
The dimensions of non-conformal repeller and

average conformal repeller

Jungchao Ban

Department of mathematics, National Hualien University of Education

Hualien 97003, Taiwan, jcban@mail.nhlue.edu.tw

Yongluo Cao*

Department of mathematics, Suzhou University

Suzhou 215006, Jiangsu, P.R.China and

Institute of Mathematics, Fudan University

Shanghai, 200433, P.R. China

ylcao@suda.edu.cn, yongluocao@yahoo.com

Huyi Hu

Department of mathematics, Michigan state University

East Lansing, MI 48824, USA, hu@math.msu.edu

February 19, 2012

Abstract. In this paper, using thermodynamic formalism for sub-
additive potential defined in [4], upper bounds of Hausdorff dimen-
sion and box dimension of non-conformal repellers are obtained as sub-
additive Bowen equation. The map f is only needed C1, without addi-
tional condition. We also proved that all the upper bounds of Hausdorff
dimension in [1, 18, 8] are coincide. This unifies their results. Further-
more we define average conformal repeller and prove that the dimension
of average conformal repeller equals to the unique root of sub-additive
Bowen equation.

Key words and phrases Hausdorff dimension, Non-conformal repellers, Topological
pressure.

02000 Mathematics Subject classification: Primary 37D35; Secondary 37C45.
0* Corresponding author.

1



1 Introduction.

In the dimension theory of dynamical systems, it is very interesting topic to study the

Hausdorff dimension of invariant sets of hyperbolic dynamics. Bowen [3] was the first

to express the Hausdorff dimension of an invariant set as a solution of an equation

involving topological pressure. Ruelle [13] refined Bowen’s method and obtained the

following result. Assume that f is a C1+γ conformal expanding map, Λ is an isolated

compact invariant set and f |Λ is topologically mixing, then the Hausdorff dimension

of Λ, dimH Λ is given by the unique solution α of the equation

P (f |Λ,−α log ‖Dxf‖) = 0 (1.1)

where P (f |Λ, ·) is the topological pressure functional. The smoothness C1+γ was re-

cently relaxed to C1 [9].

An estimate from above for the Hausdorff dimension of compact invariant sets for

differentiable maps has been given by A.Douady and J.Oesterle [5], and by Ledreppier

[11]. For non-conformal dynamical systems there exists only partial results. For exam-

ple, the Hausdorff dimension of hyperbolic invariant sets was only computed in some

special cases. Hu [10] gave an estimate of dimension of non-conformal repeller for C2

map. Falconer [6, 7] computed the Hausdorff dimension of a class of non-conformal

repellers. Related ideas were applied by Simon and Solomyak [16] to compute the

Hausdorff dimension of a class of non-conformal horseshoes in R3.

For C1 non-conformal repellers, in [18], Zhang uses singular values of the derivative

Dxf
n for all n ∈ Z+, to define a new equation which involves the limit of a sequence

of topological pressure. Then he shows that the unique solution of the equation is an

upper bounds of Hausdorff dimension of repeller. In [1], the same problem is considered.

Barreira bases on the non-additive thermodynamic formalism which was introduced in

[2] and singular value of the derivative Dxf
n for all n ∈ Z+, and gives an upper bounds

of box dimension of repeller under the additional assumptions for which the map is

C1+γ and γ-bunched. This automatically implies that for Hausdorff dimension. In

[8], Falconer defines topological pressure of sub-additive potential under the condition

‖(Dxf)−1‖2‖Dxf‖ < 1, which means that f is 1−bunched. They also obtain an upper

bounds of Hausdorff dimension of repeller. The questions are whether three bounds as

above are the same and whether the upper bounds of box dimension holds true for C1

non-conformal repeller?

In this paper, the first, using thermodynamic formalism for sub-additive potential

defined in [4], we can obtain upper bounds of Hausdorff dimension and box dimension of

non-conformal repellers. The map f is only needed C1, without additional condition.

In fact, we prove that the upper bounds of Hausdorff dimension of non-conformal

repellers in [18] is the unique root of generalized Bowen equation which relates to sub-

additive thermodynamic formalism. Furthermore, we proved all the upper bounds in

[1, 18, 8] and ours are the same and we can prove that topological pressure in [4] is
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the same as in [1, 8] in which they need that f is C1+γ and γ-bunched condition. Our

result also gives an affirmative answer to problem posed by K.Simon in [15] about an

upper bound without assuming the 1-bunched property.

Then we introduce the notion of average conformal repeller. Using thermody-

namic formalism for sub-additive potential, we prove that Hausdorff dimension and

box dimension of average conformal repellers is the unique root of Bowen equation for

sub-additive topological pressure. The map f is only needed C1, without additional

condition. Meanwhile, we introduce super-additive potential topological pressure and

prove that for special potentials, sub-additive and super-additive topological pressures

are same. In [2], Barreira introduces the concept of quasi-conformal repeller by using

Markov construction and prove that its dimension is the unique root of the equation

obtained by non-additive topological pressure. In [12] introduce the concept of weakly

conformal repeller and obtain its dimension using Bowen equation. It is obvious that

for C1 map quasi-conformal and weakly conformal repeller are average conformal re-

pellers, but reverse is not true. Therefore our result is a generalization of the results

in [2, 12].

Next we recall some basic definitions and notations.

Let f : X → X be a continuous map. A set E ⊂ X is called (n, ε) separated set

with respect to f if x, y ∈ E then dn(x, y) = max0≤i≤n−1 d(f ix, f iy) > ε. For x ∈ X

and r > 0, define

Bn(x, r) = {y ∈ X : f iy ∈ B(f ix, r), for all i = 0, · · · , n− 1}.

If φ is a real continuous function on X and n ∈ Z+, let

Snφ(x) =
n−1∑
i=0

φ(f i(x)).

We define

Pn(φ, ε) = sup{
∑
x∈E

exp Snφ(x) : E is a (n, ε)− separated subset of X}.

Then the topological pressure of φ is given by

P (f, φ) = lim
ε→0

lim sup
n→∞

1

n
log Pn(φ, ε).

Next we give some properties of P (f, ·) : C(M,R) → R ∪ {∞}.
Proposition 1.1. Let f : M → M be a continuous transformation of a compact

metrisable space M . If ϕ1, ϕ2 ∈ C(X,R), then the followings are true:

(1) P (f, 0) = htop(f).

(2) |P (f, ϕ1)− P (f, ϕ2)| ≤ ‖ϕ1 − ϕ2‖.
(3) ϕ1 ≤ ϕ2 implies that P (f, ϕ1) ≤ P (f, ϕ2).
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Proof. See Walters book [17].

Corollary 1. Let f : M → M be a continuous transformation of a compact metrisable

space M . If ϕ ∈ C(M,R) and ϕ < 0 then function P (α) = P (f, αϕ) is continuous and

strictly decreasing in α.

Proof. Let M = maxx∈M ϕ(x) and m = minx∈M ϕ(x). Then ϕ ∈ C(M,R) and ϕ < 0

imply that m ≤ M < 0. If α1 < α2, then for all n ∈ N, it has

(α2 − α1)nm ≤ Sn(α2ϕ)(x)− Sn(α1ϕ)(x) = (α2 − α1)Snϕ(x) ≤ (α2 − α1)nM.

Thus for ∀ε > 0,

e(α2−α1)nm × Pn(α1ϕ, ε) ≤ Pn(α2ϕ, ε) ≤ Pn(α1ϕ, ε)× e(α2−α1)nM .

