z ∈M;

(4) the average Lyapunov exponents of g̃t satisfy

(4.8) L5(g̃
t) = 0 < L1(g̃

t) < L2(g̃
t) = L3(g̃

t) = L4(g̃
t);

(5) Π0 is a global cross-section of the flow g̃t|N ×U0, and the time-
1 map g̃1 is the Poincaré return map of gt to Π0; furthermore,
there exist λ > 0 and a g̃1-invariant subset Π ⊂ Π0 such that

m(Π) ≥ 20k0m(Π ∩B) > 0

and for any z ∈ Π the flow g̃t has two positive Lyapunov expo-
nents λ1(z, g̃

t) > λ2(z, g̃
t) ≥ λ along the Eua

f subbundle.

Proof. Statements (1) and (2) are easy corollaries of the construction of
the flow g̃t. To prove Statement (3) we will first show that dg̃t preserves
the subbundles Eua

f . It suffices to check that for any smooth vector

field X ∈ Eua
f and any z ∈ Ω̃R, the Lie bracket [Xg̃(z),X (z)] ∈ Eua

f (z).
Indeed, we have

Xg̃(z) =
∂

∂τ
+ βψ̃(z)

∂

∂θ
=

∂

∂τ
+ βψ̃(z)

(
−a

∂

∂u
+ u

∂

∂a

)
,

and the direct calculation yields
[
Xg̃,

∂

∂ω

]
= β

(
∂(aψ̃)

∂ω

∂

∂u
− ∂(uψ̃)

∂ω

∂

∂a

)
∈ Eua

f , ω = u, a.

Since dg̃t preserves the subbundle Eua
f , it also preserves the subbundles

Euab
f and Euabτ

f . Next, consider the variational differential equations

d

dt
f t = DXfdf

t,
d

dt
g̃t = DXg̃dg̃t.
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The determinants along Eω
f with ω = ua, uab, uabτ satisfy

d

dt
det(df t|Eω

f ) = div(Xf |Eω
f ) det(df t|Eω

f ),

d

dt
det(dg̃t|Eω

f ) = div(Xg̃|Eω
f ) det(dg̃t|Eω

f ).

(4.9)

Direct calculations show that X̃R = Xg̃ − Xf is divergence free along
Eω

f and thus div(Xf |Eω
f ) = div(Xg̃|Eω

f ). Therefore, using (4.9) and the

fact that det(dg0|Eω
f ) = det(df0|Eω

f ) = 1 we find that

det(dg̃t|Eω
f (z)) = det(df t|Eω

f (z))

and Statement (3) follows.
It remains to prove Statements (4) and (5). We need the following

lemma showing that Π0 is a global cross-section for the flow g̃t|N ×U0.

Lemma 4.3. Given z ∈ B, the r-, s-, b- and τ - coordinates of g̃t(z)

and f t(z) are the same for t ∈ [0, 1/2]. Consequently, g̃
1
2 (B) = f

1
2 (B)

and Π0 is a global cross-section for the flow g̃t|N × U0.

Proof of the lemma. Let us compare the orbit segments of g̃t(z) and
f t(z) for t ∈ [0, 1/2]. Note that for any smooth function ϕ and any
vector field X we have that

d

dt
ϕ(F t(z)) = LXϕ|F t(z),

where LX (·) is the Lie derivative and F t is the flow that is generated
by X . This implies that for ω = r, s, b,

d

dt
τ(g̃t(z)) = LXg̃

τ =
∂τ

∂τ
+ βψ̃(g̃t(z))

∂τ

∂θ
= 1 = LXf

τ =
d

dt
τ(f t(z)),

d

dt
ω(g̃t(z)) = LXg̃

ω =
∂ω

∂τ
+ βψ̃(g̃t(z))

∂ω

∂θ
= 0 = LXf

ω =
d

dt
ω(f t(z)).

Under the same initial condition at t = 0, we get that the r-, s-, b-
and τ -coordinates of g̃t(z) and f t(z) are the same. Since B has the
cylindrical structure, we obtain that g̃t(z) ∈ B × τ(f t(z)) = B × {t}.
In particular, g̃

1
2 (B) = f

1
2 (B) = B × {1

2
}. Since Xg̃ = Xf outside

Ω̃R = B × [0, 1/2], we have that g̃1(Π0) = f 1(Π0) = Π0. In other
words, Π0 is also a global cross-section for g̃t|N × U0. ¤

It follows from the lemma that Π0 is a global cross-section for the
flow g̃t|N × U0 and the time-1 map g̃1 restricted to Π0 is the Poincaré
return map of g̃t on Π0. Therefore, (4.8) is equivalent to

(4.10) L4(G̃) = 0 < L1(G̃) < L2(G̃) = L3(G̃),
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where G̃ = G̃β = g̃1|Π0. In fact, by (4.7), we have that Lk(G̃) =
Lk(f

1|Π0) for k = 2, 3, 4, and thus we only need to show that

(4.11) L1(G̃) < L1(f
1|Π0).

To this end we will use the following lemma.

Lemma 4.4. For all z ∈ Π0 the derivative of G̃ = g̃1|Π0 along Eua
f

has the form

(4.12) dG̃β(z)|Eua
f (z) =

(
ηA(β, z) ηB(β, z)
C(β, z) D(β, z)

)
,

where

A = A(β, z) = 1− βrσr sin θ cos θ − β2σ2

2
− β2rσσr cos2 θ + O(β3),

B = B(β, z) = −βσ − βrσr sin2 θ − β2rσσr sin θ cos θ + O(β3),

C = C(β, z) = βσ + βrσr cos2 θ − β2rσσr sin θ cos θ + O(β3),

D = D(β, z) = 1 + βrσr sin θ cos θ − β2σ2

2
− β2rσσr sin2 θ + O(β3).

Proof of the lemma. The desired relation (4.12) is apparent for z ∈
Π0\B since G̃ = f 1 and σ = 0 on Π0\B. Given z = (r, θ, 0, s, b) ∈ B
in the ua-cylindrical coordinate, by Lemma 4.3, we have that g̃t(z) =

(r, θ + θ(t), t, s, b) where θ(t) = β
∫ t

0
ψ̃(g̃τ (z))dτ for 0 ≤ t ≤ 1/2. In

particular, the coordinate of g̃
1
2 (z) is (r, θ + βσ, 1/2, s, b), where

σ = σ(r, s, b) =
1

4
ψ

(
r2

ε2

)
ψ

(
b

ε

)
ψ

(s

ε

) ∫ 1

−1

ψ(u)du.

Back in the Cartesian coordinate system (u, a, τ, s, b), we obtain that

g̃
1
2 (z) = (u1, a1, 1/2, s, b)

:= (u cos(βσ)− a sin(βσ), u sin(βσ) + a cos(βσ), 1/2, s, b),

and hence,

G̃(z) = g̃1(z) = f
1
2 g̃

1
2 (z) = (u1, a1, 1, s, b) = (ηu1, a1, 0, η

−1s, b).

The last equality follows from (A.1) and the fact that g̃1(z0) = f 1(z0),

where z0 is the center of B. Since G̃ preserves the Eua
f subbundle, we

have that

dG̃β(z)|Eua
f (z) =

(
ηA(β, z) ηB(β, z)
C(β, z) D(β, z)

)
,

where

A(β, z) =
∂u1

∂u
, B(β, z) =

∂u1

∂a
, C(β, z) =

∂a1

∂u
, D(β, z) =

∂a1

∂a
.
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Then

A =
∂u1

∂u
= cos(βσ) + [−u sin(βσ)− a cos(βσ)]βσu

= cos(βσ)− βr sin(θ + βσ)σr cos θ

= 1− βrσr sin θ cos θ − β2σ2

2
− β2rσσr cos2 θ + O(β3).

Similarly, we can obtain the formulae for B, C and D. ¤

Lemma 4.4 allows us to follow the line of argument in the proof of
Lemma 4.1 in [10] to establish (4.11). For the reader’s convenience we
outline the argument here.

Denote by eβ(z) the unique number such that the vector vβ(z) =
(1, eβ(z))t ∈ Eu

G̃β
(z) for all z ∈ Π0. One can show that

Lβ = L1(G̃β) =

∫

Π0

log η dm(z)

−
∫

Π0

log[D(β, z)− ηB(β, z)eβ(G̃β(z))]dm(z).

Note that L0 = L1(f
1|Π0), and we will show that

(4.13)
dLβ

dβ
|β=0 = 0,

d2Lβ

dβ2
|β=0 < 0,

which immediately implies that (4.11) holds for all sufficiently small
β > 0.

To show (4.13) observe that

dLβ

dβ
|β=0 = −

∫

Π0

Dβ|β=0 dm(z) = 0

thus proving the first relation in (4.13). To prove the second relation
note that

d2Lβ

dβ2
|β=0 =

∫

Π0

[(Dβ)2 −Dββ + 2ηBβ
∂

∂β
(eβ(G̃β(z)))]β=0 dm(z).

This integral can be written as

(4.14)

∫

Π0

[(Dβ(0, z))2 −Dββ(0, z) + 2ηBβ(0, z)Cβ(0, z)] dm(z)

+

∫

Π0

∞∑
i=1

1

ηi
2Bβ(0, z)Cβ(0, f−i(z)) dm(z).
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The first term in (4.14) is bounded from above by

−(1− ε)

∫

Π0

σ2dm(z)− 1

8

∫

Π0

r2σ2
rdm(z).

To estimate the second term in (4.14) note that∫

Π0

2Bβ(0, z)Cβ(0, f−i(z))dm(z) ≤ 4

∫

Π0

(σ2 + r2σ2
r) dm(z)

and that Bβ(0, z)Cβ(0, f−i(z)) = 0 for all z ∈ Π0\B and all i. More-
over, Bβ(0, z)Cβ(0, f−i(z)) = 0 for every z ∈ B and i = 1, . . . , N0 − 1
since f i(B) ∩ B = ∅. This allows us to take N0 > 0 large enough to
ensure that the second term is bounded by

1

10

∫

B

(σ2 + r2σ2
r) dm(z).

Hence,

d2Lβ

dβ2
|β=0 ≤ −(

9

10
− ε)

∫

Π0

σ2dm(z)− 1

40

∫

Π0

r2σ2
rdm(z) < 0.

