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DIMENSION THEORY OF ITERATED FUNCTION SYSTEMS

DE-JUN FENG AND HUYI HU

ABSTRACT. Let{S;}¢_, be an iterated function system (IFS)&f with attrac-

tor K. Let (X, o) denote the one-sided full shift over the alphabgt. . ., £}.

We define the projection entropy functién on the space of invariant measures
on X associated with the coding map: ¥ — K, and develop some basic
ergodic properties about it. This concept turns out to be crucial in the study of
dimensional properties of invariant measuresfonWe show that for any con-
formal IFS (resp., the direct product of finitely many conformal IFS), without
any separation condition, the projection of an ergodic measure urideiways
exactly dimensional and, its Hausdorff dimension can be represented as the ratio
of its projection entropy to its Lyapunov exponent (resp., the linear combination
of projection entropies associated with several coding maps). Furthermore, for
any conformal IFS and certain affine IFS, we prove a variational principle be-
tween the Hausdorff dimension of the attractor and that of projections of ergodic
measures.
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1. INTRODUCTION

Let{S; : X — X}’_, be afamily of contractive maps on a nonempty closed set
X c R4 Following Barnsley [2], we say that = {S;}¢_; is aniterated function
systen(IFS) onX. Hutchinson [28] showed that there is a unique nonempty com-
pact setk C X, called theattractor of {S;}{_,, such thatk’ = (J'_, Si(K). A
probability measurg onR? is said to beexactly dimensionaf there is a constant
C such that théocal dimension

exists and equal€' for u-a.e. z € RY, whereB(z,r) denotes the closed ball of
radiusr centered at. It was shown by Young [65] that in such case, the Hausdorff
dimension ofu is equal toC. (See also [14, 43, 51].)

The motivation of the paper is to study the Hausdorff dimension of an invariant
measureu (see Section 2 for precise meaning) for conformal and affine IFS with
overlaps. To deal with overlaps, we regard such a system as the image of a natural
projections from the one-sided full shift space ovésymbols. Hence we obtain
a dynamical system. We introduce a notjmojection entropy which plays the
similar role as the classical entropy for IFS satisfying the open set condition, and
it becomes the classical entropy if the projection is finite to one. The concept of
projection entropy turns out to be crucial in the study of dimensional properties
of invariant measures on attractors of either conformal IFS with overlaps or affine
IFS.

We develop some basic properties about projection entropy (Theorem 2.2, 2.3).
We prove that for conformal IFS with overlaps, every ergodic measisexactly
dimensional and(y, =) is equal to the projection entropy divided by the Lyapunov
exponent (Theorem 2.8). Furthermoregifis a direct product of conformal IFS
(see Definition 2.10 for precise meaning), then for every ergodic measufé on
the local dimension can be expressed by a Ledrappier-Young type formula in terms
of projection entropies and Lyapunov exponents (Theorem 2.11). We also prove
variational results about Hausdorff dimension for conformal IFS and certain affine
IFS (Theorem 2.13 and 2.15), which says that the Hausdorff dimension of the
attractor K is equal to the supremum of Hausdorff dimensiornuofaking over
all ergodic measures. The results we obtain cover some interesting cases such as
Si(z) = diad(p1,...,ps)x + a;, wherei = 1,...,¢ andp;1 arePisot or Salem
numbersanda; € Z4.

The problem whether a given measure is exactly dimensional, and whether the
Hausdorff dimension of an attractor can be assumed or approximated by that of
an invariant measure have been well studied in the literatur€fof conformal
IFS which satisfy the open set condition (cf. [6, 23, 47]). It is well known that
in such case, any ergodic measurés exactly dimensional with the Hausdorff
dimension given by the classic entropy divided by the Lyapunov exponent. Fur-
thermore there is a unique invariant measureith dimy(¢) = dimg(K), the
Hausdorff dimension oi. However the problems become much complicated and
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intractable without the assumption of the open set condition. Partial results have
only been obtained for conformal IFS that satisfy finée type conditior{see [45]
for the definition). In that case, a Bernoulli measure is exactly dimensional and its
Hausdorff dimension may be expressed as the upper Lyapunov exponent of certain
random matrices (see e.g. [16, 17, 36, 39, 37]), and furthermore the Hausdorff
dimension ofK’ can be computed (see e.g. [35, 54, 45]).

There are some results for certain special non-overlapping affine IFS. McMullen
[44] and Bedford [5] independently computed the Hausdorff dimension and the box
dimension of the attractor of the following planar affine IFS

-1 0 i .
Si(x):{no k—1]$+[;//g}, i=1,...,0,

where alla;, b; are integersp) < a; < n and0 < b; < k. Furthermore they
showed that there is a Bernoulli measure of full Hausdorff dimension. This result
was extended by Kenyon and Peres [33] to higher dimensional self-affine Sier-
pinski sponges, for which ergodic measures are proved to be exactly dimensional
with Hausdorff dimension given by a Ledrappier-Young type formula. Another
extension of McMullen and Bedford’s result to a boarder class of planar affine IFS
{S;}{_, was given by Gatzouras and Lalley [20], in whishmap the unit square
(0,1)? into disjoint rectangles with sides parallel to the axes (where the longer
sides are parallel to the-axis, furthermore once projected onto thexis these
rectangles are either identical, or disjoint). Further extensions were given recently
by Baranski [1], Feng and Wang [19], Luzia [41] and Olivier [46]. For other related
results, see e.qg. [52, 38, 34, 21, 25, 27, 17, 60, 3, 31].

Along another direction, in [11] Falconer gave a variational formula for the
Hausdorff and box dimensions for “almost all” self-affine sets under some assump-
tions. This formula remains true under some weaker conditions [61, 29]. Kaenmaki
[30] proved that for “almost all” self-affine sets there exists an ergodic measure
so thatm o 7~ is of full Hausdorff dimension.

Our arguments use ergodic theory and Rohlin’s theory about conditional mea-
sures. The proofs of Theorem 2.6 and Theorem 2.11 are based on some ideas from
the work of Ledrappier and Young [40] and techniques in analyzing the densities
of conditional measures associated with overlapping IFS.

So far we have restricted ourselves on the study of finite contractive IFS. How-
ever we point out that part of our results remain valid for certain non-contractive
infinite IFS (see Section 10 for details).

The paper is organized as follows. The main results are given in Section 2. In
Section 3, we prove some density results about conditional measures. In Section 4,
we investigate the properties of projection entropy and prove Theorem 2.2 and 2.3.
In Section 5, we give some local geometric properties 6fdFS. In Section 6,
we prove a generalized version of Theorem 2.6, which is based on a key proposi-
tion (Proposition 6.1) about the densities of conditional measures. In Section 7, we
prove Theorem 2.11 and 2.12. In Section 8, we prove Theorem 2.13 and in Sec-
tion 9, we prove Theorem 2.15. In Section 10 we give a remark regarding certain
non-contractive infinite IFS.
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2. STATEMENT OF MAIN RESULTS

Let {S;}¢_; be an IFS on a closed s&t C R?. Denote byK its attractor. Let
¥ = {1,...,/}" associated with the left shiét (cf. [9]). Let M, (X) denote the
space ofo-invariant measures oR, endowed with the weak-star topology. Let
7w : ¥ — K be the canonical projection defined by

(1) {m(x)} = ﬁ Sy, 08,0208, (K), wherex = (z;)72;.
n=1

A measuren on K is calledinvariant (resp.,ergodiq for the IFS if there is an
invariant (resp. ergodic) measwen X such thaf, = v o 71,

Let (92, F,v) be a probability space. For a subalgebraA of 7 and f €
LY(Q, F,v), we denote byE, (f|.4) the theconditional expectation of givenA.
For countableF-measurable partitiofiof €2, we denote by, (£].4) theconditional
information of¢ given.A, which is given by the formula

2 L (6[A) = = xalogE,(xalA),
A€

wherex 4 denotes the characteristic function dn The conditional entropy of
givenA, written H,(£|.A), is defined by the formula

m@wz/nmﬂw

(See e.g. [48] for more details.) The above information and entropy are uncondi-
tional whenA = N, the trivial o-algebra consisting of sets of measure zero and
one, and in this case we write

IV(&‘N) = Iu(f) and HI/(£|N) = Hu(g)

Now we consider the spad&, B(X), m), whereB(X) is the Borelo-algebra
onY andm € M, (X). Let P denote the Borel partition

3) P=A{l]:1<j<t}
of ¥, where[j] = {(z;){2, € ¥ : 1 = j}. LetZ denote ther-algebra
I={BcB(X): o0 'B=B}.
For convenience, we useto denote the Boretf-algebra3(R?) onR?.
Definition 2.1. For anym € M, (X), we call
hy(o,m) := Hy(Plo tn~ty) — H, (Pln~1y)
the projection entropy ofn underr w.r.t. {S;}¢_,, and we call
he(o,m, ) := By, (f|T) (2)

thelocal projection entropy ofn at = underr w.r.t. {S;}¢_,, wheref denotes the
functionI,,,(Plo~ 17~ 1y) — L, (Plx~1y).

Itis clear that:, (o, m) = [ hr(o, m,z) dm(z). Ourfirstresult is the following
theorem.
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Theorem 2.2. Let{S;}{_, be an IFS. Then
(i) Foranym € M, (%), we have) < h(c,m) < h(o,m), whereh(o,m)
denotes the classical measure-theoretic entropy @fssociated witlr.
(i) The mapm +— hy(o,m) is affine onM,(X). Furthermore ifm =
[ v dP(v) is the ergodic decomposition of, we have

hx(o,m) = /hﬂ(a, v) dP(v).
(i) Foranym € M,(X), we have

1
lim EIm(Pg_lhr_lfy)(:v) = h(o,m,z) — hz(o,m,x)
for m-a.e. x € X, whereh(o, m, x) denotes the local entropy of at z,
thatis,h(o, m,z) = I,(Plo~1B(X))(z).

Part (iii) of the theorem is an analogue of the classical relativized Shannon-
McMillan-Breiman theorem (see, e.g. [8, Lemma 4.1]). However, we should no-
tice that the sular-algebrar—!+ in our consideration is nat-invariant in general
(see Remark 4.11).

Part (iii) also implies that if the map: ¥ — K is finite-to-one, then

hx(o,m) = h(o,m)

for anym € M,(X). In Section 4, we will present a sufficient and necessary
condition for the equality (see Corollary 4.16). However for general overlapping
IFS, the projection entropy can be strictly less than the classical entropy.