It implies that

(α2 − α1)m + P (f, α1ϕ) ≤ P (f, α2ϕ) ≤ P (f, α1ϕ) + (α2 − α1)M.

Therefore P (f, αϕ) is continuous and strictly monotone decreasing on α.

Another equivalent definition of topological pressure involves open covers.

Definition 1.1. If ϕ ∈ C(M,R), n ≥ 1 and U is an open cover of M put

pn(f, φ,U) = inf{
∑

β

sup
x∈B

eSnφ(x)|β is a finite subcover of
n−1∨
i=0

f−iU}.

It is proved [17] that the limit

lim
n→∞

1

n
log pn(f, φ,U)

exists and equals to inf
n>0
{ 1

n
log pn(f, ϕ,U)}.

We have the following Lemma whose proof can be found in [17].

Lemma 1.1. If φ ∈ C(M,R), n ≥ 1 and U is an open cover of M , then

lim
diam(U)→0

lim
n→∞

1

n
log pn(f, φ,U) = P (f, φ).

A linear map L : Rn → Rn is said to be expanding if ‖Lv‖ > ‖v‖ for all v ∈ Rn

and v 6= 0. Given an expanding linear map L : Rm → Rm, let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

be the logarithms of the singular values of L, which are eigenvalues of (L∗L)
1
2 , counted

with their multiplicities, where λm > 0 because of the expansion. Following [5] we

introduce the function

gα(L) =
m∑

i=m−[α]+1

λi + (α− [α])λm−[α],
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for any α ∈ [0,m], where [α] is the largest integer ≤ α. gα(L) is continuous and strictly

increasing in α. g0(L) = 0 and gm(L) =
m∑

i=1

λi = log |Jac(L)|, where Jac(L) is the

Jacobean of L. The map gα has the following super-additive property. If L : Rm → Rm

and L′ : Rm → Rm are two expanding maps, then

gα(L′L) ≥ gα(L′) + gα(L). (1.2)

The paper is organized as follows. In Section 2, we develop sub-additive thermody-

namics formalism and prove the upper bounds of Hausdorff dimension of non-conformal

repellers in [18] is exactly the unique root of the equation of sub-additive topological

pressure. In Section 3, we consider the relation between sub-additive thermodynamics

formalism defined in [4] and [2, 8], and we obtain for C1 non-conformal repeller Λ, up-

per box dimension is bounded by a value which is the unique solution of the equation of

sub-additive topological pressure. This is generalization of the result in [2]. In Section

4, we introduce the definition of average conformal repeller and give related results and

the main theorem. In section 5, we develop super-additive thermodynamics formalism

and variational principle for super-additive potential. In section 6, we give the proof

of main result.

2 A sub-additive thermodynamics formalism

Let f : X → X be a continuous map. A set E ⊂ X is called (n, ε) separated set with

respect to f if x, y ∈ E then dn(x, y) = max0≤i≤n−1 d(f ix, f iy) > ε. A sub-additive

valuation on X is a sequence of continuous functions φn : M → R such that

φm+n(x) ≤ φn(x) + φm(fn(x)),

we denote it by F = {φn}.
In the following we will define the topological pressure of F = {φn} with respect to

f . We define

Pn(F , ε) = sup{
∑
x∈E

exp φn(x) : E is a (n, ε)− separated subset of X}.

Then the topological pressure of F is given by

P (f,F) = lim
ε→0

lim sup
n→∞

1

n
log Pn(F , ε).

Let M(X) be the space of all Borel probability measures endowed with the weak*

topology. Let M(X, f) denote the subspace of M(X) consisting of all f -invariant

measures. For µ ∈ M(X, f), let hµ(f) denote the entropy of f with respect to µ, and

let F∗(µ) denote the following limit

F∗(µ) = lim
n→∞

1

n

∫
φndµ.
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The existence of the above limit follows from a sub-additive argument. We call F∗(µ)

the Lyapunov exponent of F with respect to µ since it describes the exponential growth

speed of φn with respect to µ.

In [4], authors proved that the following variational principle

Theorem 2.1. [4] Under the above general setting, we have

P (f,F) = sup{hµ(T ) + F∗(µ) : µ ∈M(X, f)}.
In [2], Barreira used different way to introduce topological pressure for sub-additive

potential and proved the variational principle if potential functions satisfies further

condition.

Let M be a C∞ Riemann manifold, dim M = m. Let U be an open subset of M

and let f : U → M be a C1 map. Suppose Λ ⊂ U is a compact invariant set on which f

is expanding, that is, fΛ = Λ and there is k > 1 such that for all x ∈ Λ and v ∈ TxM ,

‖Dxfv‖ ≥ k‖v‖,
where ‖.‖ is the norm induced by an adapted Riemannian metric. Let M(f |Λ) denote

the all f invariant measures supported on Λ.

If x ∈ Λ, then Dxf : TxM → TfxM is a linear map. Denote the logarithms of the

singular values of Dxf by

λ1(x, f) ≥ λ2(x, f) ≥ · · · ≥ λm(x, f) ≥ log k

and for α ∈ [0,m], write

gα(x, f) = gα(Dxf) =
m∑

i=m−[α]+1

λi(x, f) + (α− [α])λm−[α](x, f).

Since f is C1, the function x 7→ λi(x, f) and x 7→ gα(x, f) are all continuous.

In fact, fΛ = Λ implies fnΛ = Λ. fn is also expanding on Λ. Let the logarithms

of the singular value of Dxf
n be

λ1(x, fn) ≥ λ2(x, fn) ≥ · · · ≥ λm(x, fn) ≥ n log k

and set

gα(x, fn) = gα(Dxf
n) =

m∑

i=m−[α]+1

λi(x, fn) + (α− [α])λm−[α](x, fn).

The functions gα(·, fn) satisfy

gα(x, fn+l) ≥ gα(x, fn) + gα(fn(x), f l).

Define a sequence of functions Pn : [0,m] → R as follows:

Pn(α) = P (f |Λ,− 1

n
gα(·, fn)).

In [18], author proved that the following result:
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Lemma 2.1. [18] For every α ∈ [0,m], the following limit exists

lim
n→∞

Pn(α) = inf
n∈Z+

Pn(α).

Set P ∗(α) = lim
n→∞

Pn(α). Then P ∗ is a continuous and strictly decreasing on [0,m].

Theorem 2.2. [18] Let

D(f, Λ) = max{α ∈ [0,m] : P ∗(α) ≥ 0}.
Then

dimH Λ ≤ D(f, Λ).

Remark 1. By variational principle and Ruelle inequality, it has P ∗(m) ≤ 0. Since

P ∗(0) = h(f |Λ) > 0, by Lemma 2.1, it follows that the equation P ∗(α) = 0 has an

unique solution on [0,m]. By the definition, we have D(f, Λ) is the unique solution of

the equation P ∗(α) = 0.

In this paper, we first prove the following Proposition.

Proposition 2.1. Suppose {φn(x)} be sub-additive continuous functions sequence on

M . Let F = {φn}, then we have P (f,F) = lim
n→∞

P (f, φn

n
)

Proof. The existence of limit lim
n→∞

P (f, φn

n
) can be found in [18].

First we prove that

P (f,F) ≤ lim
n→∞

P (f,
φn

n
).