This completes the proof of the inequality (4.11) thus guaranteeing
that for any sufficiently small λ > 0 the level set

Π = {z ∈ Π0 : λ1(z, G̃) ≥ λ2(z, G̃) > λ}
has positive volume. It is also invariant under G̃. Since f i(B)∩B = ∅
for i = 1, . . . , N0, we obtain that the sets g̃i(Π ∩ B) = Π ∩ g̃i(B) =
Π ∩ f i(B) corresponding to different i are pairwise disjoint subsets of
Π. This implies that

m(Π) ≥ N0m(Π ∩B) ≥ 20k0m(Π ∩B) > 0

thus completing the proof of Proposition 4.2. ¤

4.2. Construction of the flow gt. We perturb the flow g̃t to a flow
gt by adding a vector field XR to the vector field Xg̃. We obtain XR

as a sum of rotational vector fields in the ab-direction along several
pairwise disjoint tubes so that the total rotation along an orbit that
passes through these tubes is π/2. This ensures positive Lyapunov
exponents along the Euab

f subbundle for the flow gt.
Note that there is M0 > 0 such that for any flow F t that is sufficiently

C1-close to the flow f t

(4.15) ‖F 1 − f 1‖C1 ≤ M0‖XF −Xf‖C1 .

According to Lemma B.5, M0 depends only on the Riemannian metric
and the start-up flow f t.
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Let the number λ > 0 and the subset Π ⊂ Π0 be as in Statement (5)
of Proposition 4.2. Given K > 0, let

(4.16)
Λ′ = Λ′(K) = {z ∈ Π :

∣∣∣∣
1

k
log ‖dg̃k(z, v)‖ − λ

∣∣∣∣ ≤ 0.1λ,

for all v ∈ Eua
f (z), ‖v‖ = 1 and all |k| ≥ 0.5K}

and

(4.17) Λ = Λ(K) =

k0−1⋂
i=0

g̃−iΛ′(K),

where k0 > 0 is a number which will be defined later (see Lemma 4.5).
Since m(Λ′(K)) → m(Π) as K →∞ and hence, m(Λ(K)) → m(Π) as
K →∞, one can choose K so large that

Kλ ≥ max{5k0λ, 10 log 2,−10k0 log(1−M0δg)},(4.18)

λm(Π) + 40 log(1−M0δg)m(Π\Λ) > 0,(4.19)

20m(Π\Λ) ≤ m(Π).(4.20)

Set

(4.21) Λ∗ = Λ\
k0−1⋃
i=0

g̃−i(ProjΠ0
(Ω0 ∪ Ω̃R)),

where Ω0 and Ω̃R are given by (4.4) and (4.5) respectively. If the
number ν is chosen small enough, Statement (5) of Proposition 4.2,
allows us to assume that

m(ProjΠ0
Ω0 ∩ Π) ≤ m(Π)/20k0,

m(ProjΠ0
Ω̃R ∩ Π) = m(B ∩ Π) ≤ m(Π)/20k0.

(4.22)

Combining (4.20), (4.21) and (4.22), we find that

(4.23) m(Λ∗) ≥ 0.8m(Π).

By Statement (5) of Proposition 4.2, the set Π is invariant under the
time-1 map of the flow g̃t.

We will approximate the set Π by constructing an appropriate Rokhlin-
Halmos tower (see [11]) for the map g̃1. More precisely, we choose a
measurable subset Γ′ ⊂ Π such that the sets g̃i(Γ′) are pairwise disjoint
for −K ≤ i ≤ 6K + k0 − 1 and

(4.24) m

(
6K+k0−1⋃

i=−K

g̃iΓ′
)
≥ 0.9m(Π).
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Consider the set Γ0 of first entries of orbits {g̃i(z)}5K−1
i=0 (with z ∈ Γ′)

to the set Λ∗. More precisely, set

Γ0 = {g̃j(z) : z ∈ Γ′, 0 ≤ j ≤ 5K−1, g̃j(z) ∈ Λ∗, g̃i(z) 6∈ Λ∗ for i < j}
and let

(4.25) Γi = g̃i(Γ0), Γ =

K+k0−1⋃
i=−K

Γi.

Clearly, the sets {Γi} are pairwise disjoint for −K ≤ i ≤ K + k0 − 1.
We then approximate Γ0 by finitely many disjoint ab-cylinders B0j of
the form

B0j = Bu(zj, r
′
j)×Bs(zj, r

′′
j )×Bab(zj, rj)

= {(uj, sj, aj, bj) : |uj| ≤ r′j, |sj| ≤ r′′j , a
2
j + b2

j ≤ r2
j}

= {(uj, sj, ρj, ϕj) : |uj| ≤ r′j, |sj| ≤ r′′j , ρj ≤ rj},
where r′j, r

′′
j , rj > 0 for j = 1, . . . , J and zj = (uj, sj, aj, bj) = (uj, sj, ρj, ϕj) ∈

Π0 is the center of B0j. For i = −K, . . . ,K + k0 − 1 set

(4.26) Bij = g̃i(B0j), ∆i =
J⋃

j=1

Bij.

We can choose the sets B0j in such a way that

(1) Bij ∩ Bkl = ∅ for (i, j) 6= (k, l) with −K ≤ i, k ≤ K + k0 − 1
and 1 ≤ j, l ≤ J ;

(2) for each i = 0, 1, . . . , k0

(4.27) m(Γi4∆i) ≤ 0.05 max{m(Γi),m(∆i)};
(3) Bij ∩ ProjΠ0

(Ω0 ∪ Ω̃R) = ∅ for 0 ≤ i ≤ k0 − 1, 1 ≤ j ≤ J .

The last property implies that the set Bij = g̃i(B0j) = f i(B0j) lies in
a neighborhood around f i(zj) and hence is still an ab-cylinder if the
numbers rj, r

′
j, r

′′
j are chosen small enough.

We need the following lemma.

Lemma 4.5. Given δ > 0, there is θ0 = θ0(δ) > 0 such that for
any θ ∈ [0, θ0] and any tube T = C × [0, 1/2], where C ⊂ Π0 is an
ab-cylinder of the form

C = Bu(z, r′)×Bs(z, r′′)×Bab(z, r),

there exist a subtube T ′ = C ′ × [1/40, 19/40] ⊂ T , where C ′ ⊂ C is a
cylinder of the form

C ′ = Bu(z, r′0)×Bs(z, r′′0)×Bab(z, r0),

and a C∞ vector field X = XT,θ on M such that



20 JIANYU CHEN, HUYI HU, AND YAKOV PESIN

(1) X is a rotation vector field with speed θ in the ab-plane, i.e.,

X (z) = X (u, s, a, b, τ) = θ(−b
∂

∂a
+ a

∂

∂b
), z ∈ T ′;

(2) X = 0 outside T ;
(3) m(C ′)/m(C) ≥ 0.75;
(4) r0/r, r′0/r

′, r′′0/r
′′ ≥ 0.9;

(5) ‖X‖C1 < δ.

Moreover, let k0 > 0 be such that

(4.28) θ̄ :=
2π

k0

∫ 1

−1
ψ(t)dt

< θ0(δg/2),

where ψ(t) is the function in Section 4.1 and δg is given by Proposition
4.1. Then ‖XT,θ̄‖ ≤ δg/2.

Proof of the lemma. Given 0 < α < 1, we define a subcylinder

Cα = Bu(z, αr′)×Bs(z, αr′′)×Bab(z, αr) ⊂ C.

By (A.2), the volume of Cα and C is induced by the flat metric du2 +
ds2 + da2 + db2, and hence the ratio m(Cα)/m(C) depends only on α
but not on the cylinder C. It follows that m(Cα)/m(C) → 1 as α → 1.

Fix α > 0.9 such that m(Cα)/m(C) > 0.75, and set C ′ = Cα. Let
us choose a C∞ function ξ : R→ [0, 1] satisfying:

(1) ξ = 1 on (−α, α);
(2) ξ > 0 on (−1, 1) and ξ = 0 outside (−1, 1);
(3) ‖ξ‖C1 ≤ 2

1−α
.

We introduce the ab-cylindrical coordinate (u, s, ρ, ϕ), and define a C∞

rotational vector field X = XT,θ by the formula

(4.29) XT,θ(z) =





θξ̃(z)
∂

∂ϕ
, z ∈ T,

0, z ∈M\T,

where

ξ̃(z) = ξ̃(u, s, ρ, ξ, τ) = ξ(
u

r′
)ξ(

s

r′′
)ξ(

ρ

r
)ψ(

τ − 1/4

1/4
)

and ψ is the smooth function in Section 4.1. Note that ‖ξ̃ ∂

∂ϕ
‖ ≤ c

where c > 0 depends only on α but not on the choice of the cylinder
C. Thus for any δ > 0, there is θ0 = θ0(δ) > 0 such that ‖X‖C1 < δ
for any θ ∈ [0, θ0]. ¤
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Consider the tubes Tij = Bij × [0, 1/2]. Applying Lemma 4.5 with
T = Tij, we obtain a vector field XR,ij = XTij ,θ̄ such that ‖XR,ij‖ ≤ δg/2,

where θ̄ is given by (4.28). Moreover, there is a sub-cylinder B′
ij ⊂ Bij

such that m(B′
ij)/m(Bij) ≥ 0.75. Furthermore, by Lemma 4.5, we may

assume that g̃i(B′
0j) = B′

ij for i = 1, . . . , k0. Finally, let

(4.30) ∆′
i =

J⋃
j=1

B′
ij, ΩR =

k0−1⋃
i=0

J⋃
j=1

Tij,

and define the vector field XR by

(4.31) XR =

k0−1∑
i=0

J∑
j=1

XR,ij.

We obtain a new flow gt generated by the vector field Xg = Xg̃ + XR.
Clearly, gt is a C∞ volume preserving flow since XR is divergence free.
We will show that the flow gt has all the desired properties stated in
Proposition 4.1.

Proof of Proposition 4.1. Statements (1) and (2) follow immediately
from the construction of the flow gt and Statement (3) can be proved
in the same way as Statement (3) of Proposition 4.2.

We will prove Statement (4). We need the following statement whose
proof is very similar to the proof of Lemma 4.3.

Lemma 4.6. Given z ∈ Bij, the ρj-, uj-, sj- and τ - coordinates of

gt(z) and f t(z) are the same for t ∈ [0, 1/2]. Consequently, g
1
2 (Bij) =

f
1
2 (Bij) and hence Π0 is a global cross-section for the flow gt|N × U0.

By the lemma, the time-1 map g1 restricted to Π0 is the Poincaré
return map of gt on Π0. Therefore, (4.2) is equivalent to

(4.32) L4(G) = 0 < L1(G) < L2(G) < L3(G),

where G = g1|Π0. In fact, by (4.1) and (4.7) we have for k = 3, 4 that

Lk(G) = Lk(f
1|Π0) = Lk(g̃

1|Π0) = Lk(G̃).

Hence, we only need to show that

(4.33) L2(G) < L3(G).

We follow the argument in Section 4.2 in [10] and give a sketch of the
proof of (4.33).
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Set ∆∗
0 = ∆′

0 ∩ Λ, where ∆′
0 and Λ are given by (4.30) and (4.17)

respectively, and

U1 = G−K∆∗
0, U2 = ∆0\∆∗

0,

U3 = Gk0((∆0 ∩ Λ)\∆∗
0), U4 = Gk0(∆0\Λ).