In our next theorem, we give a geometric characterization of the projection en-
tropy for certain affine IFS, which will be used later in the proof of our variational
results about the Hausdorff and box dimensions of self-affine sets.

Theorem 2.3. Assume tha® = {S;}¢_; is an IFS onR? of the form
Si(z) = Az + ¢ (1=1,...,0),

whereA is ad x d non-singular contractive real matrix ang € R¢. Let K denote
the attractor of®. Let Q denote the partitio{[0,1)¢ + a : « € Z4} of RY. For
n=0,1,...,andz € R¢, we setQ,, = {A"Q : Q € Q}. Then

(i) Foranym € M,(X), we have

Hm -1 n
hz(o,m) = lim (an)

(i) Moreover,

lim log#H{Q@€Q: A"QNK #0} = sup{hz(o,m): m € M(2)}.

n—o0 n

To give the applications of projection entropy in dimension theory of IFS, we
need some more notation and definitions.
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Definition 2.4. {S; : X — X}¢_, is called aC' IFSon a compact seX C R if
eachsS; extends to a contracting*-diffeomorphisms; : U — S;(U) ¢ U on an
opensel D X.

For anyd x d real matrix}/, we use|| M || to denote the usual norm @f, and
| M| the smallest singular value af, i.e.,

|M|| = max{|Mv|: veR? |v]=1} and

(4) [M|] = min{|Mv| : veR? |v| =1}.

Definition 2.5. Let {S;}¢_, be aC! IFS. Forz = (zj)52, € X, theupper and

lower Lyapunov exponents {xSi}le at x are defined respectively by

Az) = —liminf E log| S, (mo"z)],

n—oo N 1---Tm

1 (MO ),

1
Az) = —limsup — log || S,
n—oo M
whereS; . (mo"x) denotes the differential &,,. ;, := Sz, 0 Sz, 0...085;,
at ro"z. When\(z) = \(z), the common value, denoted aér), is called the

Lyapunov exponent ¢fS; }¢_, atx.

Itis easy to check that bothand) are positive-valued-invariant functions on
¥ (i.e. A = Moo and) = )\ o ¢). Recall that for a probability measureon R¢,
thelocal upper and lower dimensiormse defined respectively by

y log u(B(z, 1)) log u(B(z, 1))

d(p, ©) = lim sup o dlpz) =lminf ==

r—0 logr
where B(x,r) denotes the closed ball of radiuscentered ate. If d(u,z) =
d(u, z), the common value is denoted &g:, =) and is called théocal dimension
of m atz.
The following theorem gives an estimate of local dimensions of invariant mea-
sures on the attractor of an arbitragy IFS, without any separation condition.

Theorem 2.6. Let {S;}¢_, be aC! IFS with attractork’. Then fory = m o 71,
wherem € M, (%), we have the following estimates:

- hx(o,m,x)

Ay, mr) < hx(o,m,x)

and d(p,mz) > ———"~ form-a.e.x €,
@) e 73

whereh, (o, m,x) denotes the local projection entropy of at = underr (see
Definition 2.1). In particular, ifm is ergodic, we have

hr(0,m) <d(p,2) < d(u,z) < fix(0,m)

- ————= foru-aeze K.
[Xdm ~ [Adm press

Definition 2.7. Let {S;}¢_, be aC' IFS andm € M,(%). We say that S;}¢_,
is m-conformalif \(z) exists (i.e.\(z) = A(x)) for m-a.e.x € X.

As a direct application of Theorem 2.6, we have
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Theorem 2.8. Assume thaf S;}¢_, is m-conformal for somen € M, (). Let
pu=mon~!. Then we have

(5) d(p, x) = W for m-a.e.x € X.
In particular, if m is ergodic, we have

h’ﬂ'(o-’ m)
6 d = ——"2 forpu-a.e. K.

Recall thatS : U — S(U) is a conformal map i5’(z) : RY — R? satisfies
15" (x)|| # 0 and|S"(z)y| = [|S"(z)|y| for all € U andy € R

Definition 2.9. A C' IFS {S;}¢_, is said to beveakly conformaif

T1...Tn

(l0g]SL, ..o, (0" 2)] ~ Tog S}, _, (m" ) )

converges to uniformly onX: asn tends toso. We say tha{ S; }‘_, is conformalif
eachsS; extends to a conformal maf) : U — S;(U) C U on an open sdl D K,
whereK is the attractor of S; }¢_;.

By definition, a conformal IFS is always weakly conformal. Furthermore, a
weakly conformal IFS isn-conformal for eachn € M, (X) (see Proposition
5.6(ii)). There are some natural examples of weakly conformal IFS which are not
conformal. For instance, |&t;(z) = A;xz +a; (1 = 1,...,¢) such that, for each
A; is a contracting linear map with eigenvalues equal to each other in modulus, and
A;A; = AjA; for differenti, 5. Then such an IFS is always weakly conformal but
not necessary to be conformal. The first conclusion follows from the asymptotic
behavior

lim [AP[Y" = Jim APV = p(4)  (i=1,....0),
n—oo n—oo
wherep(A;) denotes the spectral radius 4f (cf. [64]).

Theorem 2.8 verifies the existence of local dimensions for invariant measures
on the attractor of an arbitrary weakly conformal IFS attractors, without any sep-
aration assumption. We point out that the exact dimensionality for overlapping
self-similar measures was first claimed by Ledrappier, nevertheless no proof has
been written out (cf. [50, p. 1619]). We remark that this property was also conjec-
tured later by Fan, Lau and Rao in [15].

We can extend the above result to a class of non-conformal IFS.

Definition 2.10. Assume forj = 1,....k, ®; := {S;;}{_, isaC" IFS defined
on a compact sek; C R%. Let® := {S;}’_; be the IFS onX; x --- x X}, C
R% x --. x R given by

Si(zl,. . .,Zk) = (Si71(,21),. . .,Si’k(zk)) (Z =1,...,¢0,7=1,...,k, Zj € Xj).
We say thatd is thedirect productof @4, ..., &, and write® = &1 x - -+ x Py
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Theorem 2.11.Let® = {S;}*_, be the direct product of C! IFS @1, ..., .
Lety = mon~!, wherem € M, (X). Assume thab,, ..., ®; are m-conformal.
Then
() d(u, z) exists foru-a.e. z.
(i) Assume furthermore that is ergodic. Thenu is exactly dimensional. Let
7 be a permutation of1, ..., k} such that

Ar(1) S Are) S0 S Arr),

where); = [ \j(x) dm(z), and\;(x) denotes the Lyapunov exponent of
®; atz € 3. Then we have

o k hr (oc,m) — hy._ (0,m
@) i z) = "m0y Pl L)

= for u-a.e. z
Ar(1) Ar(j)

j=2
wherer; denotes the canonical projection w.r.t. the 5 x - - - x @),
andh, (o, m) denotes the projection entropyaf underr;.

We mention that fractals satisfy the conditions of the theorem include many
interesting examples such as those studied in [44, 5, 20, 33], etc.
As an application of Theorem 2.11, we have

Theorem 2.12.Let{S;}¢_, be an IFS orR¢ of the form
Si(:L‘):AiJJ—I-ai, i=1,...,¢,

such that each; is a nonsingular contracting linear map di?, and AiA; =
AjA; foranyl <i,j < ¢. Then for any ergodic measure on%, = mo 7!
is exactly dimensional.

Indeed, under the assumption of Theorem 2.12, we can show that there is a
nonsingular linear transformatidh on R? such that the IF§T o S; o T~1}¢_, is
the direct product of some weakly conformal IFS. Hence we can apply Theorem
2.11 in this situation.

We remark that formula (7) provides an analogue of that for the Hausdorff di-
mension ofC'** hyperbolic measures along the unstable (resp. stable) manifold
established by Ledrappier and Young [40].

The problem of the existence of local dimensions has also a long history in
smooth dynamical systems. In [65], Young proved that an ergodic hyperbolic mea-
sure invariant under @' < surface diffeomorphism is always exact dimensional.
For a measureg in high-dimensionatC!* systems, Ledrappier and Young [40]
proved the existence of* andé®, the local dimensions along stable and unstable
local manifolds, respectively, and the upper local dimensiop &f bounded by
the sum ofé“, ¢°, and the multiplicity of0 as an exponent. Eckmann and Ruelle
[10] indicated that it is unknown whether the local dimensiop @ the sum op“
andé® if p is a hyperbolic measure. Then the problem was referred as Eckmann-
Ruelle conjecture, and affirmatively answered by Barreira, Pesin and Schmeling
in [4] seventeen years later. Some partial dimensional results were obtained for
measures invariant under hyperbolic endomorphism [58, 59]. Recently, Qian and
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Xie [53] proved the exact dimensionality of ergodic measures invariant uiitler
expanding endomorphism on smooth Riemannian manifolds.

In the remaining part of this section, we present some variational results about
the Hausdorff dimension and the box dimension of attractors of IFS and that of
invariant measures. First we consider conformal IFS.

Theorem 2.13.Let K be the attractor of a weakly conformal IFS;}¢_,. Then
we have

9) = sup{dimpyp: p=mo 7t me My(2), mis ergodic
= max{dimpgp: p=mor ", me M,(X)}
B hy(o,m)

(10) = sup{ " e ().

wheredim g K denotes the box dimension &t

Equality (8) was first proved by Falconer [12] f6f ¥ conformal IFS. It is not
known whether the supremum in (9) and (10) can be attained in the general setting
of Theorem 2.13. However, this is true if the IFS;}¢_, satisfies an additional
separation condition defined as follows.

Definition 2.14. An IFS {S;}¢_; on a compact seX C R? is said to satisfy the
asymptotically weak separation conditiGhWwSC), if

1
lim —logt, =0,

n—oo N

wheret,, is given by

(11) tn, = sup #{Sy: uwe{l,....0}", z € S, (K)},
x€R4

hereK is the attractor of S; }¢_;.