For a fixed m, let n = ms + l, 0 ≤ l < m. From the subadditivity of {φn}, we have

φn(x) ≤ 1

m

m−1∑
j=0

s−2∑
i=0

φm(f im+j(x)) +
1

m

m−1∑
j=0

[φj(x) + φm−j+l(f
(s−1)m+j(x))].

Let C1 = maxi=1,··· ,2m−1 maxx∈X φi(x). Then it has

φn(x) ≤
(sm+l)−1∑

j=0

1

m
φm(f j(x))− 1

m

sm−1∑

j=(s−1)m

φm(f j(x)) + 2C1

≤
n−1∑
j=0

1

m
φm(f j(x)) + 4C1.

Hence we have

exp(φn(x)) ≤ exp(
n−1∑
j=0

1

m
φm(f j(x)) + 4C1).
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Thus

Pn(F , ε) = sup{
∑
x∈E

exp φn(x) : E is a (n, ε)− separated subset of X}

≤ Pn(
1

m
φm, ε)× exp(4C1).

It implies

P (f,F) ≤ P (f,
1

m
φm) .

From the arbitrary of m ∈ Z+, we have

P (f,F) ≤ P (f,
1

m
φm), for all m ∈ Z+.

Therefore

P (f,F) ≤ lim
n→∞

P (f,
φn

n
).

Next, we prove that

P (f,F) ≥ lim
n→∞

P (f,
φn

n
).

Since f : Λ → Λ is expanding map, hµ(f) is an upper-semi continuous function from

M(f |Λ) to R. From variational principle of topological pressure [17], we have that for

every k ∈ Z+ there exists µ2k ∈M(f |Λ) such that

P (f |Λ,
1

2k
φ2k) = hµ

2k
(f) +

∫

Λ

1

2k
φ2kdµ2k .

Since M(f |Λ) is compact, it implies that µ2k has a subsequence which converges to

µ ∈ M(f |Λ). Without loss of generality, suppose that µ2k converges to µ. Using the

subadditivity and invariant of µ2k , then we have for every k ∈ N

hµ
2k

(f) +

∫

Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫

Λ

φ1(x)dµ2k .

Furthermore for fixed s ∈ N. If k > s, from the subadditivity and invariance of µ2k , it

has

hµ
2k

(f) +

∫

Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫

Λ

φ2s(x)

2s
dµ2k .

Since hµ(f) is a upper-semi continuous function, we have

lim
n→∞

P (f,
φn

n
) = lim

k→∞
P (f,

φ2k

2k
)

= lim
k→∞

(hµ
2k

(f) +

∫

Λ

φ2k(x)

2k
dµ2k)

≤ lim
k→∞

(hµ
2k

(f) +

∫

Λ

φ2s(x)

2s
dµ2k)

≤ hµ(f) +

∫

Λ

φ2s(x)

2s
dµ.
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Since sequence {∫
Λ

φn(x)dµ} is sub-additive sequence, it has

lim
n→∞

∫

Λ

φn(x)

n
dµ = inf

n≥1
{
∫

Λ

φn(x)

n
dµ}.

The arbitrariness of s ∈ N implies that

lim
n→∞

P (f,
φn

n
) ≤ hµ(f) + lim

s→∞

∫

Λ

φ2s

2s
(x)dµ.

Hence by variational principle of the sub-additive topological pressure in [4], we have

lim
n→∞

P (f,
φn

n
) ≤ hµ(f) + lim

s→∞

∫

Λ

φ2s

2s
(x)dµ ≤ P (f,F).

This completes the proof of Proposition 2.1.

Theorem 2.3. Let F(α) = {−gα(·, fn)}. Then we have P (f,F(α)) = P ∗(α).

Proof. For a fixed α, let φn(x) = −gα(x, fn), then it is sub-additive continuous se-

quence on Λ. By Proposition 2.1 for F(α) = {−gα(x, fn)}, we have

P (f,F(α)) = lim
n→∞

P (f,
φn

n
) = lim

n→∞
P (f,− 1

n
gα(·, fn)) = P ∗(α).

Theorem 2.4. Let F(α) = {−gα(·, fn)}, then we have P (f,F(α)) is continuous and

strictly monotone decreasing on α ∈ [0,m]. Thus P (f,F(α)) = 0 has only unique

solution in [0,m].

Proof. Let φn(α, x) = −gα(x, fn). If α1, α2 ∈ [0,m], α1 < α2, then for all n ∈ N, it

has

(α1 − α2)n log k ≥ −φn(α2, x)− (−φn(α1, x)) ≥ (α1 − α2)n log ‖f‖.
Thus for ∀ε > 0,

e(α1−α2)n log k × Pn(F(α1), ε) ≤ Pn(F(α2), ε) ≤ Pn(F(α1), ε)× e(α1−α2)n log ‖f‖.

It implies that

(α1 − α2) log ‖f‖+ P (f,F(α1)) ≤ P (f,F(α2)) ≤ P (f,F(α1)) + (α1 − α2) log k.

Therefore P (f,F(α)) is continuous and strictly monotone decreasing on α ∈ [0,m].

One hand, P (f,F(0)) = htop(f) > 0, and on the other hand, by Ruelle inequality

[14] and Theorem 2.1, it has P (f,F(m)) ≤ 0. Therefore P (f,F(α)) = 0 has an unique

solution in [0,m].
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Remark 2. Theorem 2.4 can be deduced from Theorem 2.3 and Lemma 2.1. But for

the completeness, we include a different proof.

Corollary 2. D(Λ, f) is the unique solution of equation P (f,F(α)) = 0.

Proof. The proof can be deduced from Theorem 2.3 and Remark 1.

Lemma 2.2. For a fixed n ∈ N, Pn(α) = P (f,− 1
n
gα(·, fn)) is a continuous and

monotone decreasing function on α ∈ [0,m].

Proof. The proof is analogous to the proof of Theorem 2.4.

By Ruelle-Margulis inequality and variational principle in [17], it has Pn(m) =

P (f,− 1
n
gm(·, fn)) ≤ 0. Since Pn(0) = h(f |Λ) > 0, by Lemma 2.2, it follows that

equation Pn(α) = 0 has an unique solution. Denote it by αn. Then we have the

following proposition.

Theorem 2.5.

inf
n∈N

αn = D(Λ, f)

Proof. Without loss of generality, we suppose that lim
n→∞

αn = α∗ = infn∈N αn. Other-

wise we can take a subsequence which converges to α∗.
Since

|P (f,− 1

n
gα∗(·, fn))− P (f,− 1

n
gαn(·, fn))| ≤ ‖ − 1

n
gα∗(·, fn) +

1

n
gαn(·, fn)‖

≤ |α∗ − αn|‖Df‖,

we have

P (f,F(α∗)) = lim
n→∞

P (f,− 1

n
gα∗(·, fn))

= lim
n→∞

P (f,− 1

n
gαn(·, fn)) = 0.

By Corollary 2, we have

D(f, Λ) = α∗ = inf
n∈N

αn.

Now for a fixed n ∈ N, we consider the equation

P̃n(α) = P (fn|Λ,−gα(·, fn)) = 0.

It is easy to prove that P̃n(α) is continuous and strictly decreasing on [0,m].

P̃n(0) = htop(f
n|Λ) = nhtop(f |Λ) ≥ 0

10



and

P̃n(m) = nP (f |Λ,− log |Jac(Dxf)|) ≤ 0.