Consider the first return map G = GR on the set

U = U1 ∪ U2 ∪ U3 ∪ U4 ⊂ Π0,

where R = R(z) is the first return time of z ∈ U to U under G. Note
that the flow gt preserves the Euab

f -subbundle, and so does G.
We intend to show that

(4.34)∫

U

(
log ‖ ∧3 (dG|Euab

f (z))‖ − log ‖ ∧2 (dG|Euab
f (z))‖) dm(z) > 0,

where

∧k(dG|Euab
f (z)) : ∧k(Euab

f (z)) → ∧k(Euab
f (z))

is the k-th exterior power of dG|Euab
f (z). Indeed, assuming that (4.34)

holds, consider the G-invariant set

Π′ =
∞⋃

i=−∞
Gi(U) ⊂ Π0.

For k = 2, 3 we have that
∫

U

log ‖ ∧k (dG|Euab
f (z))‖dm(z) =

∫

Π′
log ‖ ∧k (dG|Euab

f (z))‖dm(z)

=

∫

Π′

k∑
i=1

λi(z, G)dm(z) = Lk(G|Π′)

and hence, (4.34) implies that L2(G|Π′) < L3(G|Π′). Since G = G̃
outside Π′, we obtain that L2(G) < L3(G).

To show (4.34) we split the integral over U into four integrals I1,
I2, I3 and I4 over the domains U1, U2, U3 and U4 respectively, and we
obtain lower bounds for each of them. Namely, we will show that

(4.35)
I1 ≥ 0.85Kλ · 0.7m(∆0), I2 ≥k0 log(1−M0δg) · 0.25m(∆0),

I3 ≥ 0, I4 ≥2 log(1−M0δg)m(Π\Λ).

The lower bounds for I2, I3 and I4 can be obtained using arguments in
the proof of Lemma 4.2 in [10]. However, the proof of the lower bound
for I1 in our continuous-time case requires substantial changes and we
will present it here. We need the following lemma.
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Lemma 4.7. Let z ∈ U1 = G−K(∆∗
0). Then for any v ∈ Euab

f (z), we
have

(4.36) ‖dzG(v)‖ ≥
√

2

2
‖v‖e0.9Kλ

Proof of the lemma. Note that for any z ∈ G−K(∆∗
0), the first return

time R(z) is at least 2K + k0. Set

z1 = GK(z), z2 = Gk0(z1) = GK+k0(z), z3 = G(z) = GR(z)(z).

Since the orbit segments {gt(z)}0≤t≤K from z to z1 and {gt(z2)}0≤t≤R(z)−K−k0

from z2 to z3 are outside the set ΩR, we have that

z1 = GK(z) = G̃K(z), z3 = GR(z)−K−k0(z2) = G̃R(z)−K−k0(z2).

On the other hand, since z1 ∈ ∆∗
0 = ∆′

0 ∩ Λ, we can assume that
z ∈ B′

0j for some j, and by our construction, we have Gi(z1) ∈ B′
ij

for i = 1, . . . , k0− 1, and every cylinder B′
ij is inside a local coordinate

neighborhood of its center. Therefore, we write z1 = (u, s, a, b, 0) ∈ B′
0j,

and apply the similar arguments as in the proof of Lemma 4.4, we have
that

G(z1) = f
1
2 g

1
2 (z1) = f

1
2 (u, s, a cos φ− b sin φ, a sin φ + b cos φ, 1/2)

= (u, s, a cos φ− b sin φ, a sin φ + b cos φ, 1)

= (ηu, η−1s, a cos φ− b sin φ, a sin φ + b cos φ, 0),

where

φ =
1

4
θ̄

∫ 1

−1

ψ(t)dt =
π

2k0

.

Repeating this calculation for G1(z1), G
2(z1), . . . , G

k0−1(z1) and observ-
ing that k0φ = π

2
, we obtain that

z2 = Gk0(z1) = (ηk0u, η−k0s, a cos(k0φ)

− b sin(k0φ), a sin(k0φ) + b cos(k0φ), 0)

= (ηk0u, η−k0s,−b, a, 0).

This formula means that dz1G
k0 is non-contracting along the Euab

f sub-

bundle and rotates the vector in Eab
f by the angle π/2.

To obtain (4.36), we write v = vua+vb ∈ Eua
f (z)⊕Eb

f (z) and consider
the following two cases:

(1) if ‖vb‖ ≤
√

2

2
‖v‖, since dzG

K = dzG̃
K and z ∈ G−K∆′

0 ⊂
G̃−KΛ′, by (4.16) and (4.17), we find that

‖dzG
Kv‖ = ‖dzG̃

Kv‖ ≥ ‖dzG̃
Kvua‖ ≥ ‖vua‖e0.9Kλ ≥

√
2

2
‖v‖e0.9Kλ,



24 JIANYU CHEN, HUYI HU, AND YAKOV PESIN

and hence

‖dzGv‖ = ‖dz2G̃R(z)−K−k0dz1G
k0dzG̃

Kv‖ ≥ ‖dzG̃
Kv‖ ≥

√
2

2
‖v‖e0.9Kλ.

(2) if ‖vb‖ ≥
√

2

2
‖v‖, since dz1G

k0 rotates the vector in Eab
f by the

angle π/2, we have

dzG
K+k0vb = dz1G

k0(dzG̃
Kvb) ∈ Eua

f (z2).

Since z2 ∈ Λ′, by (4.16) we obtain

‖dzGv‖ ≥ ‖dzGvb‖ = ‖dz2G̃
R(z)−K−k0dzG

K+k0vb‖

≥ ‖dzG
K+k0vb‖e0.9Kλ ≥

√
2

2
‖v‖e0.9Kλ.

¤

By the lemma and (4.18), we find that

log ‖dzG(v)‖ ≥ 0.9Kλ− 0.5 log 2 + log ‖v‖ ≥ 0.85Kλ + log ‖v‖,
for any z ∈ U1 and v ∈ Euab

f (z). Hence,

log ‖ ∧3 (dG|Euab
f (z))‖ − log ‖ ∧2 (dG|Euab

f (z))‖ ≥ 0.85Kλ.

On the other hand, it is proved in [10] that m(U1) ≥ 0.7m(∆0). There-
fore,

I1 =

∫

U1

(
log ‖ ∧3 (dG|Euab

f (z))‖ − log ‖ ∧2 (dG|Euab
f (z))‖) dm(z)

≥ 0.85Kλ · 0.7m(∆0).

It follows from (4.35) that
∫

U

(
log ‖ ∧3 (dG|Euab

f (z))‖ − log ‖ ∧2 (dG|Euab
f (z))‖)

≥ 0.595λKm(∆0) + 0.25k0 log(1−M0δg)m(∆0)

+ 2 log(1−M0δg)m(Π\Λ)

≥ 0.57λKm(∆0) + 2 log(1−M0δg)m(Π\Λ)

≥ 0.0627λm(Π)− 0.05λm(Π) = 0.0127λm(Π) > 0.

The last two inequalities follow from (4.18), (4.19) and Sublemma 4.4
in [10] that states that m(∆0) ≥ 0.11K−1m(Π). This completes the
proof of Statement (4) of Proposition 4.1. ¤
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5. Accessibility

Notice that the flow gt has positive central exponents on a set of
positive volume but is not necessarily ergodic. We will perturb gt to a
flow ht that is pointwise partially hyperbolic on the open set U and still
has positive central exponents. Furthermore, we will ensure that the
flow ht possesses two transversal strongly stable and unstable foliations
W s

h and W u
h of U and satisfies the accessibility property on U via these

two foliations. In view of Theorem 2.4, ht is indeed the desired flow in
our Main Theorem.

We will follow the arguments in [10] and make some necessary mod-
ifications for the flow case. We choose two sequences of open subsets

Un, Ũn ⊂ U , n = 1, 2, . . . such that

(A4) U0 ⊂ Ũ1;

(A5) Ũn ⊂ Ũn ⊂ Un ⊂ Un ⊂ U and
⋃

n≥1 Un = U ;

(A6) Ũn and Un are connected sets for any n ≥ 1.

Set

(5.1) Un = N × Un, Ũn = N × Ũn.

We will construct a sequence of flows {ht
n}n≥0, whose limit is the desired

flow ht. The goal of this section is to prove the following statement.

Proposition 5.1. Given δh > 0, one can find a sequence of positive
numbers {δn} with δn ≤ min{δh/2

n, d(C, Un)2} as well as a sequence
of C∞ divergence free vector fields Xn on M, generating a sequence of
volume preserving flows ht

n, such that for n ≥ 0

(1) X0 = Xg, and hence ht
0 = gt;

(2) ‖Xn+1 −Xn‖Cn+1 ≤ δn;
(3) Xn = Xf on M\Un, and Xn = Xn−1 on Un−2; in particular,

each flow ht
n is a gentle perturbation of f t and hence satisfies

Statements (3)-(5) of Proposition 3.1;
(4) for every z ∈M, we have

Euabτ
hn

(z) = Euabτ
g (z), det(dht

n|Euabτ
hn

(z)) = det(dgt|Euabτ
g (z));

(5) for all z ∈ Uj, j = 1, . . . , n and ω = u, s, c,

∠(Eω
hn

(z), Eω
hn−1

(z)) ≤ δj/2
n−j;

(6) if the number δg in Proposition 4.1 is sufficiently small, then
each flow ht

n is stably accessible in the following sense: Let a

flow h̃t be a gentle perturbation of the flow f t, and assume that
∠(Eω

h̃
(z), Eω

hn
(z)) ≤ δn for all z ∈ Un and ω = u, s, c. Then any
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two points z1, z2 ∈ Ũn are accessible via a (u, s)h̃t-path in U . In

particular, ht
n has the accessibility property in Ũn.

Statements (1)–(3) imply that the limit vector field Xh = lim
n→∞

Xn

exists. Moreover,

‖Xn −Xk‖Ck+1 ≤
n−1∑

j=k

‖Xj+1 −Xj‖Cj+1 ≤
n−1∑

j=k

δj ≤ δh/2
k−1

for any n ≥ k ≥ 0. It follows that Xn converges to Xh uniformly in
the Ck+1 topology. Since k is arbitrary, Xh is a C∞ vector field. In the
following section we will show that the flow ht generated by Xh has all
the desired properties.

5.1. Construction of the sets Un and Ũn. We view the 2-torus Y
as the square [0, 8]× [0, 8] whose opposite sides are identified. For each
n ≥ 1, consider the partition of Y into squares

Ẑ
(n)
ij =

[
i

2n
,
i + 1

2n

]
×

[
j

2n
,
j + 1

2n

]
, i, j = 0, 1, . . . , 2n+3 − 1.