The above definition was first introduced in [18] under a slightly different set-
ting. For example, ifl /p is a Pisot or Salem number, then the I6& + a;}¢_,
on R, with a; € Z, satisfies the AWSC (see Proposition 5.3 and Remark 5.5 in
[18]). Recall that a real numbet > 1 is said to be é&alem numbeif it is an
algebraic integer whose algebraic conjugates all have modulus not greatér than
with at least one of which on the unit circle. Whil$t> 1 is called aPisot number
if it is an algebraic integer whose algebraic conjugates all have modulus less than
1. For instance, the largest roet (1.72208) of 2* — 3 — 22 — 2 + 1 is a Salem
number, and the golden rat{@/5 + 1)/2 is a Pisot number. One is referred to
[57] for more examples and properties about Pisot and Salem numbers. Under the
AWSC assumption, we can show that the projection entropy map h, (o, m)
is upper semi-continuous ok, (X)) (see Proposition 4.20) and, as a consequence,
the supremum (9) and (10) can be attained at ergodic measures (see Remark 8.2).
Next we consider some affine IFS.
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Theorem 2.15.Let® = {S;}{_, be an affine IFS oiR? given by

Si(x1s-.. xa) = (p121,7 s paxa) + (@i, - - - aia),
wherep; > pa > --- > pg > 0 anda;; € R. Let K denote the attractor op,
and write \; = log(1/p;) for j = 1,...,dand\gy; = oo. View® as the direct
product of®y, ..., &4, where®; = {S;;(z;) = pjz; + a;;}i_,. Assume that
®; x --- x &, satisfies the AWSC fgr=1,...,d. Then we have

dimg K = max {dimHﬂ cu=mom t, mis ergodic}
1
= max Z <>\j — )\]H> hr,(0,m) : mis ergodicy
7=1

wherer; is the canonical projection w.r.t. the IF8; x --- x ®;. Furthermore

4 /1 1
dimp K = <—>H,

whereH; := max{h,,(o,m) : m is ergodig.

It is direct to check that ifb; satisfies the AWSC for each< j < d, then so
does®; x---x ®;. Hence for instance, the condition of Theorem 2.15 fulfills when
1/p; are Pisot numbers or Salem numberséng, .. ., a; 4) € Z%. Different from
the earlier works on the Hausdorff dimension of deterministic self-affine sets and
self-affine measures (see e.qg. [44, 5, 33, 20, 27, 1, 46]), our model in Theorem 2.15
admits certain overlaps. The two variational results in Theorem 2.15 provide some
new insights in the study of overlapping self-affine IFS. An interesting question is
whether the results of Theorem 2.15 remain true without the AWSC assumption. It
is related to the open problem whether a non-conformal repeller carries an ergodic
measure of full dimension (see [22] for a survey). We remark that in the general
case, we do have the following inequality(see Lemma 9.2):

d

1 1 . .

dimpK > E ( - ) sup{hn; (o, m) : mis ergodig.
S\ A

Furthermore Theorem 2.15 can be extended somewhat (see Remark 9.3 and Theo-
rem 9.4).

3. DENSITY RESULTS ABOUT CONDITIONAL MEASURES

We prove some density results about conditional measures in this section. To
begin with, we give a brief introduction to Rohlin’s theory of Lebesgue spaces,
measurable partitions and conditional measures. The reader is referred to [55, 49]
for more details.

A probability space X, B, m) is called aLebesgue spadeéit is isomorphic to a
probability space which is the union fif, s] (0 < s < 1) with Lebesgue measure
and a countable number of atoms. Now (&f, 5, m) be a Lebesgue space. A
measurable partitiom of X is a partition of X such that, up to a set of measure
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zero, the quotient spack/n is separated by a countable number of measurable
sets{B;}. The quotient spac& /n with its inherit probability space structure,
written as(X,, B,, my), is again a Lebesgue space. Also, any measurable parti-
tion n determine a sub-algebra of3, denoted by, whose elements are unions

of elements of). Conversely, any sub-algebra of53’ of B is also countably gen-
erated, say by B!}, and therefore all the sets of the form;, whereA; = B] or

its complement, form a measurable partition. In particuaitself is correspond-

ing to a partition into single points. An important property of Lebesgue space and
measurable patrtitions is the following.

Theorem 3.1(Rohlin [55]). Letn be a measurable partition of a Lebesgue space
(X,B,m). Then, for everyr in a set of fullm-measure, there is a probability
measuren; defined om)(z), the element ofy containingz. These measures are
uniguely characterized (up to sets @fmeasured) by the following properties:

if A C X is a measurable set, then+— m(A) is -measurable andn(A) =

| m}(A)dm(z). These properties imply that for arfye L'(X, B,m), ml(f) =
E,.(f|7)(x) for m-a.ex, andm(f) = [ E,,(f|7)dm.

The family of measureém; } in the above theorem is called thanonical sys-
tem of conditional measures associated wjth

Throughout the remaining part of this section, we assume(tkiaB, m) is a
Lebesgue space. Letbe a measurable partition of, and let{m:} denote the
corresponding canonical system of conditional measures. Suppose théat—
RY is a B-measurable map. Denote:= B(R?), the Borelo-algebra oriR?. For
y € R?, we useB(y,r) to denote the closed ball iR? of radiusr centered ay.
Also, we denote for: € X,

(12) B™(x,r) = 7 'B(mz, 7).
Lemma 3.2. Let A € B.

(i) The mapr — m}(B™(z,7) N A)isH Vv ©ly-measurable for each > 0,
wheren vV 7~ 1~ denotes the smallest subalgebra of 3 containings) and
7T*1*y.

(i) The following functions

ma(B™(z,r) N A) ma (B (x,7) N A)
lim inf d li d
R0 ml(BT(w.r) | reol mA(BT(w,r))

and

.. ma(B™(z,r) N A)
inf
r>0  mg(B™(xz,1))

aref V =~ 1y-measurable, where we interpi@t0 = 0.

Proof. We first prove (i). LetA € B andr > 0. Forn € N, let D,, denote the
collection

D, ={0,27")+a: ac22}.
Fory € R%, denote

QEDy: QNB(y,r)#0
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Write W,, := {W,(y) : y € R%}. Itis clear thatW, is countable for each
n € N. Furthermore, we havé/,,(y) | B(y,r) for eachy € R? asn — oo, that
is, Wnt1(y) € Wh(y) and(,2, W, (y) = B(y,r). As a consequence, we have
7 W, (nz) | B™(x,r) and hence

m1(B™(z,7) N A) = lim m (7~ 'W,(7z) N A) (x € X).

Therefore to show that — m}(B™(x,r)N A) is/ V 7~ ly-measurable, it suffices
to show thate +— mZ (7 ='W, (rx) N A) is 7 V 7~ 1y-measurable for each € N.

Fixn € N. ForF € W, letT',(F) = {z € X : Wy(mz) = F}. Then
I, (F) € 7=1y. By Theorem 3.1 (7~ 1F N A) is anj-measurable function of
x for eachF' € W,,. However

m! (7 W, (rx) N A) = Z X1, (F) (T m! (7~ F N A).
FeWn,

Hencem (7 ='W, (rz) N A) is/ vV 7~ y-measurable, so i (B™(z,r) N A).
To see (i), note that for € ¥ andr > 0 satisfyingm(B™(z,r)) > 0, we
have

m}(B™(x,r)NA) _ . mil(B(z,q) N A)
mQ(B“(x, 7“)) a qlr: geQ+ mZ(B”(:L‘, Q)) .
Hence for the three limits in (ii), we can restricto be positive rationals. Ittogether
with (i) yields the desired measurability. O
Lemma 3.3. Let A € B. Then form-a.ex € X,

. m3(B™(z,r)N A)
(13) M (B (z,1))

Em(xali Vo ly)(z).

Proof. Let f(z) and f(z) be the values obtained by taking the upper and lower
limits in the left hand side of (13). By Lemma 3.2, boftend f are7 v =~ !~-
measurable. In the following we only show thfatr) = E,,(x 4|7 vV 7~ 17)(z) for
m-a.ex. The proof forf (z) = E,,(xaln vV 7 1y)(x) is similar.

We first prove that

(14) fdm = E,(xalgValy)ydm  (Bei, Den).
Bnr—1D Bnm—1D

By Theorem 3.1, for any give@' € n, m; (x € C) represent the same measure

supported o, which we rewrite asnc. Fix C' € n. We define measureg and

ve onRY by i (E) = me(n ' EN A) andvg(E) = me(r—LE) forall E € 4.

Itis clear thatuc < vo. Define

= limsu 7NC(B(Z’T))
go(z) =1 vy Toamy

Then f(z) = g, (mz) for all z € . According to the differentiation theory
of measures oR? (see, e.g., [43, Theorem 2.12§); = d“c vc-a.e. Hence for

(z e RY).
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eachD € ~, we have[, gc(z) dve(z) = pe(D), ie., [ i, gc(my) dme(y) =
pc(D) = me(r~tD N A). That s,

(15) /_1Df dm!! = m1(7~ D N A) (x € X).

To see (14), leB € 7). Then

/ fdm = /XBXw—lDfdm / (xBXr-1pf]7) dm
BNnn—1D

XBEm (Xa-1pf]7) dm

Il
—

(/ 7 dmZ) dm(z) (by Theorem 3.1
1D
_ /B m(x~'D A A)dm(z)  (by (15)

= /XB(x)Em (Xr-1Dnaln) () dm(x) (by Theorem 3.1
Thus we have

/ Fan = [ B (sxe i poali) (@) dm(z)
Bnx—1D

XBXr-1pnadm =m(B N~ 1DﬂA)

E.(XBrr1pXAl0V T 1Y) dm

/Xer 1pEm(xali V7 ty) dm

= [ Baluliva) dn
Bnn—1D
This establishes (14).
LetR = f — E,(xal7 V7~ 1y). ThenRis# v 7~ 'y-measurable and
/ Rdm=0 (Be#n, Denly).
Bnr—1(D)

DenoteF = {BNna~Y(D): Ben, D<crn ly}andlet

k
= {UF,- c keN, F,...,F, € Fare disjoint}.
=1
Itis clear that[. R dm = 0 for all ' € F’. Moreover it is a routine to check that
F'is an algebra which contairisand=~!v, and henceF’ generates the-algebra
HvV Ly

We claim thatR = 0 m-a.e. Assume this is not true. Then there exists 0
such that the sefR > €}, or {R < —e}, has positiven-measure. Without loss
of generality, we assume that{R > ¢} > 0. SinceF’ is an algebra which
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generates) V 71, there exists a sequenée € F' such thatm(F;A{R > €})
tends to0 asi — oo (cf. [63, Theorem 0.7]). We conclude thﬁ;i R dm tends to

f{RX} R dm > 0 as: — oo, which contradicts the fangi R dm = 0. O
Remark 3.4. (i) Lettingn = AN be the ftrivial partition ofX in the above

lemma, we obtaifim m(B” (@, ) N A)
r—0  m(B™(x,r))
(i) In generalE, »(xalm '7)(z) = En(xali V7~ 1v)(z) m-a.e., both of
mg(B" (z, ) N A)
ma(B™(z,7))
Proposition 3.5. Let¢ be a countable measurable partition &f. Then form-a.e.
Tz e X,

En(xalt™7)(z) m-a.e.

m-a.e. by (i).

them equalim
r—0

mg (B™(x,r) NE(x)) B e

wherel,, (-|]-) denotes the conditional information (see (2) for the definition). Fur-
thermore, set

(16) lin%) log

ma (B™(z,r) N&(x))
(17) 9(x) = = nblog = o)

and assumél,,,(£) < oo. Theng > 0 andg € LY(X, B, m).
Proof. (16) follows directly from Lemma 3.3 and the following equality

) = Z e s "2 E I

lim |
50 og ma (B™(z,r) v

Now we turn to the proof of (17). It is clear thais non-negative. By Lemma 3.2,
g is measurable. In the following we show that L'(X, B, m).