Hence the equation P̃n(α) = 0 has a unique solution, which we denoted by Dn. Ap-

plying Lemma 1 in [18] to the expanding map fn yield dimH Λ ≤ Dn. So dimH Λ ≤
inf

n∈Z+
Dn. It was proved in [18] that

inf
n∈Z+

Dn ≤ D(f, Λ).

Next we want to prove the reverse inequality, that is say

D(f, Λ) ≤ inf
n∈Z+

Dn.

In order to prove the inequality as above, we firstly prove the following theorem

Proposition 2.2. Suppose {φn(x)} be sub-additive continuous sequence on M . Let

F = {φn}, then we have P (f,F) = lim
k→∞

1
k
P (fk, φk).

Proof. For a fixed k ∈ N. It is well known that if E ⊂ M is an (n, ε) separated set of

fk, then E is an (nk, ε) separated set of f . By the definition

P (fk, φk) = lim
ε→∞

lim sup
n→∞

1

n
log sup{

∑
x∈E

exp(Ŝnφk(x))

: E is a (n, ε) separated set of fk},
where

(Ŝnφk(x)) = φk(x) + φk(f
kx) + · · ·+ φk(f

(n−1)kx).

Hence for a fixed m < k, let k = mq + r and C = maxx∈M maxi=1,··· ,2m φi(x), the

subadditivity of φn implies that

φk(x) ≤ 1

m

m−1∑
j=0

q−2∑
i=0

φm(f im+j(x)) +
1

m

m−1∑
j=0

[φj(x) + φm−j+l(f
(q−1)m+j(x))]

≤
k−1∑
i=0

1

m
φm(f i(x)) + 4C.

Thus for 1 ≤ j ≤ n− 1, we have

φk(f
kj(x)) ≤

k−1∑
i=0

1

m
φm(f i(fkj(x)) + 4C.

Hence

Ŝnφk(x) = φk(x) + φk(f
kx) + · · ·+ φk(f

(n−1)kx)

≤
nk−1∑
i=0

1

m
φm(f i(x)) + 4nC

= Snk(
1

m
φm)(x) + 4nC.
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It gives that

Pn(fk, φk, ε) ≤ Pnk(f,
1

m
φm, ε)× e4nC .

Thus

P (fk, φk) ≤ kP (f,
1

m
φm) + lim

n→∞
1

n
log e4nC

= kP (f,
1

m
φm) + 4C.

Therefore

lim
k→∞

1

k
P (fk, φk) ≤ P (f,

1

m
φm) for all m ∈ Z+.

By Theorem 2.1, it has

lim
k→∞

1

k
P (fk, φk) ≤ lim

m→∞
P (f,

1

m
φm) = P (f,F).

Next we prove that

P (f,F) ≤ lim
k→∞

1

k
P (fk, φk).

For a fixed k ∈ N, let n = km + r, 0 ≤ r < k, and let C = maxx∈M max1≤i≤k φi(x).

For ∀ε > 0, by the uniformly continuity of f , there exists δ > 0 such that if E ⊂ M is

an (n, ε) separated set of f , then E is an (m, δ) separated set of fk and δ → 0 when

ε → 0. Using the subadditivity of φn, we have

φn(x) ≤ φk(x) + φk(f
k(x)) + · · ·+ φk(f

(m−1)k(x)) + φr(f
mk(x)).

Thus

Pn(f,F , ε) ≤ Pm(fk, φk, δ)× eC .

Hence

P (f,F , ε) ≤ 1

k
P (fk, φk, δ).

It gives that

P (f,F) ≤ 1

k
P (fk, φk).

From the arbitrary of k, we have that

P (f,F) ≤ lim
k→∞

1

k
P (fk, φk).
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Corollary 3. Let F(α) = {−gα(·, fk)}, then we have

P (f,F(α)) = lim
k→∞

1

k
P (fk,−gα(·, fk)).

Proof. Fixed α, let φk(x) = −gα(x, fk). Using Theorem 2.2 for F(α) = {−gα(x, fk)},
we get

P (f,F(α)) = lim
k→∞

1

k
P (fk,−gα(·, fk)).

Theorem 2.6.

inf
n∈N

Dn = D(Λ, f)

Proof. Without loss of generality, we suppose that lim
n→∞

Dn = β∗ = infn∈NDn. Other-

wise we can take a subsequence which converges to β∗. Since

|1
k
P (fk,−gβ∗(·, fk))− 1

k
P (fk,−gDk(·, fk))| ≤ ‖ − 1

k
gβ∗(·, fk) +

1

k
gDk(·, fk)‖

≤ |β∗ −Dk|‖Df‖,

we have

P (f,F(β∗)) = lim
k→∞

1

k
P (fk,−gβ∗(·, fk))

= lim
k→∞

1

k
P (fk,−gDk(·, fk)) = 0.

Thus

D(f, Λ) = β∗ = inf
k∈N

Dk.

In this section, we have proven that for C1 non-conformal repeller Λ, D(f, Λ),

which is the unique solution of equation P (f,F(α)) = 0, is the upper bounds of

Hausdorff dimension of Λ. This is a generalization of the classical result which for

C1+γ conformal repeller Λ, dimHΛ is given by the unique solution of the equation

P (f |Λ,−α log ‖Dxf‖) = 0. Moreover, we prove that

D(f, Λ) = inf
n∈N

Dk = inf
n∈N

αk,

where for each n ∈ N, Dn and αn are the unique solutions of equations P̃n(α) = 0 and

Pn(α) = 0 respectively.
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3 Other results of upper bounded estimates of di-

mension for repeller

Let us first recall Falconer’s definition of topological pressures for sub-additive po-

tentials on mixing repellers. Without loss of generality, we only consider one-sided

sub-shift spaces of finite type rather than mixing repellers.

Let (ΣA, σ) be a one-sided sub-shift space over an alphabet {1, . . . , m}, where m ≥
2. As usual ΣA is endowed with the metric d(x, y) = m−n where x = (xk), y = (yk) and

n is the smallest of the k such that xk 6= yk. For any admissible string I = i1 . . . in of

length n over the letters {1, . . . , m}, denote [I] = {(xi) ∈ Σ : xj = ij for 1 ≤ j ≤ n}.
The [I] is called an n-th cylinder in ΣA.

Let F be a sub-additive family of continuous potentials define on Σ. Falconer

defined the topological pressure of F by

FP (σ,F) = lim
n→∞

1

n
log FPn(σ,F) and FPn(σ,F) =

∑

[I]

sup
x∈[I]

eφn(x),

where the summation is taken over the collection of all nth cylinders [I]’s.

It is not so hard to see that in this special case, FPn(σ,F) = Pn(σ,F , 1/m), and

Pn(σ,F ,m−k) = FPn+k−1(σ,F) for all k ∈ N. This implies FP (σ,F) is equivalent to

our definition P (σ,F).

Now let us turn to Barreira’s approach in defining pressures for sub-additive po-

tentials via open covers.

As in the previous sections, let f be a continuous map acting on a compact metric

space (X, d). Let F = {φn}∞n=1 be a family of sub-additive continuous functions defined

on X. Suppose U is a finite open cover of the space X. For n ≥ 1 we denote by Wn(U)

the collection of strings U = U1 . . . Un with Ui ∈ U . For U ∈ Wn(U) we call the integer

m(U) = n the length of U and define

X(U) = U1 ∩ f−1U2 ∩ . . . ∩ f−(n−1)Un

=
{
x ∈ X : f j−1x ∈ Uj for j = 1, . . . , n

}
.