Without loss of generality we will assume that the square U0, con-

structed in Section 3, is contained in some Ẑ
(1)
i0j0

so that

d(U0, Ẑ
(1)
i0j0

) ≥ 1/24 and d(C, Ẑ
(1)
i0j0

) > 2,

where C is the Cantor set constructed in Section 3. Consider the open
squares

Z
(n)
ij =

(
i

2n
− 1

2n+2
,
i + 1

2n
+

1

2n+2

)
×

(
j

2n
− 1

2n+2
,
j + 1

2n
+

1

2n+2

)
,

Z̃
(n)
ij =

(
i

2n
− 1

2n+5
,
i + 1

2n
+

1

2n+5

)
×

(
j

2n
− 1

2n+5
,
j + 1

2n
+

1

2n+5

)
.

Clearly, these squares have the same center as Ẑ
(n)
ij and Ẑ

(n)
ij ⊂ Z̃

(n)
ij ⊂

Z
(n)
ij . For n ≥ 1 consider the set

Yn = {y ∈ Y : d(y, C) ≥ 1/2n−2}.
Since U0 ⊂ Y1, we let Y ′

n be the connected component of Yn that
contains U0. Finally, consider the sets

Û1 = Ẑ
(1)
i0j0

, U1 = Z
(1)
i0j0

and Ũ1 = Z̃
(1)
i0j0

,

and for n > 1,

Ûn =
⋃

Ẑ
(n)
ij ∩Y ′n 6=∅

Ẑ
(n)
ij , Un =

⋃

Ẑ
(n)
ij ∩Y ′n 6=∅

Z
(n)
ij , Ũn =

⋃

Ẑ
(n)
ij ∩Y ′n 6=∅

Z̃
(n)
ij .
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It is clear that the sets Un and Ũn satisfy Conditions (A4)-(A6).

Let Ẑn = {Ẑ(n)
ij : Ẑ

(n)
ij ⊂ Ûn\Ûn−1} and Zn = {Z(n)

ij : Ẑ
(n)
ij ⊂ Ẑn}.

Relabeling elements of Zn we will denote them by Z
(n)
1 , . . . , Z

(n)
kn

, and

we will use the notations Ẑ
(n)
l and Z̃

(n)
l for the corresponding squares

contained in Z
(n)
l . Thus we have

Un = Un−1 ∪ (
kn⋃

l=1

Z
(n)
l ).

Clearly the collection of sets {Ẑ(n)
l : n = 1, 2, . . . , l = 1, . . . , kn} forms

a countable partition of U up to a set of zero volume while the collec-

tion of sets {Z(n)
l : n = 1, 2, . . . , l = 1, . . . , kn} forms a cover of U of

multiplicity at most 4. The following lemma is proved in [10].

Lemma 5.2. There is a labeling of the squares {Z(n)
l } by integers from

1 to 8 such that for any y ∈ U , the labels of the squares Z
(n)
l containing

y are all different. In particular, Z
(1)
1 can be labeled by 1.

5.2. Construction of the vector fields Xn. The construction is sim-
ilar to the one in Section 5.2 in [10], with a slightly modification on
the choice of the collection of periodic points. We need the following
preparations before we construct the vector fields Xn.

Let qj, j = 1, . . . , 8 be eight periodic points of the Anosov auto-
morphism A whose orbits are pairwise disjoint. There is ε0 > 0 such
that

BX(Aiqj, ε0) ∩BX(Aiqj′ , ε0) = ∅
whenever j 6= j′ and i = −1, 0, 1. For each qj we choose three periodic
points pi

j ∈ BX(Aiqj, ε0/3) for A, i = a, b, τ , whose orbits are pairwise

disjoint. Denote by [qj, p
i
j] = V u

A (qj) ∩ V s
A(pi

j), i = a, b, τ , where V s
A

and V u
A are the stable and unstable local manifolds respectively. For

i = a, b, τ and j = 1, . . . , 8, consider the closed quadrilateral (u, s)A-
path γi

j with the collection of points qj , [qj, p
i
j], pi

j, [pi
j, qj], and qj.

Without loss of generality, we will assume that q1 = q, pi
1 = pi and

γi
1 = γi for i = a, b, τ where q, pi and γi are chosen as in the beginning

of Section 4.1.
For j = 1, . . . , 8 and i = a, b, τ , we have

Aι(qj)(qj) = qj, Aι(pi
j)(pi

j) = pi
j,

where ι(qj) and ι(pi
j) are periods of qj and pi

j respectively. There exists

ᾱ(j, i) > 0 such that for any α ∈ Y = T2 with ‖α‖ ≤ ᾱ(j, i), the
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Anosov affine map A + α has a ι(qj)-periodic point qj(α) close to qj

and a ι(pi
j)-periodic point pi

j(α) close to pi
j. Moreover, we can choose

the number ᾱ (in Condition (α3) at the beginning of Section 3) to be
less than min{ᾱ(j, i) : j = 1, . . . , 8, i = a, b, τ} such that any two points
from the set of periodic points

{qj(α), pi
j(α) : j = 1, . . . , 8, i = a, b, τ, ‖α‖ ≤ ᾱ}

are disjoint.

Given n ≥ 1 and l = 1, . . . , kn, let j be the label of Z
(n)
l in Lemma

5.2, and y0(n, l) = (a0(n, l), b0(n, l)) the center of Z
(n)
l . We take the

points associated to Z
(n)
l as follows:

(5.2) q(n, l) = qj(α(y0(n, l))), pi(n, l) = pi
j(α(y0(n, l))),

where i = a, b, τ . Recall that η is the expanding rate of A along its
unstable direction, and the function κ : Y → R is given in the beginning

of Section 3. For n ≥ 1 let us choose a square Z
(n)
l ∈ Zn. In the case

n > 1, we write for simplicity q = q(n, l) and pi = pi(n, l) and we let

η−(n, l) = min{ηκ(y) : y ∈ Z
(n)
l }. Define the numbers

(5.3)

αi
u = αi

u(n, l) = d(pi, [pi, q]),

αi
s = αi

s(n, l) = d(pi, [q, pi]),

ᾰi
u = ᾰi

u(n, l) = αi
u(n, l)/η−(n, l),

ᾰi
s = ᾰi

s(n, l) = αi
s(n, l)/η−(n, l)

and the rectangles in X

Πi(n, l) = BF u(pi, αi
u)×BF s(pi, αi

s),

Π̆i(n, l) = BF u(pi, ᾰi
u)×BF s(pi, ᾰi

s).

We will assume that the rectangles Πi(n, l), n ≥ 1, l = 1, . . . , kn and
i = a, b, τ are pairwise disjoint if the number ᾱ is chosen sufficiently
small. Finally, we let

(5.4)
ετ = ετ (n, l) = min{κ(y)/2 : y ∈ Z

(n)
l },

ε̆τ = ε̆τ (n, l) = 5ετ (n, l)/6.

In the case n = 1, we have Z
(1)
1 = U1 and q(1, 1) = q1, pi(1, 1) = pi

1

since the function α = 0 on U1. Choose liu and lis such that

A−liu([pi
1, q1]) ∈ BX(pi

1, ν/2), Alis([q1, p
i
1]) ∈ BX(pi

1, ν/2),

where ν is given in (4.4). Then we set

αi
u = αi

u(1, 1) = d(pi
1, A

−liu [pi
1, q1]), αi

s = αi
s(1, 1) = d(pi

1, A
lis [q1, p

i
1])
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with other quantities and sets to be defined in a similar way.

In addition to the squares Ẑ
(n)
ij , Z̃

(n)
ij and Z

(n)
ij constructed in the

previous subsection, we need to consider the following squares:

Z̆
(n)
ij =

(
i

2n
− 1

2n+3
,
i + 1

2n
+

1

2n+3

)
×

(
j

2n
− 1

2n+3
,
j + 1

2n
+

1

2n+3

)
;

Z̄
(n)
ij =

(
i

2n
− 1

2n+4
,
i + 1

2n
+

1

2n+4

)
×

(
j

2n
− 1

2n+4
,
j + 1

2n
+

1

2n+4

)

as well as the following intervals:

In = Jn =

(
− 3

2n+2
,

3

2n+2

)
, Ĭn = J̆n =

(
− 5

2n+3
,

5

2n+3

)
,

and

K = (−1/4, 1 + 1/4), K̆ = (−1/8, 1 + 1/8), K̄ = (−1/16, 1 + 1/16).

Note that we have that

Ẑ
(n)
ij ⊂ Z̃

(n)
ij ⊂ Z̄

(n)
ij ⊂ Z̆

(n)
ij ⊂ Z

(n)
ij

and similar relations for In and Jn.
Fix n ≥ 1 and l = 1, . . . , kn, and write αi

ω = αi
ω(n, l), ᾰi

ω = ᾰi
ω(n, l)

for i = a, b, τ , ω = u, s, and ετ = ετ (n, l), ε̆τ = ε̆τ (n, l). We choose
functions as follows:

(1) φi and ψi are C∞ functions on R such that
· φi =const. on (−ᾰi

u, ᾰ
i
u) and ψi =const. on (−ᾰi

s, ᾰ
i
s);

· φi(r) = 0 for |r| ≥ αi
u, ψi(r) = 0 for |r| ≥ αi

s;

· ∫ ±αi
u

0
φi(r)dr = 0, and ψi(r) > 0 for any |r| < αi

s;
· ‖φi‖Cn , ‖ψi‖Cn ≤ 1.

(2) ξτ and ξY are C∞ functions supported on K and In respectively
such that
· ξτ =const. on K̆, and ξY =const. on Ĭn;
· ξτ (r) > 0 for r ∈ K, and ξY (r) > 0 for r ∈ In;
· ξτ (r) = 0 for r 6∈ K, and ξY (r) = 0 for r 6∈ In;
· ‖ξτ‖Cn , ‖ξY ‖Cn ≤ 1.

(3) ζτ and ζY are C∞ functions supported on (−ετ , ετ ) and In re-
spectively such that
· ζτ =const. on (−ε̆τ , ε̆τ ), and ζY =const. on Ĭn;
· ζτ (r) > 0 for r ∈ (−ετ , ετ ), and ζY (r) > 0 for r ∈ In;
· ζτ (r) = 0 for r 6∈ (−ετ , ετ ), and ζY (r) = 0 for r 6∈ In;
· ‖ζτ‖Cn , ‖ζY ‖Cn ≤ 1.
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Now we are ready to construct the sequence of vector fields Xn. Given
n ≥ 1, l = 1, . . . , kn and i = a, b, τ , take the Cartesian coordinate sys-
tem z = (u, s, τ, a, b) = (x, τ, a, b) with the origin at (pi(n, l), 1/2, y0(n, l)).
In this coordinate system the interval K is in the symmetric form
(−3/4, 3/4). Take the boxes for i = a, b

Ωi = Ωi
n,l = {(x, τ, y) : x ∈ Πi(n, l), |τ | ≤ ετ (n, l), y ∈ Z

(n)
l },

and

Ωτ = Ωτ
n,l = {(x, τ, y) : x ∈ Πτ (n, l), τ ∈ K, y ∈ Z

(n)
l }.