LetC € nandA € £ be given. As in the proof of Lemma 3.3, we define mea-
suresuc andve onR? by puc(E) = me(rn'EN A) andve(E) = me(r7E)
forall E € v. By Theorem 7.4 in [56], we have

. B(z,1))
RY . inf ne(B(z,1)) < 3d )
uc{ze gouc(B(z,r))<)\ < 3%\ (A>0)
Hence for anyx > 0,
. .mg (B™(z,r)NA) d
X : inf Al < .
me < {”3 X e By A=
IntegratingC' with respect ton,,, we obtain

ooml (B™(z,1) N A) d
X : f A) < .
m<{$€ 2 Tl (B™(z, 1) <A}” )—3 A

n s
A .My (B (m,?”) n A)
Denotey™ (x) = Il = Br 1)

. Then the above inequality can be rewrit-

ten as
m(AN{g" < A}) <39\
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Note that by (17)g(z) = — >~ 4c¢ Xa(2) log g*(x). Sinceg is non-negative, we
have

/gdm = /Ooom{g>t}dt:/0002m(z40{g‘4<e_t})dt

Aee
< Z/ min{m(A),3% '} dt
Aeg V0
< Z <—m(A) logm(A) + m(A) +m(A)log Sd)
Aee
= H, (&) +1+log3e
This finishes the proof of the proposition. O

Remark 3.6. Consider the cas& = X and¢ = P, whereP is defined as in (3).
Suppose thafs;}¢_, is a family of mappings such th&t: 7(2) — S;(7(X)) C

R? is homeomorphic for each Then in (16) and (17), we can change the terms
B™(z,r)to 7 'R, 4 (7x), whereR, ,(z) := S;' B(S,,(2),r). To see it, fixi and
definenr’ = S; o . Then we have

Y mg (77 Ry z(mx) N [1]) i ma (Bﬂ/ (2, 7) N M)

r0 ml(m Rpg(rz)) | =0 ml (BT (z,1))
= En(xyli Vv (@) ) (@).

However, (7’')~!y = 7~y due to the assumption a$}. Hence the last term in

the above formula equals,,, (xj;|7 vV #~'v)(x). Thus we can replace the terms

B™(x,r) by 771 R, »(7z) in (16). For the change in (17), we may use a similar
argument.

Lemma 3.7. Let7: X — R?and¢: X — R* be twoB-measurable maps. Let
n be the partition ofX given byn = {7=!(2): z € R?}. LetA € B andt > 0.
Then form-a.e.x € X, we have

) m(BQS(:E,t)ﬂAﬂBW(xvr))
(18)  mI(B(x,t)NA) > fim sup m (B (x,r))

and

.m (U¢(aﬁ,t) NANB™(x, 7“))
(19) m(U?(z,t) N A) < llgglf m (B (z.1) )

whereB?(z,t) := ¢~ 1 B(¢x,t), U(x,t) := ¢~ U(px,t), hereU(z,t) denotes
the open ball irR? centered at of radiust.

Proof. Fix A € B andt > 0. Similar to the proof of Lemma 3.2, for € N, letD,,
denote the collection

D, ={0,27" +a: ac27"Z"}.
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Fory € R*, denote
Waly) = U Q. W= U @

QEDy: QNB(y,t)#£0 QEDy: QCU(y,t)
Write W,, := {W,(y) : y € RF} andW, = {W,(y) : y € Rk}, Itis clear that
bothW,, andW,, are countable for each € N. Furthermore, we havéd’,(y) |

B(y,t) ande(y) T U(y,t) for eachy € R¥ asn — oco. As a consequence, we
havey™ W, (¢z) | B?(x,t) andg~ W, (¢x) T U?(x,t) for x € X. Therefore

m1(B?(z,t)NA) = nh_)rglo m1(¢" W, (dpz) N A)
and
m(U®(z,) N A) = lim m)(¢~ W (g) N A)

for eachr € X.

In the following we only prove (18). The proof of (19) is essentially identical.
Forn e NandF € W,, letT',(F) = {z € X : W,,(¢x) = F}. Then form-a.e.
z and alln € N, we have

mI(r Wa(gx)NA) = > xp,p)(@)ml(¢ ' FNA)
Few,
= Y ) @)En(xg-1rnal) (@)
Few,
= Y ) (@Em (g1 pnalm ) (@)
Few,
. m(¢p7tFNANB™(x,r)
= 2 XF”(F)@)}E% ( m (B™(xz,r)) |

FEWn
( by Lemma 3.3

m (¢~ Wy (¢pz) N AN B™(z,r))

= i
r0 m (B (z,1))
. m (B®(z,t)N AN B™(z,r))
> limsup
0 m (B™(z,r))
Lettingn — oo, we obtain (18). O

Remark 3.8. Under the condition of Lemma 3.7, assume that
g: m(X) = g(m(X)) C R?

is a homeomorphism. Then we may replace the teBhge, ) in (18) and (19) by
B9 (x,r). Toseeit, letr’ = g o 7. Itis easy to see the partitionis just the same
as{(n)71(2): z € R%}.

Proposition 3.9. Let T: X — X be a measure-preserving transformation on
(X,B,m), and lety) be a measurable partition of. Suppose that: X — R%is
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a bounded3-measurable function. Then for any> 0,

1
lim —logm.,, (B"(T"z,r)) =0 form-a.ex e X.

n—oo N

Proof. Fix r > 0 andt > 0. Sincer(X) is a bounded subset &, we can cover
it by ¢ balls B(wx;,7/2) of radiusr/2, wherez; € X andi = 1,... /(. Define

Ay ={zeX: mi(B @) <e ™},  nel.

If a ball B™(x;,r/2) intersectsA,,, then for anyy € A,, N B™(x;,7/2), we have
B™(z;,7/2) C B™(y,r) becauséB(nz;,r/2) C B(mwy,r) by the triangle inequal-
ity. So the definition ofd,, givesm,) (A, N B™(z;,7/2)) < my(B™(y,r)) < e ™.
Hence

m(A, O B (2:,1/2)) = / m(An 0 BT (21,7/2)) dm(y) < ™

andm(A4,) < fe ™,

This estimate gives directly thgtx) := logm7(B™(z,r)) € LY(X,B,m).
Note thatg(T"z) = Y1, g(T'x) — 3.1~ g(T"x). By the Birkhoff ergodic the-
orem we can gelim,, . %g(T"x) = 0 for m-a.e.x € X, which is the desired
result. O

Lemma 3.10. Let.A be a subs-algebra of B. Let A € B withm(A) > 0. Then
En(xalA)(z) >0
for m-a.ex € A.

Proof. Let W := {E,,(xa|A) < 0}. ThenW € A. Hence

0> /W E..(xalA) dm = /W xA dm(z) = m(ANW),

which impliesm (A N W) = 0. This finishes the proof. O

4. PROJECTION MEASURETHEORETIC ENTROPIES ASSOCIATED WITHFS

Throughout this section, leS;}¢_, be an IFS on a closed s&t ¢ R?, and
(3, 0) the one-sided full shift ovefl,...,¢}. Let M,(X) denote the collection
of all o-invariant Borel probability measures éh Let7: ¥ — R< be defined as
in (1), andh (o, -) as in Definition 2.1.

4.1. Some basic properties.In this subsection, we present some basic properties
of projection measure-theoretic entropy. Our first result is the following.

Proposition 4.1. () 0 < hy(o,m) < h(o,m) for everym € M, (%), where
h(o, m) denotes the classical measure-theoretic entropy.of
(i) The projection entropy function is affine 8, (%), i.e., for anymi, mg €
M, (¥) and any0 < p < 1, we have

(20) hz(o,pmi + (1 — p)ma) = phr(o,m1) + (1 — p)hr(o, m2).
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The proof of the above proposition will be given later. Now let us recall some
notation. If¢ is a partition ofx, thengdenotes ther-algebra generated gy If
&1,...,&, are countable partitions df, then\/!", ¢ denotes the partition con-
sisting of setsd; N --- N A, with A; € &. Similarly for o-algebrasA4;, A, ...,

V.. An denotes ther-algebra generated hy,, A,,.

Let P be the partition o defined as in (3). Writé; = \/}_, o~ forn > 0.
Lety denote the Borer-algebraB(R%) onR¢. Similar to Definition 2.1, we give
the following definition.

Definition 4.2. Letk € N andv € M« (X). Define
hTr(ak7 v) = H, (Pg_l‘a*kﬂflfy) — H, (Pg_l‘rrflf}/) )

The termh,.(c*,v) can be viewed as the projection measure-theoretic entropy
of v w.r.t. the IFS{SZl c08;, 1 <1i; </tforl<j<k}. The following
proposition exploits the connection betwden(c*, v) andh, (o, m), wherem =

kz Oyoa -

Proposition 4.3. Letk € Nandv € M« (X). Setm = ¢ Zl o voo~'. Thenm
is o-invariant, andh (o, m) = thr(c*,v).

To prove Propositions 4.1 and 4.3, we first give some lemmas about the (condi-
tional) information and entropy (sé@ for the definitions).

Lemma 4.4 (cf. [48]). Letm be a Borel probability measure on. Let¢,n be
two countable Borel partitions of with H,,(§) < oo, H,y(n) < oo, and A a
subo-algebra of 5(X). Then we have
() Lyog-1(£[A) 00 = T (07 E[0 1 A).
(i) Ln(€VnlA) =L (EA) + In(nl§ V A).
(i) Hp(§Vn|A) = Hp(ElA) + HnE vV A).
(iv) If A; C A, C --- isanincreasing sequence of sakalgebras withA4,, 1
A, thenl,, (£|A,,) converges almost everywhere andihto I,,(£|.A). In
particular, limy, oo Hp,(§|An) = Him (€] A).