We say that Γ ⊂ ⋃
n≥1Wn(U) covers X if

⋃
U∈Γ X(U) = X. For each U ∈ Wn(U), we

write eφ(U) = supx∈X(U) eφn(x) when X(U) 6= ∅ and eφ(U) = −∞ otherwise. For s ∈ R,

define

M(f, s,F ,U) = lim
n→∞

inf{
∑
U∈Γ

e−sm(U)eφ(U)},

where the infimum is taken over all Γ ⊂ ⋃
j≥nWj(U) that covers X. Likewise, we

define

M(f, s,F ,U) = lim inf
n→∞

inf{
∑
U∈Γ

e−sm(U)eφ(U)},

M(f, s,F ,U) = lim sup
n→∞

inf{
∑
U∈Γ

e−sm(U)eφ(U)},
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where the infimum is taken over all Γ ⊂ Wn(U) that covers X. Define

P ?(f,F ,U) = inf{s : M(f, s,F ,U) = 0} = sup{s : M(f, s,F ,U) = +∞},

CP ?(f,F ,U) = inf{s : M(f, s,F ,U) = 0} = sup{s : M(f, s,F ,U) = +∞},
CP ?(f,F ,U) = inf{s : M(f, s,F ,U) = 0} = sup{s : M(f, s,F ,U) = +∞}.

Define

P ?(f,F) = lim inf
diam(U)→0

P ?(f,F ,U),

CP ?(f,F) = lim inf
diam(U)→0

CP ?(f,F ,U),

CP ?(f,F) = lim inf
diam(U)→0

CP ?(f,F ,U).

Barreira named P ?(f,F) the topological pressure, CP ?(f,F) and CP ?(f,F) the

lower and upper topological pressures of F .

Now we consider the connection between P ?(f,F) and P (f,F). In [4], we prove

the following equality.

Proposition 3.1. Assume the topological entropy h(f) < ∞ and the entropy map

µ 7→ hµ(f) is upper semi-continuous. Then P ?(f,F) = P (f,F).

Theorem 3.1. Let M be a C∞ Riemann manifold and f : M → M be a C1 map.

Suppose Λ ⊂ M is a compact invariant set on which f is expanding. Then

P ?(f,F(α)) = P (f,F(α)).

Proof. Since Λ ⊂ M is a compact invariant set on which f is expanding, it has measure

theoretical entropy hµ(f |Λ) is an upper semi-continuous map in M(f |Λ). By proposi-

tion 3.1, it has

P ?(f,F(α)) = P (f,F(α)).

In [1], Barreira proved that if Λ is a repeller of a C1+γ map, for some γ > 0 and

f is γ−bunched on Λ, then dimB ≤ t∗, where t∗ is the unique number of equation

P ?(f,F(α)) = 0. In [1], γ−bunched condition and C1+γ were used to show that it is

reasonable to define P ?(f,F(α)).

Corollary 4. Let M be a C∞ Riemann manifold and f : M → M be a C1 map.

Suppose Λ ⊂ M is a compact invariant set on which f is expanding. Then

dimBΛ ≤ D(Λ, f) and dimHΛ ≤ D(Λ, f),

where D(Λ, f) is the unique solution of equation P (f,F(α)) = 0.
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Proof. By Theorem 3.1, we have that if Λ is a repeller of a C1 map, then we can define

P ?(f,F(α)) and prove that it is coincidence with P (f,F(α)). It is proved in [1] that

dimB ≤ t∗, where t∗ is the unique solution of equation P ?(f,F(α)) = 0. Thus we have

that t∗ = D(Λ, f) which is the unique solution of equation P (f,F(α)) = 0. Therefore

we also have the inequality for box dimension.

Remark 3. In [18], Zhang posed a problem whether D(Λ, f) is the upper bound of

box dimension of Λ. Corollary as above gives an affirmative answer to the problem.

Moreover, our result shows that the subadditive thermodynamic formalism can be apply.

In fact we have proven that if Λ is a repeller of a C1 map, then the upper bounds of

Hausdorff dimension of Λ by Barreira in [1], Falconer in [8] and Zhang in [18] are

coincide. This unifies their results and it also shows that bunched condition in [1] and

[8] is unnecessary. Our result also gives an affirmative answer to problem posed by

K.Simon in [15] about an upper bound without assuming the 1-bunched property.

4 Average conformal repeller

Let M be a C∞ Riemann manifold, dim M = d. Let U be an open subset of M and

let f : U → M be a C1 map. Suppose Λ ⊂ U is a compact expanding invariant set.

Let E(f) denote the all ergodic invariant measure supported on Λ respectively. By the

Oseledec multiplicative ergodic theorem, for any µ ∈ E(f), we can define Lyapunov

exponents λ1(µ) ≤ λ2(µ) ≤ · · · ≤ λd(µ) .

Definition 4.1. An invariant repeller is called average conformal if for any µ ∈ E(f),

λ1(µ) = λ2(µ) = · · · = λd(µ) > 0.

It is obvious that a conformal repeller is an average conformal repeller, but reverse

isn’t true.

Next we will give main theorem.

Theorem 4.1. (Main Theorem) Let f be C1 dynamical system and Λ be an average

conformal repeller, then the Hausdorff dimension of Λ is zero t0 of t 7→ P (−tF), where

F = {log(m(Dfn(x)), x ∈ Λ, n ∈ N}. (4.3)

where m(A) = ‖A−1‖−1

The proof will be given in section 6.

Theorem 4.2. If Λ be an average conformal repeller, then

lim
n→∞

1

n
(log ‖Dfn(x)‖ − log m(Dfn(x))) = 0

uniformly on Λ.
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Proof. Let

Fn(x) = log ‖Dfn(x)‖ − log m(Dfn(x)), n ∈ N, x ∈ Λ.

It is obviously that the sequence {Fn(x)} is a non-negative subadditive function se-

quence. That is say

Fn+m(x) ≤ Fn(x) + Fm(fn(x)), x ∈ Λ.

Suppose (4.3) is not true, then there exists ε0 > 0, for any k ∈ N, there exits nk ≥ k

and xnk
∈ Λ such that

1

nk

Fnk
(xnk

) ≥ ε0.

Define measures

µnk
=

1

nk

nk−1∑
i=0

δf i(xnk
).

Compactness of P(f) implies there exists a subsequence of µnk
that converges to mea-

sure µ. Without loss of generality, we suppose that µnk
→ µ. It is well known that µ

is f -invariant. Therefore µ ∈M(f).

For a fixed m, we have

lim
k→∞

∫

M

1

m
Fm(xnk

)dµnk
=

∫

M

1

m
Fm(xnk

)dµ.

It implies

lim
k→∞

1

nk

nk−1∑
i=0

1

m
Fm(f i(xnk

)) =

∫

M

1

m
Fm(x)dµ.

For a fixed m, let nk = ms + l, 0 ≤ l < m. The sub-additivity of {Fn} implies that for

j = 0, · · ·m− 1,

Fnk
(xnk

) ≤ Fj(xnk
) + Fm(f j(xnk

) + · · ·+ Fm(fm(s−2)f j(xnk
))

+Fm−j+l(f
m(s−1)f j(xnk

))

Summing j from 0 to m− 1, we get

Fnk
(xnk

) ≤ 1

m

m−1∑
j=0

s−2∑
i=0

Fm(f im+j(xnk
))

+
1

m

m−1∑
j=0

[Fj(xnk
) + Fm−j+l(f

(s−1)m+j(xnk
))]
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Let C1 = maxi=1,··· ,2m−1 maxx∈Λ Fi(x).