By the construction of the rectangles Πi(n, l), we have that Ωi(n, l) ∩
Ωi′(n′, l′) = ∅ if (i, n, l) 6= (i′, n′, l′). Similarly, we can choose Ω̆i, i =

a, b, τ by taking Π̆i, ε̆τ , K̆ and Z̆
(n)
l . Next we define three divergence

free vector fields

X a = X a
n,l = ζY (b)ζτ (τ)ψa(s)

(
−ξ′Y (a)

∫ u

0

φa(r)dr, 0, 0, ξY (a)φa(u), 0
)
,

X b = X b
n,l = ζY (a)ζτ (τ)ψb(s)

(
−ξ′Y (b)

∫ u

0

φb(r)dr, 0, 0, 0, ξY (b)φb(u)
)
,

X τ = X τ
n,l = ζY (a)ζY (b)ψτ (s)

(
−ξ′τ (τ)

∫ u

0

φτ (r)dr, 0, ξτ (τ)φτ (u), 0, 0
)
.

Clearly each vector field X i
n,l vanishes outside the corresponding box

Ωi
n,l, and it is constant on the smaller box Ω̆i

n,l. Finally, we set

(5.5) X̂n =
kn∑

l=1

(X a
n,l + X b

n,l + X τ
n,l), Xn = Xg +

n∑

k=1

βkX̂k,

where the sequence of small positive numbers {βn} is determined in-
ductively to ensure Statements (2) and (5) of Proposition 5.1. Let ht

n

be the flow on M generated by the vector fields Xn.

5.3. Proof of Proposition 5.1. Statements (1)-(4) follow directly
from our construction. It remains to show how to choose the sequence
of positive numbers δn such that ht

n satisfies Statements (5) and (6)
of the proposition. Note that these two statements only concern those
invariant subbundles Eω and foliations W ω, ω = u, s, c, cs, cu, which
are the same for the flow and its time-1 map. Therefore, the choice of
δn and related arguments are similar to the diffeomorphism case in [10].
We will outline the proof here.

For any gentle perturbation ht
\ of f t (see Definition 2.1), we de-

note by W c
h\

(z) the center manifold of ht
\ at the point z ∈ M. Given

a square Z
(n)
l with the center y0(n, l), let q(n, l), pi(n, l), i = a, b, τ
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be the associated periodic points given by (5.2), and z0 = z0(n, l) =

(q(n, l), 1/2, y0(n, l)). We denote by W c
h\

(z0, K, Z
(n)
l ) the connected

component of W c
h\

(z0) ∩ (X × K × Z
(n)
l ) that contains z0. We will

also use similar notations W c
h\

(z0, K̆, Z̆
(n)
l ), etc.

Next we will introduce two important families of maps Θ and Ψ for
a gentle perturbation ht

\ of f t.
Fix n ≥ 1 and l = 1, . . . , kn, we take the collection of points q =

q(n, l), pi = pi(n, l), i = a, b, τ . Consider a quadrilateral (u, s)ht
\
-path

γ̂i = {z1, . . . , z5} with initial point z1 defined by

(5.6)

z2 = V u
h\

(z1) ∩ V cs
h\

(pi, 1/2, a0, b0),

z3 = V s
h\

(z2) ∩ V cu
h\

(pi, 1/2, a0, b0),

z4 = V u
h\

(z3) ∩ V cs
h\

(z1),

z5 = V s
h\

(z4) ∩ V cu
h\

(z1).

This path defines a map Θi = Θi
n,l,h\

given by Θi(z1) = z5. It is

easy to see that z5 ∈ V c
h\

(z1), and Θi maps W c
h\

(z0, K, Z
(n)
l ) into itself.

Reparameterizing the curve on V u
h\

(z1) from z1 to z2 by σ : [0, 1] →
V u

h\
(z1) so that σ(0) = z1 and σ(1) = z2, we obtain a parameterized

family of quadrilaterals γ̂i(ϑ) = {z1(ϑ), . . . , z5(ϑ)}, ϑ ∈ [0, 1], where
z1(ϑ) = z1, z2(ϑ) = σ(ϑ), and zk(ϑ), k = 3, 4, 5 are obtained in the way
similar to (5.6). Then we define Θi

ϑ = Θi
ϑ,n,l,h\

given by Θi
ϑ(z1) = z5(ϑ).

Clearly Θi
0 = Id, Θi

1 = Θi, Θi
ϑ maps W c

h\
(z0, K, Z

(n)
l ) into W c

h\
(z0) and

depends continuously on ϑ ∈ [0, 1].
On the other hand, given z = ((x, τ), y) ∈ U , there is a (u, s)f t-path

γf (z) connecting z to z′ = ((q, τ), y) whose length does not exceed
2d(x, q). This generates a map Ψf = Ψf,n,l from U to {q} × K × G
given by Ψf (z) = z′. Furthermore, given a gentle perturbation ht

\ of f t

and a point z ∈ Z
(n)
l , we can find a (u, s)h\

-path γh\
(z), which is close

to γf (z) and connects z to a point z′ = z′(ht
\) ∈ W c

h\
(z0, K, Z

(n)
l ). We

can then define Ψh\
= Ψh\,n,l by Ψh\

(z) = z′(ht
\).

Note that the maps Ψh\,n,l, Θi
n,l,h\

and Θi
ϑ,n,l,h\

, i = a, b, τ depend

continuously on ht
\ as long as ht

\ is a gentle perturbation of f t with
ht

\ = f t outside some fixed Un and with ∠(Eω
h\

(z), Eω
f (z)) sufficiently

small for all z ∈ Un and ω = u, s, c. Moreover, the continuity is uniform
with respect to z.



32 JIANYU CHEN, HUYI HU, AND YAKOV PESIN

Given a set Γ ⊂M and a gentle perturbation ht
\ of f t, set

Ah\
(Γ) = {z ∈M : there exists y ∈ Γ such that

y is accessible to z via a (u, s)ht
\
-path}.

For n ≥ 1 denote by εn = min{1/2n+5, ε̆τ (n, l), l = 1, . . . , kn}, where
ε̆τ (n, l) is defined by (5.4).

We now briefly describe how to choose the sequence {δn}. See [10]

for more details. Recall that U1 = Z
(1)
1 , Ũ1 = Z̃

(1)
1 , and U1 = N × U1,

Ũ1 = N × Ũ1. Choose θ0 > 0 such that the families of maps Ψh\

and Θi
h\

are well-defined for any gentle perturbation ht
\ of f t with

∠(Eω
h\

(z), Eω
f (z)) ≤ 2θ0 for ω = u, s, c. We assume that the num-

ber δg in Proposition 4.1 is so small that the flow ht
0 = gt satisfies

∠(Eω
h0

(z), Eω
f (z)) ≤ θ0 and d(Θi

ϑ,1,1,h0
(z), z) ≤ ε1/4 for z ∈ N × U0,

ϑ ∈ [0, 1] and i = a, b, τ .
Now choose θ′1 with 0 < θ′1 ≤ θ0/2 such that d(Ψh\

(z), Ψh0(z)) ≤ 1/28

if ∠(Eω
h\

(z), Eω
h0

(z)) ≤ 2θ′1 for all z ∈ N × Z
(1)
1 . Also choose δ′1 > 0

such that if ‖X1 − X0‖ ≤ δ′1, then ∠(Eω
h1

(z), Eω
h0

(z)) ≤ θ′1. Finally set
θ1 = min{θ′1, θ′′1} and δ1 = min{δ′1, δ′′1 , θ1}, where δ′′1 and θ′′1 are given
by Lemma 5.3 below. We can show

(1) d(Ψh1(z), Ψh0(z)) ≤ 1/28 for all z ∈ N × Z
(1)
1 ;

(2) d(Θi
ϑ,2,l,h1

(z), z) ≤ ε2/4 for all z ∈ W c
h1

(z0(2, l), K, Z
(2)
l ), i =

a, b, τ , ϑ ∈ [0, 1] and l = 1, . . . , k2;

(3) Ah\
(z0(1, 1)) ⊃ W c

h\
(z0(1, 1), K̄, Z̄

(1)
1 ) for any gentle perturba-

tion ht
\ of f t, close to ht

1, with ∠(Eω
h\

(z), Eω
h1

(z)) ≤ θ′1, ω = u, s, c

and z ∈ N × Z
(1)
1 .

Moreover, the above statements imply that Ah\
(z0(1, 1)) ⊃ N × Z̃

(1)
1 ,

in particular, ht
1 has the accessibility property on N × Z̃

(1)
1 .

Proceeding inductively, we can choose δn such that Statements (5)
and (6) of Proposition 5.1 hold. Furthermore, we have for i = a, b, τ ,
ϑ ∈ [0, 1] and l = 1, . . . , kn+1,

(1) d(Ψhn(z), Ψhn−1(z)) ≤ 1/2n+7 for all z ∈ N × Z
(n)
l ;

(2) d(Θi
ϑ,n+1,l,hn

(z), z) ≤ εn+1/4 for all z ∈ W c
hn

(z0(n+1, l), K, Z
(n+1)
l );

(3) Ah\
(z0(n, l)) ⊃ W c

h\
(z0(n, l), K̄, Z̄

(n)
l ) for any gentle perturba-

tion ht
\ of f t, close to ht

n, with ∠(Eω
h\

(z), Eω
hn

(z)) ≤ δn, ω =

u, s, c and z ∈ N × Z
(n)
l .

Therefore, Ah\
(z0(n, l) ⊃ N × Z̃

(n)
l for all l = 1, . . . , kn+1. In other

words, ht
\ has the accessibility property on N × Z̃

(n)
l .
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Note that

Ũn = Ũn−1

⋃ (
kn⋃

l=1

N × Z̃
(n)
l

)
,

and the intersection of any two sets among Ũn−1 and N × Z̃
(n)
l , l =

1, . . . , kn contains a nonempty open set whenever they intersect. Since

Ũn is connected, we obtain accessibility of ht
\ on Ũn. In particular, ht

n

has the accessibility property on Ũn when we apply that ht
\ = ht

n.

5.4. A technical lemma. The proof of Proposition 5.1 heavily relies
on the following technical statements.

Lemma 5.3. Suppose for some n > 0, d(Θi
ϑ,n,l,hn−1

(z), z) ≤ εn/4 for

all i = a, b, τ , ϑ ∈ [0, 1], z ∈ W c
hn−1

(z0(n, l), K, Z
(n)
l ), l = 1, . . . , kn.