Lemma 4.5. Denoteg(z) = —xlogz for x > 0. For any integerk > 2 and
T1,...,x5 > 0, we have,lg Zle g(x;) <g (% Zle xl) < Zle g(x;/k) and

k
(21) ngl (w14 ...+ 2 logh < gley+ ... +a) <> glx
=1

Moreover for anypy, po > 0withp; + ps = 1,

2 2 2
(22) > piglz;) < g (ijxj) < Z g(x;) + 9(pj)z;

Proof. Standard. O
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Lemma 4.6. Letm be a Borel probability measure on. Assume andn are two
countable Borel partitions oE such that each member tintersects at most
members of). ThenH,,,(§) > H,,, (£ V n) — logk.

Proof. Although the result is standard, we give a short proof for the convenience
of the reader. Denotg(x) = —zlog x for z € [0, 1]. Then

Hp(6) = Y g(m(A) =3 g > mAnB)

Aeg Aeg Ben, BNA#)
> Y > g(m(AnB)) | —m(A)logk| (by(21))
Aeg | \ Ben, BNA#D
> Z Z gm(ANB)) | —logk
Acg Ben
= Hp(EVn) —logk.
This finishes the proof. O

The following simple lemma plays an important role in our analysis.
Lemma4.7.PVo lrly =PV ly.

Proof. We only proveﬁ\/a—lw—lfy C 7/5\/71'_17. The other direction can be proved
by an essentially identical argument. Note that each memi@ninr—17 1~ can
be written as

J4
U [7] N a_lw_lAj
=1

with A; € ~. However, it is direct to check that
il no™ta ™Ay = [[In 71 (S;(4y))-

Since S; is injective and contractive (thus continuous), we hayeA;) < ~.
ThereforeU Jilno i 14; e Pvaly., a

Lemma 4.8. Letm be a Borel probability measure cn andk € N. We have
H,, (Pg_l}a_kﬂ_lv) —H, (Pg_l‘ﬂ_lfo
Z moa—i (Plo™ w7 19) = Hypopi (Pl 19).

Moreover ifm € MU(E), then

Hy (P o707 719) = Hyn (PE7 771) = k(o m).
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Proof. Forj =0,1,...,k — 1, we have

I, (Pgil}a_jw_W) -1, (P(’)“*l‘g—(j+1)7r—17>

= I, (U_jp‘a_jw_lfy) +1, \/ U_i’P‘G_jﬁ Vo Iinly
0<i<k—1, i#j
1, ('p(])f—l ‘Uf(jﬂ)ﬁflfy) (by Lemma 4.4(ii)
= I, (U_jp‘a_jw_lv) +1, \/ a_iP‘cr_jﬁ \% U_(j+1)77_1’7
0<i<k—1, i#j

1, (Pé“_l\a*(j“)w*lfy) (by Lemma 4.7
= 1, (c7Plon ) — 1, (a—jmg—o‘ﬂh—w) (by Lemma 4.4ii)
Loo—i (Plm ') 00! —1,,05-i (Plo'n7'y) 00/ (by Lemma 4.4().
Summingj over{0,...,k — 1} yields
Lo (P77 7) = L (P o™ 71y
(23) k—1

= Z (Imoo.—j (P‘?Tflfy) o0) —1,00—i (P‘Uﬁlﬂflfy) o aj) .
=0

<

Taking integration, we obtain the desired formula. O

For anyn € N, let D,, be the partition oR¢ given by
(24) D, = {0,274+ a: ac 272}
Lemma 4.9. Letm € M,(X). For eachn € N, we have

Hp(Plo~ ' 7 'Dy) — Hy (Pl 'D,) > —dlog(Vd + 1).
Proof. Sincem is o-invariant, by Lemma 4.4(iii), we have
Hp(Plo™' 77 Dy) — Hyn(Pln ' Dy)
=Hn(PVo'n'D,) — Hyp(o 'rD,)
— H,(PV7© D) + Hy(n7'D,)

= Hyn(PVon7'D,) — Hu(PV 1 D,).

(25)

Observe that for each< j < fandQ € D,,,
1N~ tamH Q) = [l N7 (S;(Q)).

SincesS; is contractive, diarfS;(Q)) < 27"V d and thusS;(Q) intersects at most
(v/d + 1) members irD,,. It deduces thalj] N o~ 17— 1(Q) intersects at most
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(v/d + 1) members ifP v 7~ 'D,,. By Lemma 4.6, we have
H,,(PV a_lﬂ_an) > H,(PV o 7D, v W_an)

(26) —dlog(Vd+1)
> H,(PV 7 'D,) — dlog(Vd + 1).
Combining it with (25) yields the desired inequality. O

Proof of Proposition 4.1 We first prove part (i) of the proposition, i.e.,
0 < hr(o,m) < h(o,m).
SinceZ/); 1 ~ asn tends toxo, by Lemma 4.4(iv), we have
lim Hyp(Plo™'n™ D) — Hyn(P|n™ ' Dy) = Hyn(Plo™'n~"y) = Hyn(Pln ™).

It together with Lemma 4.9 yields
Hm(P|O'_17T_1’)/) — Hm(P|7T_1’7) > —dlog(\/g+ 1).
Using the same argument to the IES;, ;, : 1 <i; </¢,1 < j <k}, we have

H,, (P(’]“*l’a_kﬂ_lfy) — Hp, <P§71‘7T_1’}/) > —dlog(Vd+1).

It together with Lemma 4.8 yields, (o,m) > —dlog(v/d + 1)/k. Sincek is
arbitrary, we havé. (o, m) > 0. To seéh, (o0, m) < h(o,m), it suffices to observe
that

khe(o,m) = Hp, (79(’;*1|a—’“7r‘1v) — Hpy, (Pé“*l\w‘lv)
< H, (Pg_l‘a_kﬂ_lfo <H, (Pg_l) .
Now we turn to the proof of part (ii). Let, me € M, (X) andm = pm; +

(1—p)my for somep € [0, 1]. Using (22), for any finite or countable Borel partition
& we have

(27) ‘Hm(g) _pHml (5) - (1 - p)Hmz(g)‘ § g(p) + g(l _p) S 10g2~
Letk € N. By Lemma 4.8, Lemma 4.4(iv), and (25), we have
(28)

ha(o,m) = % (Hm (7:5—1|U—k7r—17) — Hp, (P{f—l\w—w))
-y (1 5 1, 515
- %71113;0 <Hm (P(’)H v a*’“len) — Hp, (775_1 v ”712)")) '

The above statement is true whenis replaced byn; andms. However by (27),

Hy (PE'V o2 71D,) = Hy (PE! v ' Dy )
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differs from

2
>0 [H, (P V0™ 771D, = Hi, (PE v a'D, )|
j=1

at most2log 2, wherep; = p andps = 1 — p. This together with (28) yields
(20). O

Proof of Proposition 4.3Letk > 2andv € M, x(X). We claim thath, (", v o

~9) = hg(a¥,v) for any1 < j < k — 1. To prove the claim, it suffices to prove
h (o, v007!) = hy(c*,v). Note that bothy andv o o1 ares”-invariant. By
Lemma 4.8, we have

hﬂ(ak,u) = H, (73571|0_k7r_1*y) - H, <’P(l)€71}71'_1’7)

= (Hl/oa—j (P‘O’ilﬂ-ilfy) - Hlloa—j (,P{ﬂ-ilf)/)) ;

E
=

Jj=0
whilst
hﬂ(0k7V © 0'71) = Hl/00'71 <,P(l)€_1|0'7k7r717> N HVOU*l (Pg_l‘ﬂilf)/)

E
—_

= (Huoo.fj—l (P‘J_lﬂ_l’y) —H, 51 (P’?T_l’)/)) .

<
Il
o

Sincev is o*-invariant, we obtairh. (c*, v 0 07!) = h,(c*,v). This finishes the
proof of the claim. To complete the proof of the proposmon,nlet: E Zl o vo

o~%. Itis clear thaim is o-invariant. By Proposition 4.1(ii), (c*, -) is affine on
Mgk(E). Hence

hﬂ(gka m) =

Combining it with Lemma 4.8 yields the equality (o, m) = 1 h (", v). a

4.2. A version of Shannon-McMillan-Breiman Theorem associated with IFS.

In this subsection, we prove the following Shannon-McMillan-Breiman type theo-
rem associated with IFS, which is needed in the proof of Theorem 2.11. It is also
of independent interest.

Proposition 4.10. Let {S;}¢_, be an IFS andn € M, (). Then

.1 1y -
29) lim — Ly (P57 779) (@) = En(f1D)(@) = hlo,m, 2) = hel(o,m, o).
almost everywhere and ib', where

f=Ln(Plo™'B(X)) + Ln(Pln~y) = Ln(Plo™ 7 1y),
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I={BeB(X): o 'B= B}, andh(o,m,z), hx(c,m, ) denote the classical
local entropy and the local projection entropyrafat x (see Definition 2.1), respec-
tively. Moreover ifm is ergodic, then the limit in (29) equalg o, m) — hr(o,m)
for m-a.e.x € X..

Remark 4.11. If £ is a countable Borel partition &f, and. A C B(X) is a sube-
algebra witho =1 A = A, then the relativized Shannon-McMillan-Breiman Theo-
rem states that

lim 1 (gg 1|A) —E.(gI)(z) form-aezxecs,

whereg = Im (§|A V £5°) (see, e.g., [8, Lemma 4.1]). However under the setting
of Proposition 4.10, the subb-algebrar '+ is not invariant in general.

In the following we present a generalized version of Proposition 4.10.

Proposition 4.12. Let¢ be a countable Borel partition &f with H,,,(£) < oo, and

let A C B(X) be a subs-algebra so that vV o' A = £V A. Letm € M, ().
Then

(30) Jim T (671]4) (7) = Bu(AD)()

almost everywhere and in', where

fi=1, (5\0‘1A\/ \V g—i2> + Lo (€| A) — Lu(ElotA),

=1
andZ ={Be€B(X): o~ 'B = B}.
To prove Proposition 4.12, we need the following lemma.