Fnk
(x) ≤

(sm+l)−1∑
j=0

1

m
Fm(f j(x))− 1

m

sm−1∑

j=(s−1)m

Fm(f j(x)) + 2C1

≤
nk−1∑
j=0

1

m
Fm(f j(x)) + 4C1.

Hence we have

lim
k→∞

1

nk

Fnk
(x) ≤ lim

k→∞
1

nk

nk−1∑
i=0

1

m
Fm(f i(x)) =

∫

M

1

m
Fm(x)dµ.

The arbitrariness of m ∈ N implies that

lim
k→∞

1

nk

Fnk
(x) ≤ 1

m

∫

M

Fm(x)dµ, ∀m ∈ N.

Hence

lim
m→∞

1

m

∫

M

Fm(x)dµ ≥ ε0 > 0.

Then ergodic decomposition theorem [17] implies that there exists µ̃ ∈ E(f) such that

lim
m→∞

1

m

∫

M

Fm(x)dµ̃ ≥ ε0 > 0.

On the other hand, from Oseledec theorem and Kingman’s subadditive ergodic theo-

rem, we have lim
m→∞

1
m

∫
M

log ‖Dfm(x)‖dµ̃ = λd(µ̃) and lim
m→∞

1
m

∫
M

log m(Dfm(x))dµ̃ =

λ1(µ̃). Therefore

λd(µ̃)− λ1(µ̃) ≥ ε0.

This gives a contradiction to assumption of average conformal.

5 Super-additive variational principle

In this section, we first give the definition of super-additive topological pressure. Then

we prove the variational principle for special super-additive potential.

Let f : X → X be a continuous map. A set E ⊂ X is called (n, ε) separated set with

respect to f if x, y ∈ E then dn(x, y) = max0≤i≤n−1 d(f ix, f iy) > ε. A super-additive

valuation on X is a sequence of functions ϕn : M → R such that

ϕm+n(x) ≥ ϕn(x) + ϕm(fn(x)),
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we denote it by F = {ϕn}.
In the following we will define the topological pressure of F = {ϕn} with respect

to f . We define

P ∗
n(F , ε) = sup{

∑
x∈E

exp ϕn(x) : E is a (n, ε)− separated subset of X}.

Then the topological pressure of F is given by

P ∗(f,F) = lim
ε→0

lim sup
n→∞

1

n
log Pn(F , ε).

For every µ ∈M(X, f), let F∗(µ) denote the following limit

F∗(µ) = lim
n→∞

1

n

∫
ϕndµ.

The existence of the above limit follows from a super-additive argument. We call F∗(µ)

the Lyapunov exponent of F with respect to µ since it describes the exponential growth

speed of ϕn with respect to µ.

Theorem 5.1. Let f be C1 dynamical system and Λ be an average conformal repeller,

and F = {ϕn(x)} = {−t log ‖Dfn(x)‖} for t ≥ 0 be a super-additive function sequence.

Then we have

P ∗(f,F) = sup{hµ(T ) + F∗(µ) : µ ∈M(X, f)}.

Proof. First we prove that for any m ∈ N

P ∗(f,F) ≥ P (f,
ϕm

m
).

For a fixed m, let n = ms + l, 0 ≤ l < m. From the sup-additivity of {ϕn}, we have

ϕn(x) ≥ 1

m

m−1∑
j=0

s−2∑
i=0

ϕm(f im+j(x)) +
1

m

m−1∑
j=0

[ϕj(x) + ϕm−j+l(f
(s−1)m+j(x))].

Let C1 = mini=1,··· ,2m−1 minx∈X ϕi(x). Then it has

ϕn(x) ≥
(sm+l)−1∑

j=0

1

m
ϕm(f j(x))− 1

m

sm−1∑

j=(s−1)m

ϕm(f j(x)) + 2C1

≥
n−1∑
j=0

1

m
ϕm(f j(x)) + 4C1.

Hence we have
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exp(ϕn(x)) ≥ exp(
n−1∑
j=0

1

m
ϕm(f j(x)) + 4C1).

Thus

P ∗
n(F , ε) = sup{

∑
x∈E

exp ϕn(x) : E is a (n, ε)− separated subset of X}

≥ Pn(
1

m
ϕm, ε)× exp(4C1).

It implies

P ∗(f,F) ≥ P (f,
1

m
ϕm) .

From the arbitrary of m ∈ Z+, we have

P ∗(f,F) ≥ P (f,
1

m
ϕm), for all m ∈ Z+.

By the variational principle in [17], for every µ ∈M(f), we have

P ∗(f,F) ≥ P (f,
1

m
ϕm) ≥ hµ(f) +

∫

M

1

m
ϕm(x)dµ, ∀m ∈ N.

Hence we have for every µ ∈M(f)

P ∗(f,F) ≥ hµ(f) + lim
m→∞

∫

M

1

m
ϕm(x)dµ.

Therefore

P ∗(f,F) ≥ sup{hµ(f) + lim
m→∞

∫

M

1

m
ϕm(x)dµ, µ ∈M(f)}

Let Φn(x) = −t log m(Dfn(x)) for t ≥ 0. Then it is sub-additive. By the theorem

in [4], we have

P (f, {Φn}) = sup{hµ(f) + lim
m→∞

∫

M

1

m
Φm(x)dµ, µ ∈M(f)}

By the definitions, −t log m(Dfn(x)) ≥ −t log ‖Dfn(x)‖ for t ≥ 0 implies that

P ∗(f,F) ≤ P (f, {Φn}).
Theorem 4.3 implies that for any µ ∈M(f), it has

lim
m→∞

∫

M

1

m
Φm(x)dµ = lim

m→∞

∫

M

1

m
ϕm(x)dµ.

Therefore

P ∗(f,F) = sup{hµ(f) + lim
m→∞

∫

M

1

m
Φm(x)dµ, µ ∈M(f)}.

This completes the proof of theorem.
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6 The proof of main theorem

In this section, we will give the proof of main theorem. First we state some known

results.

In [1], Barreira prove the following theorem.

Theorem 6.1. If f is a C1 expanding map and Λ is a repeller, then

s1 ≤ dimHΛ ≤ dimBΛ ≤ dimBΛ ≤ t1

where s1 and t1 are the unique roots of the Bowen’s equations P (f,−t log ‖Df(x)‖) = 0

and P (f,−t log m(Df(x))) = 0 respectively.

Since Λ is f -invariant, it is fn-invariant. Hence we have the following corollary.

Corollary 5. If f is a C1 expanding map and Λ is a repeller, then

sn ≤ dimHΛ ≤ dimBΛ ≤ dimBΛ ≤ tn

where sn and tn are the unique roots of the Bowen’s equations P (fn,−t log ‖Dfn(x)‖) =

0 and P (fn,−t log m(Dfn(x))) = 0 respectively.

Next we prove that the sequences {t2k} and {s2k} are monotone.

Theorem 6.2. The sequence {s2k} is monotone, and

lim
k→∞

s2k = s∗.

Then we have s∗ is the unique root of equation P ∗(f,−t{log ‖Dfn(x)‖}) = 0.