Then there are δ′′n, θ′′n > 0 such that

(1) if ‖Xn −Xn−1‖Cn ≤ δ′′n, then we have

(5.7) d(Θi
ϑ,n+1,l,hn

(z), z) ≤ εn+1/4, as z ∈ W c
hn

(z0(n + 1), K, Z
(n+1)
l ),

for all i = a, b, τ , ϑ ∈ [0, 1], and l = 1, . . . , kn+1;

(2) for any gentle perturbation ht
\ of f t, close to ht

n and with

∠(Eω
h\

(z), Eω
hn

(z)) ≤ θ′′n, for all z ∈ N × Z
(n)
l , ω = u, s, c

we have

(5.8) Ah\
(z0(n, l)) ⊃ W c

h\
(z0(n, l), K̄, Z̄

(n)
l ) for all l = 1, . . . , kn.

In particular, (5.8) holds with ht
\ = ht

n.

This lemma is an adaptation of Lemma 5.2 in [10] to the flow case. It
can be proved in a similar fashion subject to the following sublemma.

Sublemma 5.4. For each n > 0, there exists δ′′n > 0 such that if

‖Xn −Xn−1‖Cn = βn‖X̂n‖Cn ≤ δ′′n, then for all l = 1, . . . , kn, we have

(1) Θa((q, 1/2, a, 0)) = (q, 1/2, a′, 0) with a′ < a for any a ∈ In;
(2) Θb((q, 1/2, a, b)) = (q, 1/2, a, b′) with b′ < b for any a ∈ In,

b ∈ Jn;
(3) Θτ ((q, τ, a, b)) = (q, τ ′, a, b) with τ ′ < τ for any a ∈ In, b ∈ Jn

and τ ∈ K,

where q = q(n, l) is given by (5.2), and Θi = Θi
n,l,hn

for i = a, b, τ .
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Proof. The proof is similar to that in [6] (see Lemma B.4; see also [10],
Sublemma 5.3) but is adapted to the language of vector fields.

We will prove the first statement. Consider the coordinate system
(u, s, τ, a, b) in Ωa

n,l with the origin at (pa(n, l), 1/2, y0(n, l)). Write
q = q(n, l), pa = pa(n, l) and y0 = y0(n, l). We may assume that the

square Z
(n)
l is parameterized as (a, b) ∈ In×Jn, that the center y0(n, l)

of Z
(n)
l is (0, 0) and that the local coordinates of the points q, [q, pa],

[pa, q] and pa are (u0, s0), (0, s0), (u0, 0) and (0, 0) respectively, where
u0 = αa

u(n, l) and s0 = αa
s(n, l) given by (5.3).

Consider the case n > 1 first. Note that the vector field Xn inside
Ωa(n, l) is exactly Xf + βnX a

n,l. For any a1 = a ∈ In, b ∈ Jn, and τ ∈
(1/2− ετ , 1/2+ ετ ), choose the point z1 = (q, τ, a1, b) = (u0, s0, τ, a1, b).
Note that under the original flow f t, we have a closed quadrilateral
(u, s)f t-path γ = {z1, z2, z3, z4, z5}, where

z2 = ([q, pa], τ, a2, b) = (0, s0, τ, a2, b),

z3 = (pa, τ, a3, b) = (0, 0, τ, a3, b),

z4 = ([pa, q], τ, a4, b) = (u0, 0, τ, a4, b),

z5 = ([q, pa], τ, a5, b) = (u0, s0, τ, a5, b) = z1,

and ak = a1 = a for k = 1, 2, 3, 4, 5.
Let us compare the vector field Xn = Xf + βnX a

n,l on each leg Lk =
[zk, zk+1] for k = 1, 2, 3, 4. In fact, X a

n,l ≡ 0 on legs L1 and L4. Since
the u-component of every point on the leg L2 is 0, the u-component
of the vector field X a

n,l is 0, and the a-component does not depend on
the u-coordinate. On the leg L3 = [z3, z4], the u-component of X a

n,l is
negative at the interior points and it is zero at two endpoints z3 and z4,
while the a-component is positive, with the value smoothly changing
from a constant to zero.

Now choose the point z1 = z1, and we have the quadrilateral (u, s)ht
n
-

path γ = {z1, z2, z3, z4, z5}. By the above comparison, the τ - and b-
coordinate are the same for each zk, k = 1, 2, 3, 4, 5. By the construc-
tion of the vector fields Xn, the image of the leg [z3, z4] under the flow ht

n

is contained in Ωa. Now let ak be the a-coordinate of zk, k = 1, 2, 3, 4, 5,
since the a-component of Xn are the same for all points on L1, L2 and
L4, while it changes from a constant to zero along the unstable leg L3,
then we have a1 = a2 = a3 > a4 = a5. This shows Statement (1) for
the case n > 1.

In the case n = 1 similar arguments can be used with the following
modification, and we will obtain a1 = a2 ≥ a3 > a4 = a5. This
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completes the proof of Statement (1). Statements (2) and (3) can be
proved in a similar way. ¤

6. Proof of Main Theorem.

Since each Xn is divergence free, so is Xh, and hence ht is volume
preserving. The first statement of the Main Theorem follows.

Note that ht = f t on U c and is of the form

ht((x, τ), y) = ((x + tα0, τ), y)

for each z = ((x, τ), y) ∈ U c = N ×C where α0 is a diophantine vector
(see Section 3). Hence, ht preserves each 3-dimensional submanifold
N × {y}, y ∈ C, and ht|N × {y} is a non-identity linear flow since
α(y) 6= 0. Moreover, the frequency vector α(y) is Diophantine if y ∈ C.
Thus Statements (1) and (3) of the Main Theorem follows.

It remains to prove the second statement. By Proposition 4.1, each
diffeomorphism ht

n is pointwise partially hyperbolic on U and uniformly
partially hyperbolic on Un. By Theorem B.1 in the Appendix B, if the
sequence δn decreases sufficiently fast, the limit flow ht is pointwise
partially hyperbolic on U .

We now claim that the one-dimensional strongly stable Es
h and un-

stable Eu
h subbundles are integrable to invariant strongly stable W s

h

and unstable W u
h foliations with smooth leaves, which are transver-

sal and absolutely continuous. Recall that the “start-up” flow f t has
strongly stable and unstable local manifolds V s

f (z) and V u
f (z) respec-

tively at each z ∈ U . Moreover, these local manifolds are of uniform
size, say larger than a certain number 4r > 0. By Proposition 5.1(3),
ht

n|U c
n = f t|U c

n, and thus V ω
hn

(z) = V ω
f (z) for all z ∈ U\Un, ω = s, u.

On the other hand, each ht
n is a perturbation of ht

n−1 on the compact
set Un, on which both ht

n and ht
n−1 are uniformly partially hyperbolic

if δn is sufficiently small. Furthermore, let rn be the size of V ω
hn

(z) for

z ∈ Un, one can have rn/rn−1 ≥ 2−1/2n
, and thus by induction we have

that the size of local manifolds of ht
n|Un is bigger than r. Therefore,

given z ∈ U , we obtain that the size of V ω
hn

(z) has a lower bound r > 0,
which is independent of z and n.

Write each V s
hn

(z) in the coordinate chart as follows

V s
hn

(z) = expz{(v, ψs
hn

(v)) : v ∈ Bs(0, rn)},
where Bs(0, rn) ⊂ Es

hn
(z) is the ball centered at origin of radius rn and

ψs
hn

: Bs(0, rn) → Ecu
hn

(z) is a C1 map satisfying:

(1) ψs
hn

(0) = 0 and dψs
hn

(0) = 0;
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(2) If the numbers δn and θn decay sufficiently fast then there are
r > 0 and ∆ > 0 such that rn ≥ r and ‖ψs

hn
‖C1 ≤ ∆ for all

n ≥ 0.

This implies that z ∈ V s
hn

(z) and TzV
s
hn

(z) = Es
hn

(z). Furthermore,

(1) ht
n(V s

hn
(z)) ⊂ V s

hn
(ht

n(z));

(2) d(ht
n(z), ht

n(y)) ≤ λ̃(z)d(z, y) for each y ∈ V s
hn

(z) and some

continuous function λ̃(z) on U for which 0 < λ(z) ≤ λ̃(z) <
λ′(z) (where λ′(z) is the function in the definition of pointwise
partial hyperbolicity).

The sequence of functions ψs
hn

(v), ‖v‖ ≤ r, is compact in the C1 topol-
ogy and hence, there is a subsequence ψs

hnk
that converges to a C1

function ψ satisfying ψ(0) = 0, dψ(0) = 0 and ‖ψ‖C1 ≤ ∆. Setting

(6.1) V (z) = expz{(v, ψ(v)) : v ∈ Bs(0, r)}
we have that

(1) z ∈ V (z) and TzV (z) = Es
h(z);

(2) ht(V (z)) ⊂ V (ht(z));

(3) d(ht(z), ht(y)) ≤ λ̃(z)d(z, y) for each y ∈ V (z).

This implies that if mk is any subsequence for which ψs
hmk

converges in

the C1 topology to a function ψ̃, then ψ̃ = ψ. Thus the formula (6.1)
determines uniquely a local strongly stable manifold through z and the
formula W (z) = ∪n≥0 h−t(V (ht(z)) defines the global strongly stable
manifold through z. These manifolds form a continuous strongly stable
foliation with smooth leaves for ht. In a similar fashion we can obtain
strongly unstable local manifolds and construct a strongly unstable
foliation with smooth leaves for ht. These two foliations are transverse
at every point z ∈ U .

We will now show that the Lyapunov exponent λs
h(z) in the direction

Es
h(z) is negative at almost every point z ∈ U . Indeed, let Z ⊂ U be

the set of points at which λs
h(z) = 0. If m(Z) > 0 then

0 =

∫

Z

λs
h(z) dm =

∫

Z

lim
n→∞

1

n
log

n−1∏
i=0

λh(h
i(z))dm(z)

= lim
n→∞

1

n

∫

Z

n−1∑
i=0

log λh(h
i(z)) dm(z)

=

∫

Z

log λh(z) dm(z) < 0
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(recall that λh(z) is the contraction coefficient along Es
h(z)). This con-

tradiction proves our claim. Similarly, one can prove that the Lyapunov
exponent λu

h(z) in the direction Eu
h(z) is positive at almost every point

z ∈ U .
Since ht is nonuniformly partially hyperbolic on U , by Theorem 8.6.1

in [2], we obtain that its strongly stable and unstable foliations are
absolutely continuous.

Next we will show that the flow ht has the accessibility property on
U via its invariant foliations W s

h and W u
h . Indeed, by Proposition 5.1

(5), for any n > k, ω = s, u, c and any z ∈ Uk ⊂ U ,

∠(Eω
hn

(z), Eω
hk

(z)) ≤ δk(1− 1/2n−k) < δk.