Lemma 4.13([42], Corollary 1.6, p. 96) Letm € M, (X). LetF), € L'(Z,m)
be a sequence that converges almost everywhere abtitmF’ € L'(X, m). Then

lim — ZFk (07 (x)) = Ep(F|T)(x)

k—oo k

almost everywhere and |D1.

Proof of Proposition 4.12Fork > 2 andx € X, we write

9(2) = Tn (&§71A) (@) — L (€572]4) (02).
Then

(31) I, (55—1],4)( L, (£l A) (o1 +ng ilox

We claim that
(32)

k—1
gr(z) =1, (5‘0_1./4 vV \/ a‘f) (x) + L, ({‘A) (x) =1L, (5‘0_1.4) (x).

i=1
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By the claim and Lemma 4.4(iv). converges almost everywhere andihto f.
It together with (31) and Lemma 4.13 yields (30).
Now we turn to the proof of (32). Lét > 2. We have

(33)

Lo (€707 A) (@) =T (€0 A) (@ (\/a%\alAv5>< )

i=1
k—1

=1, (5}07%4) (x) + I, <\/ crﬂ'f’A\/ 2) (x),
i=1

using the property—1 A v §A: AV 2 Meanwhile, we have

Lo (6707 4) (@)
k—1 k=1
—ig| —1 —1 —i
(34) =1, (i\/la f’a .A) () + 1, (5‘0 AV VU f) (z)
(ﬁg 2‘./4) ox)+ 1, <£|U tAv \/0‘ lf) x).

Combining (33) with (34) yields
m (€|o1A) (2 (\/a—zsmvs) z)
(55 2’,4) ox)+ 1L, (5‘0 1.A\/\/ ) x).

=1

(35)

However

k—1
(36) I, (5{;—1\,4) (z) = I (¢]A) (2) + I (\/ oAV E) (z).

Combining (35) with (36) yields (32). This finishes the proof of Proposition 4.12.
O

We remark that Proposition 4.10 can be stated in terms of conditional measures.
To see it, let

n={r"Yz2):zeR%
be the measurable partition Bfgenerated by the canonical projectioassociated
with {S;}f_,. Form € M, (%), let {m}}.ex denote the canonical system of
conditional measures w.r4. Forz € ¥ andk € N, let P} (x) denote the element

in the partitionP{)€ containingz. Then Proposition 4.10 can be restated as the
following.



DIMENSION THEORY OF ITERATED FUNCTION SYSTEMS 25
Proposition 4.14. For m € M, (X), we have

1
(387) - lim %logmg(ﬂ]f(x)) =E.(f|Z)(z) form-aexcy,
wheref := L, (Plo"1B(X)) + L (P|r~1y) — L, (Plo~tx~1y). Moreover ifm
is ergodic, then the limit in (37) equalgo, m) — hr (o, m) for m-a.ex € X.
Proof. It suffices to show that for eadhe N,

log m/1(PE(x)) = =L, (P¥|7~1v)(z) almost everywhere

To see this, by Theorem 3.1 we have

> xal@ml(A) = > xal@Epn(xalm'9)(z) form-aexeXx.
AePp AeP§

Taking logarithm yields the desired result. O

Remark 4.15. In Proposition 4.14, fom-a.ex € 3, we have

lim — logm1(Ph(y) = Ba(fIT)(y) formi-aey € n(z).

k—o0

To see this, denote
. 1
R={yes: - m ogmi(Phn) = Enl7IT)0) |

Thenl = m(R) = [ mi(RNn(z)) dm(z). Hencem(RNn(z)) = 1 m-a.e. For
y € RNn(x), we have

1 1
Jim ——logm](Pg(y)) = lim ——logmy(Pg(y)) = Em(f|T)(y).

As a corollary of Proposition 4.14, we have

Corollary 4.16. Letm € M,(X). Then
1
hz(o,m) = h(o,m) <= klim %long(Pg(ac)) =0 m-a.e.
< dimgm] =0 m-a.e.

In particular, if dimgy 7—!(2) = 0 for eachz € RY, thenh, (o, m) = h(o,m).
Heredimpyg denotes the Hausdorff dimension.

Proof. Let f be defined as in Proposition 4.14. Then
/Em(f|I) dm, = /f dm = h(o,m) — he(o,m).
By (37),E..(f|Z)(z) > 0 for m-a.ex € ¥. Hence we have
h(o,m) = hz(oc,m) <= E,(f|Z)=0 m-a.e.

1
— lim - logm(P(x)) =0 m-a.e.
k—oo k
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Using dimension theory of measures (see, e.g., [14]), we have

. .. Jdogml(PE(y))
dimpg my = eSsup, ¢, () h;r_l}ggf T loglh
It together with Remark 4.15 yields

E,.(f|Z) =0 m-a.e.<= dimgygm =0 m-a.e.

This finishes the proof of the first part of the corollary.

To complete the proof, assume thitnz 7—!(z) = 0 for eachz € R%. Then
for eachz € %, dimpy n(x) = 0 and hencelimy m; = 0. Thush,(o,m) =
h(o,m). O

4.3. Projection entropy under the ergodic decomposition.In this subsection,
we first prove the following result.

Proposition 4.17. Let {S;}¢_, be an IFS andn € M, (X). Assume thatr =
J v dP(v) is the ergodic decomposition of. Then

hx(o,m) = /hﬂ(a, v) dP(v).

Proof. Let Z denote thes-algebra{B € B(X) : ¢ !B = B}, and letm €
M, (X). Then there exists am-measurable partition of ¥ such tha€ = Z mod-

ulo sets of zeron-measure (see [49, pp. 37-38]). Uet: } denote the conditional
measures ofn associated with the partition Thenm = [ m¢ dm(z) is just the
ergodic decomposition af: (see e.g., [32, Theorem 2.3.3]). Hence to prove the
proposition, we need to show that

(38) hal,m) = [ holo,mg) dmz).

We first show the direction<” in (38). Note thatZ is o-invariant andP v
o lrly = PV ly. Hence we hav® v o lr 1y VI = Pv iy VT
Taking¢é = P and.A = 7' v T in Proposition 4.12 yields

(39) Jim 1L, (PE 'V T) (@) = Bu(71T) ()
almost everywhere and ih', where
f=L, (Plo'B(Y)) + Ly(Plr 'y VI) = Ly(Plo a1y V).
By Remark 3.4(ii), we have
L (73(’]“71\71'_17) () =1, (736“71‘77_17 \/I) (z).

Hence according to the ergodicity of, and Proposition 4.10, we have

1
h(U, m;) _ hﬂ_(o—7 mi) = lim %Imi (P(I;:_llﬁ—lf)/) (x)

k—o0

1
= lim -1, (Pg_l‘ﬂ_ly \/I) (x)

k—oo k
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almost everywhere and
@0) [ hioime) ~ helovms) dm(a)

Using Proposition 4.10 again we have

1
= lim L Hy (PEY ey v T)).
k—oo k

o L k—1] _—1
(41) h(o,m) — hz(o,m) = kli»Holo ka <730 |7T 7) :

However, H,, (P(’)“‘l]w—ly vz) < H,, (Pg_l\w—ly) (see e.g. [63, Theorem
4.3 (v)]). By (40), (41) and the above inequality, we have
[ o) hato.m) dim(e) < hiom) — bl m).

Itis well known (see [63, Theorem 8.4]) that: (o, mS) dm(z) = h(o,m). Hence
we obtain the inequalitii. (o, m) < [ hr(o,ms) dm(x).

Now we prove the direction> ” in (38). For anyn € N, let D,, be defined as
in (24). SinceD,, 1 v, we have

(42) he(o,m) = lim Hp(Plo 'n D) — Hy(Plr1Dy).

Now fix n € N and denoted(m) = H,,(P|o 17~ 'D,) — H,n(P|x1D,) and
B(m) = Hp(o a7 'D,|PV ﬂ_lﬁ)
= Hyu(PV 0'_171'_12/); V W_IZ/);) —Hp(PV W_IZ/):L).
Then by (25) and (26), we have
(43) B(m) — ¢ < A(m) < B(m),

wherec = dlog(v/d + 1). As a conditional entropy functio3(m) is concave on
M, (X) (see, e.g., [26, Lemma 3.3 (1)]). Hence by Jensen’s inequality and (43),
we have

A(m) = B(m) — = [ Bln) dm(o) — ¢ = [ Am2) dm(z) ~ e
That s,
Hy(Plo'77'D,,) — Hu(Plr'D,)
> / Hyn (Plo 5 'D) — Hyne (Pl Dy) dim(a) — c.

Lettingn — oo, using (42) and Lebesgue dominated convergence theorem, we
have

hx(o,m) > /hw(a, ms) dm(z) — c.

Replacings by o* we have

(44) ha(o*,m) > / h(0*, M) dm(z) — e,
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wheree;, denotes a measurable partition’oBuch that
& ={BeBX): c*B=B}

modulo sets of zerm-measure. Note thah = [ mS+ dm(z) is the ergodic de-

composition ofn with respect tar*. Hencem = [(1/k) Zf;ol msk oo~ dm(z)

is the ergodic decomposition of with respect tas. It follows that
= ‘
(45) Z z mik oo ' =m, m-a.e.
i=0
By (44), Proposition 4.3 and (45), we have

k—1

1 ,
hao(o®,m) = %E ha(o®,moo™)

=0

v

k—1

1 .

Z E /hﬂ(ak,mi’v oo ")ydm(x)—c
i=0

k—1
1 .
_ k —1
= /hﬂ<0 'z Eom;’“oa ) dm(z) —c
= /hw(ak,mi) dm(z) — c.

Using Proposition 4.3 again yields
he (0, m) > / he(o,m) dm(z) — c/k for anyk € N.

Hence we havé,(o,m) > [ hx(c,mS) dm(z), as desired. O

Proof of Theorem 2.2lt follows directly from Propositions 4.1, 4.10 and 4.171.]

4.4. The projection entropy for certain affine IFS and the proof of Theorem

2.3. In this subsection, we assume tidat= {S;}¢_, is an IFS orR? of the form
Si(z) = Az + ¢ (1=1,...,0),

where A is ad x d non-singular real matrix withf A|| < 1 andc; € R?. Let K
denote the attractor @p.

Let Q denote the partitiof[0,1)? + o : a € Z%} of R%. Forn = 0,1,.. ., and
r € RY, we set

We have the following geometric characterizatiomgffor the IFS® (i.e., Theo-
rem 2.3).