Proof. First we prove that the sequence {s2n} is monotone increasing. Let ϕn =

− log ‖(Dfn(x)‖ and F = {ϕn}. Then it is a sup-additive function sequence. For a

fixed k ∈ N,

Pk(φ, ε) = sup{
∑
x∈E

exp Snφ(x) : E is a (n, ε)− separated subset of X}.

For ∀ε > 0, by the uniformly continuity of f , there exists δ > 0 such that if E ⊂ M

is an (n, ε) separated set of f 2k+1
, then E is an (2n, δ) separated set of f 2k

and δ → 0

when ε → 0. Using the supadditivity of ϕn, the Birkhoff sum Snφ2k+1 of ϕ2k+1 with

respect to f 2k+1
has the following property:

Snϕ2k+1(x) = ϕ2k+1(x) + ϕ2k+1(f 2k+1

x) + · · ·+ ϕ2k+1(f 2k+1(n−1)x)

≥ ϕ2k(x) + ϕ2k(f 2k

x) + ϕ2k(f 2k+1

x) + ϕ2k(f 2k+1

f 2k

x)

+ · · ·+ ϕ2k(f 2k+1(n−1)x) + ϕ2k(f 2k+1(n−1)f 2k

x)

= S2nϕ2k(x)
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where S2nϕ2k(x) is the Birkhoff sum of ϕ2k with respect to f 2k
.

Thus

Pn(f 2k+1

, ϕ2k+1 , ε) ≥ P2n(f 2k

, ϕ2k , δ).

Hence

P (f 2k+1

, ϕ2k+1) ≥ 2P (f 2k

, ϕ2k).

Therefore if s2k+1 is the unique root of Bowen’s equation P (tϕ2k+1) = 0, then we

have

0 = P (f 2k+1

, s2k+1ϕ2k+1) ≥ 2P (f 2k

, s2k+1ϕ2k).

Since the function P (f 2k
, tφ2k) is monotone decreasing, s2k ≤ s2k+1 .

The arbitrariness of k implies that the sequence {s2k} monotone decreasing.

Next we prove that

P ∗(f,F) ≥ 1

k
P (fk, ϕk) ∀k ∈ N.

For a fixed k ∈ N, let n = km + r, 0 ≤ r < k, and let C = minx∈M max1≤i≤k φi(x).

For ∀ε > 0, by the uniformly continuity of f , there exists δ > 0 such that if E ⊂ M is

an (n, ε) separated set of f , then E is an (m, δ) separated set of fk and δ → 0 when

ε → 0. Using the sup-additivity of ϕn, we have

ϕn(x) ≥ ϕk(x) + ϕk(f
k(x)) + · · ·+ ϕk(f

(m−1)k(x)) + ϕr(f
mk(x)).

Thus

P ∗
n(f,F , ε) ≥ Pm(fk, ϕk, δ)× e−C .

Hence

P ∗(f,F , ε) ≥ 1

k
P (fk, ϕk, δ).

It gives that

P ∗(f,F) ≥ 1

k
P (fk, ϕk).

Therefore

P ∗(f,F) ≥ 1

2k
P (f 2k

, φ2k) ∀k ∈ N.

Let tF = {tφn(x)}. Then we have

P ∗(f, s2kF) ≥ 1

2k
P (f 2k

, s2kφ2k) = 0 ∀k ∈ N.
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The monotone decreasing of P ∗(f, tF) with respect to t implies that the unique root

s∗ of the equation

P ∗(f, tF) = 0

satisfies

s∗ ≥ s2k ∀k ∈ N.

Thus

s∗ ≥ s = lim
k→+∞

s2k .

Next we want to prove that

s ≥ s∗.

For a fixed m,
1

2m
P (f 2m

, s2mϕ2m) = 0

using the variational principle, for any µ ∈M(f) ⊂M(f 2m
), it has

hµ(f) +
1

2m
s2m

∫

M

ϕ2mdµ =
1

2m
(hµ(f 2m

) + s2m

∫

M

ϕ2mdµ) ≤ 0.

Let m →∞, we

hµ(f) + s lim
m→∞

∫

M

1

2m
ϕ2mdµ ≤ 0.

Using sup-additive variational principle, we have

P ∗(f, s{ϕn}) ≤ 0.

Since P (f, t{ϕn}) is strictly monotone decreasing with respect to t, we have

s∗ ≤ s.

Lemma 6.1. If φn(x) is a subadditive sequence, then

lim
k→∞

1

2k
P (f 2k

, φ2k) ≤ lim
m→∞

P (f,
φ2m

2m
).

Proof. For a fixed k ∈ N. It is well known that if E ⊂ M is an (n, ε) separated set of

f 2k
, then E is an (n2k, ε) separated set of f . By the definition

P (f 2k

, φ2k) = lim
ε→∞

lim sup
n→∞

1

n
log sup{

∑
x∈E

exp(Ŝnφ2k(x))

: E is a (n, ε) separated set of f 2k},

where

(Ŝnφ2k(x)) = φ2k(x) + φ2k(f 2k

x) + · · ·+ φ2k(f (n−1)2k

x).

23



Hence for a fixed m < k, let 2k = 2mq + r and C = maxx∈M maxi=1,··· ,2m φi(x), the

subadditivity of φn implies that

φ2k(x) ≤ 1

2m

2m−1∑
j=0

q−2∑
i=0

φ2m(f i2m+j(x)) +
1

2m

2m−1∑
j=0

[φj(x) + φ2m−j+l(f
(q−1)2m+j(x))]

≤
2k−1∑
i=0

1

2m
φ2m(f i(x)) + 4C.

Thus for 1 ≤ j ≤ n− 1, we have

φ2k(f 2kj(x)) ≤
2k−1∑
i=0

1

2m
φ2m(f i(f 2kj(x)) + 4C.

Hence

Ŝnφ2k(x) = φ2k(x) + φ2k(f 2k

x) + · · ·+ φ2k(f (n−1)2k

x)

≤
n2k−1∑

i=0

1

2m
φ2m(f i(x)) + 4nC

= Sn2k(
1

2m
φ2m)(x) + 4nC.

It gives that

Pn(f 2k

, φ2k , ε) ≤ Pn2k(f,
1

2m
φ2m , ε)× e4nC .

Thus

P (f 2k

, φ2k) ≤ 2kP (f,
1

2m
φ2m) + lim

n→∞
1

n
log e4nC

= 2kP (f,
1

2m
φ2m) + 4C.

Therefore

lim
k→∞

1

2k
P (f 2k

, φ2k) ≤ P (f,
1

2m
φ2m) for all m ∈ Z+.

Hence

lim
k→∞

1

2k
P (f 2k

, φ2k) ≤ lim
m→∞

P (f,
1

2m
φ2m).

Lemma 6.2.

lim
n→∞

P (f,
φ2k

2k
) ≤ P (f,F).
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Proof. Since f : Λ → Λ is expanding map, hµ(f) is an upper-semi continuous function

from M(f |Λ) to R. From variational principle of topological pressure [17], we have

that for every k ∈ Z+ there exists µ2k ∈M(f |Λ) such that

P (f |Λ,
1

2k
φ2k) = hµ

2k
(f) +

∫

Λ

1

2k
φ2kdµ2k .

Since M(f |Λ) is compact, it implies that µ2k has a subsequence which converges to

µ ∈ M(f |Λ). Without loss of generality, suppose that µ2k converges to µ. Using the

subadditivity and invariant of µ2k , then we have for every k ∈ N

hµ
2k

(f) +

∫

Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫

Λ

φ1(x)dµ2k .