Taking the limit as n → ∞, we obtain that ∠(Eω
h (z), Eω

hk
(z)) ≤ δk

on Uk. Hence, by Proposition 5.1(6), the flow ht has the accessibility

property on each Ũk. Since k is arbitrary, we obtain that the flow ht

has the accessibility property on U .
To show that the flow ht has positive central Lyapunov exponent,

we first recall that the average Lyapunov exponents of the flow gt are
arranged as in (4.2). Set c = L3(g

t) − L2(g
t) > 0. By the upper

semicontinuity of Li(·), we choose the number δh > 0 in Proposition
5.1 so small that L2(h

t) < L2(g
t) + c/2. On the other hand, it follows

from Proposition 5.1(4) that

L4(h
t
n) =

∫

M
det(dht

n|Euabτ
hn

(z))dm =

∫

M
det(dgt|Euabτ

g (z))dm = L4(g
t).

Taking the limit as n → ∞ we obtain L4(h
t) = L4(g

t) = L3(g
t).

Therefore,

L4(h
t)− L2(h

t) =

∫

M
(λ3(z, h

t) + λ4(z, h
t))dm(z) ≥ c/2 > 0,

then there is a subset A ⊂ U such that λ3(z, h
t) + λ4(z, h

t) > 0 for
all z ∈ A, and thus λ2(z, h

t) ≥ λ3(z, h
t) ≥ 1

2
[λ3(z, h

t) + λ4(z, h
t)] > 0

for all z ∈ A. Since the center subspace Ec
h(z) is 3-dimensional and

the flow direction Span{Xh} corresponds to zero exponent, we conclude
that λ2(z, h

t) and λ3(z, h
t) correspond to vectors in Ec

h(z)\Span{Xh}.
Thus the flow ht has positive central Lyapunov exponents.

By Theorem 2.4, we obtain that ht has positive central exponents at
almost every point in U , and ht|U is an ergodic flow.
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Appendix A. The differential and metric structures of
the suspension manifold

We specify the differential and metric structure of the suspension
manifold N and the 5-dimensional manifold M in Section 3. Associ-
ated to the Anosov automorphism A of X = T2, one can find smooth
local charts (Ux, φx) around each x ∈ X such that

φx : Ux → (−u0(x), u0(x))× (−s0(x), s0(x))

satisfies φx(x) = (0, 0) and

φAx ◦ A ◦ φ−1
x (u, s) = (ηu, η−1s),

where u0(x), s0(x) > 0 are sizes of charts depending on x, and η > 1 is
the expanding rate along the unstable direction. In fact, ∂

∂u
and ∂

∂s
are

the unstable and stable directions of A respectively.
Recall that the suspension manifold N is the quotient space X ×

R/ ∼ with the equivalence relation (x, τ + 1) ∼ (Ax, τ). Let π :
X×R→ N be the natural projection. Following [12] there is a natural
differential structure on N with atlas (U1

(x,τ), φ
1
(x,τ)) for τ ∈ (−1/4, 3/4)

and (U2
(x,τ), φ

2
(x,τ)) for τ ∈ (1/4, 5/4), where

U1
(x,τ) = π(Ux × (−1/4, 3/4)), φ1

(x,τ)(π(φ−1
x (u, s), τ)) = (u, s, τ);

U2
(x,τ) = π(Ux × ( 1/4, 5/4)), φ2

(x,τ)(π(φ−1
x (u, s), τ)) = (u, s, τ).

It is easy to verify that

φi
(x′,τ ′) ◦ φi

(x,τ)(π(φ−1
x (u, s), τ) = (φx′ ◦ φ−1

x (u, s), τ), i = 1, 2;

φ1
(x′,τ ′) ◦ φ2

(x,τ)(π(φ−1
x (u, s), τ) = (φAx′ ◦ A ◦ φ−1

x (u, s), τ − 1).

In particular,

(A.1) φ1
(x,τ ′) ◦ φ2

(x,τ)(π(φ−1
x (u, s), τ) = (ηu, η−1s, τ − 1).

There are three subbundles Eu, Es and Eτ on N generated by inde-
pendent vector fields dπ( ∂

∂u
), dπ( ∂

∂s
) and dπ( ∂

∂τ
) respectively. By [3],

we can choose the Riemannian metric on N which has the local rep-
resentation η2τdu2 + η−2τds2 + dτ 2. Under this metric, the suspension
flow St : N → N satisfies

‖dStv‖ = ηt‖v‖, v ∈ Eu,

‖dStv‖ = η−t‖v‖, v ∈ Es,

‖dStv‖ = ‖v‖, v ∈ Eτ .

For the 2-torus Y = T2, we choose the local coordinate (a, b) cen-
tered at each y ∈ Y . Given z = (x, τ, y) ∈ M = N × Y , we can
hence choose a local coordinate system (u, s, τ, a, b), endowed with the
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product Riemannian metric η2τdu2 + η−2τds2 + dτ 2 + da2 + db2. In
particular, the metric on the cross-section X ×{0}× Y is given by the
flat metric

(A.2) du2 + ds2 + da2 + db2.

Appendix B. Partial Hyperbolicity of the Limit Flow

Let M be a compact smooth Riemannian manifold and S ⊂ M an
open subset. Let also H t be the flow on M that is pointwise partially
hyperbolic on S. Further, let Un ⊂ S, n ≥ 1 be a sequence of open
subsets such that:

(1) Un ⊂ Un ⊂ Un+1 and
⋃Un = S;

(2) each Un is H t-invariant;
(3) H t|Un is uniformly partially hyperbolic.

The goal of this appendix is to prove the following statement.

Theorem B.1. There exists a sequence of positive numbers εn such
that if smooth vector fields Xn on M satisfy

X0 = XH , Xn = Xn−1 on M\Un

and
‖Xn −Xn−1‖C1 ≤ εn,

then for every n ≥ 1 the corresponding flow ht
n is uniformly partially

hyperbolic on the invariant set Un and hence pointwise partially hyper-
bolic on S. Moreover, the limit vector field X = lim

n→∞
Xn is of class C1

and generates a pointwise partially hyperbolic flow ht on S.

We need the following technical statements.

Lemma B.2. Given a sequence of positive numbers {an}n≥1 satisfying
∞∑

n=1

an ≤ 1
4
, we have

∞∏
n=1

(1 + an) ≤ 1 + 2
∞∑

n=1

an,

∞∏
n=1

(1− an) ≥ 1− 2
∞∑

n=1

an.

Lemma B.3 (Gronwall’s inequality). Let η(t) be a nonnegative C1

function on [0, T ] satisfying

η′(t) ≤ φ(t)η(t) + ψ(t),

where φ(t) and ψ(t) are nonnegative integrable functions, then for all
0 ≤ t ≤ T ,

η(t) ≤ e
∫ t
0 φ(s)ds[η(0) +

∫ t

0

ψ(s)ds].
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Lemma B.4. Set K := 2‖XH‖C1. If εn < K
2n+1 , then ‖Xn‖C1 ≤ K for

all n ≥ 0. Moreover, given a flow F t with ‖XF‖C1 ≤ K, we have for
any x ∈M and t ∈ R+ that,

e−tK ≤ m(dxF
t) ≤ ‖dxF

t‖ ≤ etK .

In particular,

e−K ≤ min
0≤t≤1

m(dxF
t) ≤ max

0≤t≤1
‖dxF

t‖ ≤ eK .

Proof of the lemma. Since ‖XH‖C1 = K/2, we find that

‖Xn −XH‖C1 ≤
n∑

k=1

‖Xk −Xk−1‖C1 ≤
n∑

k=1

εk < K/2.

This implies that ‖Xn‖C1 ≤ K.
Let F t be a flow and XF the corresponding vector field. Consider

the variational differential equation

d

dt
dxF

t = DXF (F t(x))dxF
t,

for any x ∈M and t ∈ R+. Then

d

dt
‖dxF

t‖ ≤ ‖ d

dt
dxF

t‖ ≤ ‖DXF‖‖dxF
t‖ ≤ K‖dxF

t‖.
Since ‖dxF

0‖ = 1, by Lemma B.3, we obtain that ‖dxF
t‖ ≤ etK .

Noting that m(dxF
t) = ‖dxF

−t‖−1 and the flow F−t corresponds to
the vector field −XF , we get that m(dxF

t) ≥ e−tK . ¤
Let F t and Gt be flows on M and XF and XG the corresponding

vector fields. Assume that ‖XF‖C1 , ‖XG‖C1 ≤ K, where K is given in
Lemma B.4.

Lemma B.5. Set

M := e3K‖XF‖C2 + e2K , εF,G := ‖XG −XF‖C1 .

Then for t ∈ [0, 1],

(B.1) ρC1(Gt, F t) ≤ 2tMεF,G,

where ρC1(Gt, F t) = maxx∈M(dist(Gt(x), F t(x)) + ‖dxF
t − dxG

t‖) is
the distance between the flows in the C1 topology.

Proof of the lemma. Consider the family of flows F t(τ) generated by
the family of vector fields (1 − τ)XF + τXG with τ ∈ [0, 1]. Given
x ∈M and t ∈ [0, 1], the curve ct = cx

t : τ 7→ F t(τ)(x) is of length

L(ct) =

∫ 1

0

∥∥∥∥
∂ct

∂τ

∥∥∥∥ dτ =

∫ 1

0

∥∥∥∥
∂

∂τ
F t(τ)(x)

∥∥∥∥ dτ,
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and hence,

d

dt
L(ct) ≤

∫ 1

0

∥∥∥∥
∂

∂τ

d

dt
F t(τ)(x)

∥∥∥∥ dτ

≤ ‖XG −XF‖+ [(1− τ)‖DXF‖+ τ‖DXG‖]
∫ 1

0

∥∥∥∥
∂ct

∂τ

∥∥∥∥ dτ

≤ εF,G + KL(ct).

Recall that L(c0) = 0, ct(0) = F tx and ct(1) = Gtx. By Lemma B.3,
we obtain

(B.2) dist(F tx,Gtx) ≤ L(ct) ≤ tetKεF,G ≤ tMεF,G.

On the other hand,

d

dt
‖dxF

t − dxG
t‖ ≤

∥∥DXF (F tx)dxF
t −DXG(Gtx)dxG

t
∥∥

≤
∥∥DXF (F tx)dxF

t −DXF (F tx)dxG
t
∥∥

+
∥∥DXF (F tx)dxG

t −DXF (Gtx)dxG
t
∥∥

+
∥∥DXF (Gtx)dxG

t −DXG(Gtx)dxG
t
∥∥

≤ ‖DXF‖‖dxF
t − dxG

t‖
+ ‖D2XF‖dist(F tx,Gtx)‖dxG

t‖
+ ‖DXF −DXG‖‖dxG

t‖
≤ K‖dxF

t − dxG
t‖+ Me−KεF,G,

where in the last inequality we use Lemma B.4 and the inequalities
(B.2). By Lemma B.3, we obtain

(B.3) ‖dxF
t − dxG

t‖ ≤ tMe(t−1)KεF,G ≤ tMεF,G.