Proposition 4.18. () Letm € M,(X). Then

(46) hz(o,m) = lim M

n—00 n
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(ii)
lim log#{Q € Q: A"QNK # 0}
n—o0 n
To prove the above proposition, we need the following lemma.
Lemma4.19. Assume tha is a subset of 1, . . ., £} such thatS; (K)NS;(K) = 0

forall 7,5 € Qwithi # j. Suppose that is an invariant measure oR supported
onQY, ie.,v([j]) =0forall j € {1,....£}\Q. Thenh,(co,v) = h(o,v).

= sup{hz(o,m): m e M,(2)}.

Proof. It suffices to prove that (o, v) > h(o,v). Recall that
ha(o,v) = H,(Plo~ 7~ 1y) — Hy(Plr~'v)

and H,(Plo~'x~1y) > H,(Ploc~'B(X)) = h(o,v). Hence we only need to
showH, (P|r~1v) = 0. To do this, denote

§ = min{d(S;(K), S;(K)) : i,j € Q,i # j}.

Thend > 0. Leté be an arbitrary finite Borel partition df so that diamiA) < 6/2
for A € £&. Setw = {[i] : i € Q}. Sincev is supported o2, we have

HI/(P|7T715) = HI/(P v 7'['715) - HV(Trilf) = HI/(W v Wﬁlg) - Hl/(ﬂflg)'

However for eachl € &, there is at most onec Q such thatS;(K) N A # (), i.e.,
[{] N7~ LA # (. This forces thatf, (W v m~1¢) = H, (7 1¢). Hence

H,(Plz~'€) = 0.
By the arbitrariness of and Lemma 4.4(iv), we havd,, (P|r~1v) = 0. O

Proof of Proposition 4.18We first prove (i). Letm € M,(X). Denotey =
B(R9). According to Proposition 4.3, we have

Hy(Py o Pn1y) = Hu Py n'y) = phe(o,m)  (p €N).
Now fix p. Since@; T ~, by Lemma 4.4(iv), there existg) such that fork > kg,
|H, (PE o Pr ) — H(PP Yo P ' Qpy)| <1, and
| Hp(PY 77 15) = Hon (P 7 Q)] < 1.
It follows that fork > kg,
7) phr(o,m) —2 < Hm(Pg_l\Ufpﬂflél;) - Hm(Pg_lhrleer\l)p)
< phr(o,m) + 2.
Now we estimate the difference of conditional entropies in (47). Note that
Hop(PE o Pn ' Okp) = H(PE ' Vo P 1Qp) — Hu(o Pn ' Opp)
= Hn(PP ' Vo Pr Q) — Hu(r ' Ok)
and
Hn(PY 7 Qi) = Hin(PY ™V 1 Quesnyy) = Hon(r ™ Qi)
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Hence we have
Hun(PY o7 Qi) = Hin Y 7 Qeyy)
(48) = Hp(Py Vo Pn ' Quy) = Hu (P V 7' Qi)
+ Hy (17 Qigayp) — Hin(m ™' Qip)-
Observe that for each] € P2~ and anyQ € Q,
[u] N o Pr AP Q = [u] N 7715, AFPQ.

Since the linear part of,, is AP, the setS, A*P() intersects at most? elements
of Q(141),- Therefore each element o' v o Pr1Q,, intersects at most?

elements ofP? ! v T 1 Q41)p- Similarly, the statement is also true if the two
partitions are interchanged. Therefore by Lemma 4.6, we have

|Hm(736071 Vo PrtQy,) — Hm(PZ)%1 Y W_IQ(k+1)p)| < dlog?2.
It together with (47) and (48) yields

phr(o,m) —2—dlog2 < Hm(ﬂle(kH)p) — Hm(wlekp)
< phr(o,m)+ 2+ dlog?2

for k > k. Hence we have

H,,(n~! 2+ dlog?2
lim sup 2T Qk0) gy 2 Al0B2
k—oo kp p
Hy (1 2+ dlog?2
liming 2T Qe o gy 2+ dlog2
k—o0 kp D

By a volume argument, there is a large intege (/N depends om, d, p; and it

is independent of) such that for any = 0,...,p — 1, each element 00,
intersects at mos elements ofQy,, and vice versa. Hence by Lemma 4.6,
|Hyp (771 Qpp) — Hin(m 1 Qppyi)| < log N for 0 < i < p — 1. It follows that

lim sup Hy, (77 Qx,p)/(kp) = limsup H,, (71 Q,,)/n and

k—o0 n— o0

likm inf H,, (7 Qxp)/(kp) = liminf H,, (11 Q,)/n.

Thus we have

2 + dlog 2 H,, -1 n H,, -1 N
hﬂ—(O', m) - ﬁ S lim inf M S lim sup M
p n—0oo n n—oo mn
2+ dlog?2
< ha(o,m) + —&-pog‘

Letting p tend to infinity, we obtain (46).
To show (ii), we assumé& C [0,1)%, without loss of generality. Note that the
number of (non-empty) elements in the partition' Q,, is just equal to

Ny, =#{Q e Q: A"QNK #0}.
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Hence by (21), we have
H,(m71Q,) <logN,, Vme M,(2).
This together with (i) proves

log N,,
lim inf —2—" > sup{hr(o,m) : m € Ms(X)}.
To prove (ii), we still need to show
(49) limsup log N, /n < sup{h.(o,m): m € M,(2)}.

We may assume thadim sup,, .. log N,,/n > 0, otherwise there is nothing to
prove. Letn be a large integer so thak, > 7¢. Choose a subsé&tof

{Q: A"QNK #0,Q € Q}
such that#T' > 7-¢N,,, and
(50) 20N2Q =0  fordifferentQ,Q € T,

where2Q := Upcg. prgzo P and P denotes the closure @. For each) € T,
sinceA"QN K # (), we can pick aword = u(Q) € %, such thatS, KN A"Q #

(). Consider the collectioh = {u(Q) : @ € T'}. The separation condition (50)
for elements id" guarantees that

Su(@)(K) N S, (K) =0 forallQ, Q € T with Q # Q.
Define a Bernoulli measureon W by
v([wy ... wy)) = (#T)7* (keN, wy,...,wp € W).

Thenv can be viewed as@"-invariant measure oR (by viewingiW!" as a subset
of ¥). By Lemma 4.19, we havk,(c",v) = h(c™,v) = log #I'. Defineu =
LS voo~i Thenu € M, (), and by Proposition 4.3,

ha(o",v) _ log#T' _ log(7~“Ny,)
(0, 1) = n ~ T = n

from which (49) follows. O

)

4.5. Upper semi-continuity of (o, -) under the AWSC. In this subsection, we
prove the following proposition.

Proposition 4.20. Assume tha{S;}¢_, is an IFS which satisfies the AWSC (see
Definition 2.14). Then the mam — h,(o,m) IS upper semi-continuous on
M (2).

We first prove a lemma.
Lemma 4.21. Let {S;}{_, be an IFS with attracto’s’ C R¢. Assume that
#{1<i<tl:zeS(K)}<k

for somek € N and eachz € RY. ThenH,(P|x~1y) < logk for any Borel
probability measure on X,
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Proof. A compactness argument shows that therg is 0 such that
#{1<i</{l: B(x,ro)NS;(K)#0} <k

for eachz € R?. Letn € N so that2="vd < ro. Then for each) € D,,
whereD,, is defined as in (24), there are at madtlifferenti € {1,...,¢} such
that S;(K) N Q # (. It follows that each member in~1D,, intersects at most
members of? vV 7~ !D,,. By Lemma 4.6, we have

H,(P|x~'D,) = H,(PV x~'D,) — H,(x~'D,) < logk.
Note thatr—'D,, T 7~ 1v. Applying Lemma 4.4(iv), we obtain
H,(Plx~'y) = lim H,(P|x—'D,) < logk.
n—oo

As a corollary, we have

Corollary 4.22. Under the condition of Lemma 4.21, we have
hz(o,m) > h(o,m) —logk

foranym € M,(X%).
Proof. By the definition ofh (o, m) and Lemma 4.21, we have

ha(o,m) = Hp(Plo 'n~1y) — Hy(Pln~1y) > Hy(Plo 'n1y) — logk.
However, H,,(Plo~'771y) > H,,(P|lo~1B(X)) = h(o,m). This implies the
desired result. O

To prove Proposition 4.20, we need the following lemma.

Lemma 4.23. Let {S;}{_, be an IFS with attractork’. Suppose tha® is a subset
of {1,...,¢} such that there isa map: {1,...,¢} — Q so that

SZ‘ZSg(i) (i=1,...,€).
Let (QV,5) denote the one-sided full shift ovex. DefineG : ¥ — QN by
(2j)521 = (g(z;))32,- Then
(i) K is also the attractor of S; };cq. Moreover if we letr: QY — K denote
the canonical projection w.r.{S; };cq, then we have = 7 o G.

(i) Letm € My(X). Thenv = mo G™' € Mz(QN). Furthermore,
hr(o,m) = hz(a,v). In particular, b (o, m) < log(#Q).

Proof. (i) is obvious. To see (ii), lein € M,(X). It is easily seen that the
following diagram commutes:

y 2. %

a| le

oy %, oN
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Thatis,c o G = G oo. Hencerv = mo G~ € Mz(QY). To show that
hr(o,m) = hz(c,v), let Q@ = {[i] : i € Q} be the canonical partition ¢@".
Then
h#(0,v) = Hpog-1(Q6™ 7 1y) = Hyog-1(QIT 1)
= Hu(G7HQIGT67 17 1) — Hu(GTHQ)IGTT 1)
= Hpn(GH(Q)lo™ 77 1y) = H(GTHQ)In 1),
using the fact€s o 0 = 5 o G and7 o G = 7. SinceP v G~1(Q) = P, we have
hx(o,m) — hz(G,mo G™1)
= (Hp (P\U_lﬂ_lfy) — H,, (P|7™19))
— (Hn(GHQ)lo ™ n™y) = Hin(GTHQ)|n 1))
= (Hm (P\U_lw_l'y) — Hm(G_l(Q)|0_17T_17))
— (Hm (Pl7~'y) = Hn(GH(Q)I7 ™))
— H, <77]U_17T_1’y v G—l(@)) —H, (wa—l»y v G-l@)) .
An argument similar to the proof of Lemma 4.7 shows that
oy vGTHQ) =y v GTHQ).
Hence we havé, (o, m) = hxz(c,mo G~1). O
Proof of Proposition 4.20Let (v,,) be a sequence M, (%) converging tom in

the weak-star topology. We need to show thatsup,, .. hr(o,vy) < hr(o,m).
To see this, it suffices to show that

1
(51) limsup hr(o,v,) < he(o,m) + Z log ty,
for eachk € N, wherety, is given as in Definition 2.14.