Furthermore for fixed s ∈ N. If k > s, from the subadditivity and invariance of µ2k , it

has

hµ
2k

(f) +

∫

Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫

Λ

φ2s(x)

2s
dµ2k .

Since hµ(f) is a upper-semi continuous function, we have

lim
k→∞

P (f,
φ2k

2k
) = lim

k→∞
(hµ

2k
(f) +

∫

Λ

φ2k(x)

2k
dµ2k)

≤ lim
k→∞

(hµ
2k

(f) +

∫

Λ

φ2s(x)

2s
dµ2k)

≤ hµ(f) +

∫

Λ

φ2s(x)

2s
dµ.

Since sequence {∫
Λ

φn(x)dµ} is sub-additive sequence, it has

lim
n→∞

∫

Λ

φn(x)

n
dµ = inf

n≥1
{
∫

Λ

φn(x)

n
dµ}.

The arbitrariness of s ∈ N implies that

lim
k→∞

P (f,
φ2k

2k
) ≤ hµ(f) + lim

s→∞

∫

Λ

φ2s

2s
(x)dµ.

Hence by variational principle of the sub-additive topological pressure in [4], we have

lim
k→∞

P (f,
φ2k

2k
) ≤ hµ(f) + lim

s→∞

∫

Λ

φ2s

2s
(x)dµ ≤ P (f,F).

This completes the proof of lemma.
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Theorem 6.3. The sequence {t2n} is monotone, and

lim
n→∞

t2n = t∗

where t∗ is the unique root of equation P (f,−t{log m(Dfn(x))}) = 0.

Proof. First we prove that the sequence {t2n} is monotone decreasing. Let φn =

− log m(Dfn(x)). For a fixed k ∈ N,

Pk(φ, , ε) = sup{
∑
x∈E

exp Snφ(x) : E is a (n, ε)− separated subset of X}.

For ∀ε > 0, by the uniformly continuity of f , there exists δ > 0 such that if E ⊂ M

is an (n, ε) separated set of f 2k+1
, then E is an (2n, δ) separated set of f 2k

and δ → 0

when ε → 0. Using the subadditivity of φn, the Birkhoff sum Snφ2k+1 of φ2k+1 with

respect to f 2k+1
has the following property:

Snφ2k+1(x) = φ2k+1(x) + φ2k+1(f 2k+1

x) + · · ·+ φ2k+1(f 2k+1(n−1)x)

≤ φ2k(x) + φ2k(f 2k

x) + φ2k(f 2k+1

x) + φ2k(f 2k+1

f 2k

x)

+ · · ·+ φ2k(f 2k+1(n−1)x) + φ2k(f 2k+1(n−1)f 2k

x)

= S2nφ2k(x)

where S2nφ2k(x) is the Birkhoff sum of φ2k with respect to f 2k
.

Thus

Pn(f 2k+1

, φ2k+1 , ε) ≤ P2n(f 2k

, φ2k , δ).

Hence

P (f 2k+1

, φ2k+1) ≤ 2P (f 2k

, φ2k).

Therefore if t2k+1 is the unique root of Bowen’s equation P (tφ2k+1) = 0, then we

have

0 = P (f 2k+1

, t2k+1φ2k+1) ≤ 2P (f 2k

, t2k+1φ2k).

The monotone decreasing of the function P (f 2k
, tφ2k) implies that t2k ≥ t2k+1 .

The arbitrariness of k implies that the sequence {t2k} monotone decreasing. Hence

limit exists and we denote the limit of this sequence by t. From the proof as above, we

have

P (f 2k+1
, φ2k+1)

2k+1
≤ P (f 2k

, φ2k)

2k
≤ · · · ≤ P (f 2, φ2)

2
≤ P (f, φ).

Next we prove that

P (f,F) ≤ 1

k
P (fk, φk) ∀k ∈ N.
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For a fixed k ∈ N, let n = km + r, 0 ≤ r < k, and let C = maxx∈M max1≤i≤k φi(x).

For ∀ε > 0, by the uniformly continuity of f , there exists δ > 0 such that if E ⊂ M is

an (n, ε) separated set of f , then E is an (m, δ) separated set of fk and δ → 0 when

ε → 0. Using the subadditivity of φn, we have

φn(x) ≤ φk(x) + φk(f
k(x)) + · · ·+ φk(f

(m−1)k(x)) + φr(f
mk(x)).

Thus

Pn(f,F , ε) ≤ Pm(fk, φk, δ)× eC .

Hence

P (f,F , ε) ≤ 1

k
P (fk, φk, δ).

It gives that

P (f,F) ≤ 1

k
P (fk, φk).

Therefore

P (f,F) ≤ 1

2k
P (f 2k

, φ2k) ∀k ∈ N. (6.4)

Let tF = {tφn(x)}. Then we have

P (f, t2kF) ≤ 1

2k
P (f 2k

, t2kφ2k) = 0 ∀k ∈ N.

Therefore the unique root t∗ of the equation

P (f, tF) = 0

satisfies

t∗ ≤ t2k ∀k ∈ N.

Thus

t∗ ≤ t = lim
k→+∞

t2k .

Next we want to prove that

t ≤ t∗.

From Theorem 6.2 and lemma 6.1, 6.2, we have the sequence { 1
2k P (f 2k

, φ2k)} is mono-

tone decreasing and it converges to P (f,F). By the definition, it is easy to prove

that

0 ≤ P (f 2k
, tφ2k)

2k
− P (f 2k

, t2kφ2k)

2k
≤ |t− t2k |C, ∀k ∈ N,

where C = maxx∈M |φ1(x)|. Let k →∞, we have

P (f, tF) = 0.

Hence it has,

t = t∗.
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Theorem 6.4. t∗ = s∗.

Proof. From theorems as above, we have functions

P (f,−t{log m(Dfn(x))})
and

P (f,−t{log ‖Dfn(x)‖})
coincide and both of them have unique zero points. Therefore

t∗ = s∗.

The proof of main theorem:

From Corollary 5 and theorems 6.4 as above, we have

dimHΛ = dimBΛ = dimB = s∗ = t∗.

This completes the proof of main theorem.

Corollary 6. If Λ be an average conformal repeller, then the Hausdorff dimension of

Λ is zero t∗ of

t 7→ P (−t
1

d
log(|det(Df)|)),

where d = dimM and t 7→ P (−t1
d
log(|det|Df |)) is classical topological pressure.

Proof. If Λ be an average conformal repeller, then by Theorem 4.2, we have

lim
n→∞

1

n
(log ‖Dfn(x)‖ − log m(Dfn(x))) = 0

uniformly on Λ.

On the other hand, log(m(Dfn(x)) ≤ 1
d
log(|det(Dfn(x))|) ≤ log(|Dfn(x)|). Therefore

P (f,−t∗{log m(Dfn(x))}) = P (f,−t∗{1

d
log |det(Dfn(x))|}) = P (f,−t∗{log ‖Dfn(x)‖}) = 0.

The additivity of {log ‖Dfn(x)‖} implies that

P (f,−t∗{1

d
log |det(Dfn(x))|}) = P (f,−t∗ log

1

d
|det(Df(x)|) = 0.

That is say that t∗ is the root of equation P (−t1
d
log |det(Df)|) = 0. This gives the

proof of corollary.
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