Now (B.1) follows by combining (B.2) and (B.3). ¤
Given flows F t and Gt and invariant distributions EF and EG on S

respectively, let

∆F t,Gt,EF ,EG
(x) = max

{∣∣∣∣
‖dxG

t|EG(x)‖
‖dxF t|EF (x)‖ − 1

∣∣∣∣ ,

∣∣∣∣
m(dxG

t|EG(x))

m(dxF t|EF (x))
− 1

∣∣∣∣
}

,

δF t,Gt =‖Gt − F t‖C1 , θEF ,EG
(x) = ∠(EF (x), EG(x)).

(B.4)

Lemma B.6. Assume that ‖XF‖C1 ≤ K, then

∆F t,Gt,EF ,EG
(x) ≤ eK [δF t,Gt + CeKθEF ,EG

(x)]

for any x ∈ S and t ∈ [0, 1], where C > 0 is a constant which depends
only on the Riemannian metric of M.
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Proof of the lemma. Similarly to the proof of Lemma B.4, we can show
that if ‖XF‖C1 ≤ K then for any x ∈ S and t ∈ [0, 1],

e−K ≤ m(dxF
t) ≤ ‖dxF

t‖ ≤ eK .

We have that

|‖dxG
t|EG(x)‖ − ‖dxF

t|EF (x)‖| ≤
∣∣‖dxG

t|EG(x)‖ − ‖dxF
t|EG(x)‖

∣∣
+

∣∣‖dxF
t|EG(x)‖ − ‖dxF

t|EF (x)‖
∣∣

≤ ‖dxG
t − dxF

t‖+ ‖dxF
t‖dist(EG(x), EF (x))

≤ ‖dxG
t − dxF

t‖+ C‖dxF
t‖∠(EG(x), EF (x))

for some constant C > 0 depending only on the Riemannian metric of
M. Dividing both sides of the inequality by ‖dxF

t|EF (x)‖ and noting
that ‖dxF

t|EF (x)‖ ≥ m(dxF
t), we obtain that

∣∣∣∣
‖dxG

t|EG(x)‖
‖dxF t|EF (x)‖ − 1

∣∣∣∣ ≤
1

m(dxF t)
[‖dxG

t − dxF
t‖

+ C‖dxF
t‖∠(EG(x), EF (x))]

≤ eK [δF t,Gt + CeKθEF ,EG
(x)].

Similarly, one can show that

∣∣∣∣
m(dxG

t|EG(x))

m(dxF t|EF (x))
− 1

∣∣∣∣ admits the same

upper bound. ¤

Lemma B.7. A flow F t is uniformly partially hyperbolic on a compact
invariant subset Λ ⊂ S if and only if the time-1 map F 1|Λ is uniformly
partially hyperbolic.

Proof of the lemma. See [9]. ¤

Lemma B.8. Suppose that F t is uniformly partially hyperbolic on a

compact invariant subset Λ ⊂ S. Pick numbers 0 < λ < λ̃ ≤ 1 ≤ µ̃ < µ
such that

λ ≥ λ(F 1, Λ) = sup
x∈Λ

‖ds
xF

1‖, λ̃ ≤ λ̃(F 1, Λ) = inf
x∈Λ

m(dc
xF

1),

µ̃ ≥ µ̃(F 1, Λ) = sup
x∈Λ

‖dc
xF

1‖, µ ≤ µ(F 1, Λ) = inf
x∈Λ

m(du
xF

1),

where dω
xF t = dxF

t|Eω
F (x), ω = s, c, u. Given ∆ > 0, there is ε =

ε(∆, λ, λ̃, µ̃, µ) such that if ‖XG − XF‖C1 < ε and XG = XF on S\Λ,
then Gt|Λ is also a uniformly partially hyperbolic flow and
(B.5)
∆ω

F t,Gt(x) := ∆F t,Gt,Eω
F ,Eω

G
(x) ≤ ∆t, ω = s, c, u, x ∈ Λ, t ∈ [0.5, 1].
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In particular,

(B.6) 1−∆ ≤ λ(G1, Λ)

λ(F 1, Λ)
,

λ̃(G1, Λ)

λ̃(F 1, Λ)
,

µ̃(G1, Λ)

µ̃(F 1, Λ)
,

µ(G1, Λ)

µ(F 1, Λ)
≤ 1 + ∆.

Proof of the lemma. Consider the time-1 map F 1. By [13], there is

ε < ∆e−K/4M depending on ∆, λ, λ̃, µ̃, µ such that if ‖XG−XF‖C1 < ε
and XG = XF on S\Λ, then G1|Λ is uniformly partially hyperbolic on
Λ with

(B.7) sup
x∈Λ

∠(Eω
G1(x), Eω

F 1(x)) <
∆

4Ce2K
.

By Lemma B.7, the flow Gt is uniformly partially hyperbolic on Λ
with the same invariant distributions as its time-1 map G1. Moreover,
it follows from Lemma B.5 and B.6 that

∆F t,Gt,Eω
F ,Eω

G
(x) ≤ ∆t

2
+

∆

4
≤ ∆t, ω = s, c, u, x ∈ Λ, t ∈ [0.5, 1].

In particular,

‖ds
xG

1‖ ≤ ‖ds
xF

1‖(1 + ∆) ≤ λ(1 + ∆),

and hence
λ(G1, Λ)

λ(F 1, Λ)
≤ 1 + ∆. The other inequalities in (B.6) can be

shown in a similar fashion. ¤

We will now specify how to choose the sequence of numbers εn in

the theorem. First choose four sequences of numbers 0 < λn < λ̃n ≤
1 ≤ µ̃n < µn such that

(1) λn ≥ λ(H1,Un), λ̃n ≤ λ̃(H1,Un), µ̃n ≥ µ̃(H1,Un), µn ≤
µ(H1,Un);

(2) λn, µ̃n are strictly increasing while λ̃n, µn are strictly decreasing.

For all x ∈ S, let

γ(x) = min

{
min{1,m(dc

xH
1)}

‖ds
xH

1‖ ,
m(du

xH
1)

max{1, ‖dc
xH

1‖}
}

,

and choose a strictly decreasing sequence of numbers γn such that

(B.8) 0 < γn ≤ inf
x∈Un

γ(x)− 1

8
.

Now choose a sequence of positive numbers ∆n such that

(B.9) max{ λ̃n+1

λ̃n

,
µn+1

µn

} ≤ 1−∆n < 1 + ∆n ≤ min{λn+1

λn

,
µ̃n+1

µ̃n

};
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(B.10) ∆n <
1

2n+2
,

∞∑

k=n

∆k < γn.

Finally, choose

εn <
1

2
min{ K

2n+1
, ε(∆n, λn, λ̃n, µ̃n, µn)},

where ε(∆, λ, λ̃, µ̃, µ) is given by Lemma B.8.

Proof of Theorem B.1. First we will show that for every n > 0 the map
ht

n is uniformly partially hyperbolic on Un. This is clearly true for ht
0

and we will use induction assuming that ht
k|Uk for k = 1, . . . , n− 1 are

uniformly partially hyperbolic. By Lemma B.6, we obtain that

1−∆k ≤ λ(h1
k,Uk)

λ(h1
k−1,Uk)

,
λ̃(h1

k,Uk)

λ̃(h1
k−1,Uk)

,
µ̃(h1

k,Uk)

µ̃(h1
k−1,Uk)

,
µ(h1

k,Uk)

µ(h1
k−1,Uk)

≤ 1+∆k.

Note that

λ(h1
k,Uk+1) ≤ max{λ(H1,Uk+1), λ(h1

k,Uk)}
≤ max{λk+1, λ(h1

k,Uk)}
≤ max{λk+1, λ(h1

k−1,Uk)(1 + ∆k)}.
The fact that λ(h1

0,U1) ≤ λ1 and the choice of ∆n in (B.9) guarantee
that

λ′n := λ(h1
n−1,Un) ≤ λn.

Similarly, we have

λ̃′n := λ̃(h1
n−1,Un) ≥ λ̃n, µ̃′n := µ̃(h1

n−1,Un) ≤ µ̃n,

µ′n := µ(h1
n−1,Un) ≥ µn.

It follows that

εn ≤ ε(∆n, λn, λ̃n, µ̃n, µn) ≤ ε(∆n, λ
′
n, λ̃

′
n, µ̃

′
n, µ

′
n).

Since ‖Xn − Xn−1‖C1 ≤ εn, by Lemma B.8, we obtain that ht
n|Un is

uniformly partially hyperbolic.
Next we will show that X = lim

n→∞
Xn exists and is smooth. In fact,

{Xn} is a Cauchy sequence in the C1 topology since for any n,m ∈ N,

‖Xn+m −Xn‖C1 ≤
m∑

l=1

‖Xn+l −Xn+l−1‖C1 ≤
m∑

l=1

εn+l ≤ K

2n+1
.

Hence X = lim
n→∞

Xn exists and is C1.
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It remains to show that the flow ht generated by X is pointwise
partially hyperbolic on S. First we construct invariant distributions
for ht. Given x ∈ S, we have

∠(Eω
hn

(x), Eω
hn−1

(x)) ≤ ∆n

4Ce2K
<

1

2n+4Ce2K
, ω = s, c, u.

Hence the sequence of subspaces Eω
hn

(x) is Cauchy and it converges to

Eω
h (x) = lim

n→∞
Eω

hn
(x),

which is clearly dht-invariant for all t ∈ R+.
Now we would like to estimate ∆ω

h1,H1(x). Fix x ∈ Un\Un−1, we have

∆ω
h1

k,h1
k−1

(x)

{
= 0, k < n,

≤ ∆k, k ≥ n.

Note that

‖dω
xh1

l ‖
‖dω

xH1‖ =
l∏

k=1

‖dω
xh1

k‖
‖dω

xh1
k−1‖

,
m(dω

xh1
l )

m(dω
xH1)

=
l∏

k=1

m(dω
xh1

k)

m(dω
xh1

k−1)
,

and
∑

∆k < 1/4, we obtain by Lemma B.2,

∆ω
h1

l ,H1(x) ≤
l∏

k=1

(1 + ∆ω
h1

k,h1
k−1

(x))− 1 ≤
∞∏

k=n

(1 + ∆k)− 1 ≤ 2
∞∑

k=n

∆k.

Letting l →∞, we have

∆ω
h1,H1(x) ≤ 2

∞∑

k=n

∆k, ω = s, c, u, x ∈ Un\Un−1.

Therefore,

‖ds
xh

1‖
min{1,m(dc

xh
1)} ≤

1 + 2
∑∞

k=n ∆k

1− 2
∑∞

k=n ∆k

‖ds
xH

1‖
min{1,m(dc

xH
1)}

< (1 + 8γn)
‖ds

xH
1‖

min{1,m(dc
xH

1)}
≤ γ(x)

‖ds
xH

1‖
min{1,m(dc

xH
1)} < 1.

Similarly, one can show that m(du
xh

1) > max{1, ‖dc
xh

1‖}. It follows
that h1 is pointwise partially hyperbolic on S, and so is the flow ht by
definition. ¤
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