To prove (51), we fixk € N. Define an equivalence relatienon {1,...,¢}*
byu ~ vif S, = S,. Letu denotes the equivalence class containind>enote
Sy = Sy. SetT ={u: ue{l,... (}*} Let(JY,T) denote the one-sided full

shift space over the alphahgt LetG : ¥ — 7 be defined by

(o]
(Ti)i21 — (xjk+1 T x(j-f-l)k)jzo .

It is clear that the following diagram commutes:

y 25 %

cl lc
gy —— gV
Thatis,T o G = G o o*. Itimplies thatv,, o G=1, mo G~' € Mp(J") and

lim v,0o G t=moG~ 1.
n—oo
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Hence we have
(52) h(T,m oG 1) > limsup h(T,v, o G 1),

where we use the upper semi-continuity of the classical measure-theoretic entropy
map on(JN, 7). Definer : 7N — K by

7 ((w:)21) = Hm Sy, 0+ 0 Sy, (K).

ThenmoG = 7. By the assumption of AWSC (11) and Corollary 4.22 (considering
the IFS{S, : u € J}), we have

hx(T,moG™Y) > h(T,moG™ ') —logty
> limsup h(T,v, o G™1) —logty, ( by (52)
> limsup hz(T, v, o G~1) — log t,
where the last inequality follows from Proposition 4.1(i). Then (51) follows from
the above inequality, together with Proposition 4.3 and the following claim:

(53) ha(Tovo G = he(d¥v) (v € My(R)).
However, (53) just comes from Lemma 4.23, where we consider thé3ES v €
{1,...,£}*} rather than{S;}¢_, . O

5. SOME GEOMETRIC PROPERTIES OE'! IFS
In this section we give some geometric propertie§'bfFS.

Lemma5.1. LetS : U — S(U) c R? be aC! diffeomorphism on an open set
UcRYandX a compact subset @f. Letc > 1. Then there existg, > 0 such
that

(54) S (@) o~y < |S(x) = S(y)| < c|lS'(@)] - |z — ]

forall z € X,y € U with |z — y| < o, whereS’(z) denotes the differential of
atz, -] and|| - || are defined as in (4). As a consequence,

(55) B(S(x),¢ )" ()]r) € S (B(x,7)) C B(S(x),¢]| S (z)|Ir)
forall x € X and0 < r < rg.

Proof. Let ¢ > 1. We only prove (54), for it is not hard to derive (55) from (54).
Assume on the contrary that (54) is not true. Then there exist two sequanges
X, (yn) C U such thate,, # y,, lim,, . |2, — y»| = 0 and for eachn > 1,

either|S(an) — S(yn)| = cllS"(zn) - [2n — ynl,
or [S(zn) = S(yn)| < ¢S (@n)] - 20 — ynl.
Since X is compact, without lost of generality, we assume that

(56)

lim x, =2 = lim y,.
n—oo n—oo
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Write S = (f1, fa.- .., fa)'. Then each componerft of S is aC' real-valued
function defined oi/. Choose a smad > 0 such that
{zeR?: |z — x| < eforsomer € X} C U.

Take N € N such thafz,, — y,| < e forn > N. By the mean value theorem, for
eachn > N andl < j < d, there exists;, ; on the segment,., ,, connectinge,,
andy,, such that

fj(xn) - fj(yn) = ij(zn,j) (Tn — Yn),

whereV f; denote the gradient f;. TherefordS(zy,) — S(yn)| = |[Mn(xn —yn)]
with M, := (V f1(2n,1), - -, V fa(zn,q))". It follows

(57) [Mo] - |2n = ynl < [S(2n) = S(ya)| < [|Mal] - [2n — ynl-

SinceS is C*, M, tends toS’(x) asn — oo. Thus we havéM,,| — [S’(z)] and
[ M| — [15"(2)]. Meanwhile,[S"(zn)] — [S'(z)] and[|S"(zn)[| — |5 (2)]-
These limits together (57) lead to a contradiction with (56). O

Let {S1,...,S,} be aC' IFS on a compact set c R?. Let7 : ¥ — R? be
defined as in (1). By Lemma 5.1, we have directly

Lemma 5.2. Letc > 1. Then there existg, > 0 such that for anyl < ¢ < /,
r e Yand0 < r < rg,

B(Si(rx),c | Si(xx)|r) € S; (B(nz,r)) C B(Si(nz), c||Si(mz)|r).

Letp,p: ¥ — R be defined by
(58)  p(x) = |5, (o)l p(z) =[S, (nox)]  (z=(2:)i2; € D).

Let P be the partition o defined as in (3). Fox € X, let P(z) denote the
element inP which containsc. Then we have

Lemma 5.3. Letc > 1. Then there existgy > 0 such that for any: € ¥ and
0<r <,

B™(z, c_lg(z)r) NP(z) C B™(z,7r)NP(z) C B™(z,¢cp(z)r) N P(z),
whereB™(z,r) is defined as in (12).
Proof. Let 2z = (z;)72, € ¥. Takingi = 21 andz = oz in Lemma 5.2 we obtain
B(S,, (mfz),cflﬂs;l (moz)|r) C Sz, (B(woz,r)) C B(S.,(noz),c||S,, (roz)||r).
That s,
B(ﬂz,c_lg(z)r) C S.,B(woz,r) C B(nz,cp(2)r),

where we use the fadt,, (roz) = mz, which can be checked directly from the
definition ofr. Thus we have

B™(rz,¢ ' p(2)r) NP(2) C 7" (Ss, (B(moz,1))) NP(2) C B™(2,cp(2)r) NP(2).
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At last we show thatr=! (S, (B(moz,7))) N P(2) = B™(z,7) N P(z). To see
this, lety = (yj)J‘?‘;l € 3. Then we have the following equivalent implications.
yen (S, (B(roz,1))) NP(2)

= y1=2z, 7wyeSI, (B(rnozr1))

=y =2, Sy (moy) €S, (B(noz,r))

<=y =2z, woy€ B(noz,r)

=y =2z, ye€B(zr)

<=y € B"(z,r) N P(2).
This finishes the proof of the lemma. O
Lemma 5.4. Assume tha{S;}¢_, is a weakly conformal IFS with attractak’.

Then for anye > 1, there existd) > 0 such that forany: € N, v € {1,...,¢}",
andz,y € K we have

DS (@) - o =yl < [Su(z) — Su(y)] < D[S, (@)]| -z — y.
and
(59) D718 ()| < diam(S,, (K)) < Dc||S, ()]

Proof. The results were proved in the conformal case in [18, Lemma 3.5 and Corol-
lary 3.6]. A slight modification of that proof works for the weakly conformal
case. O

As a corollary, we have

Corollary 5.5. Under the assumption of Lemma 5.4, for> 0, there isrg > 0
such that for any) < r < rp andz € K, there exish € Nandu € {1,...,¢}"
such thatS,(K) C B(z,r) and

(60) [Su(x) = Suly)| 2 r'H ¥z —y|  (z.y € K).

Proof. Denotea = inf{|S/(z)] : = € K,1 <14 < ¢} andb = sup{||Si(z)|| : = €
K,1<i</}.Then0 < a < b < 1. Choose: so that

(61) 1< c< b3Cta),

Let D be the constant in Lemma 5.4 corresponding.tdakeny € N andrg > 0
such that

log ro .

62 31a/(2+a) o D—3 a/(24a) 1 92) .
(62) (cb ) < ab , (I4+a/2) o a
Now fix z € K and0 < r < rg. We shall show that there exist ¢ N and
u € {1,...,¢}" such thatS,(K) C B(z,r) and (60) holds. To see this, take
w = (w;)i2; € ¥ such that: = mw, wherer is defined as in (1). Let be the

unique integer such that

(63) 150 (T )| < P2 < IS, (w0 )
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It follows a” < r'*t®/2 < p»—1, which together with (62) forces that
(64) n>ng and " < D 3ar /2
To see (64), we first assume on the contrary that ng. Then

a > g = a(l+a/2)logro/loga _ 7né-i—oz/Q > T1+o¢/2,

which contradicts the faet” < rt%/2. Hencen > ng. To see®” < D= 3ar—9/2,
note that

cSnTa/Q < cSnb(nfl)a/(2+a) (usingr1+o‘/2 < pn—1 )
<C3ba/(2+a)) " b—a/(2+a)

IN

IN

<c3ba/ (2+a))n0 b=2/(2te)  (usingn > ng and (61))
D 3a (by (62)).
This completes the proof of (64). By (59), we have

diamS,, ..., (K) < Dc"[|S),, ..., (mo"w)|| < Dcrtel? <o

Sincez € S,, ..., (K), the above inequality implieS,,,.....,(K) C B(z,r). By
(59) again, we have

(65) |S!(x)|| > D27 2||S. (y)||, Vwe{l,....0}",Vz,yeK.
By Lemma 5.4, we have far, y € K,
| Sy wn () = Sy, (W)
> D780, (@) - |2 =y
> DS, (mo"w)l| |z —y[ (by (65))
> D72 |S], o, (mT" T[S, (0" W)] - [ — g
> D33t 2| — gyl (by (63))
>ri "~y (by (64))
Hence the corollary follows by taking = wy - - - w,. O

IN

Proposition 5.6. Let{S;}{_, be aC' IFS with attractork. Assume thak is not
a singleton. Then

(i) foranym € M,(X), we have form-a.ex = (2;)2, € X,
logdiamS,, ., (K)

lim inf > —\(z),
n— oo n

log diamSy, .z, (K
lim sup 0og larns;le n( ) < _A($)7

where )\, \ are defined as in Definition 2.5. In particular, {f5;}¢_; is
m-conformal, then form-a.e.x = (z;)°, € %,
1 i 1 a (I
lim 0g diamSs, ...z, (K) = —\(x).

n—oo n
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(i) If {S;}¢_, is weakly conformal, then it is2-conformal for eachm €
M ().

Proof. We first prove (i). Take > 1 small enough so thatsup,..y, p(x) < 1. Let
ro > 0 be given as in Lemma 5.2. Let= (z;)°, € 3. Applying Lemma 5.2
repeatedly, we have
(66) Spran (B(m0™2,10)) € B, cp(x) - plo™ 2)ro).
Since{S;}¢_, is contractive, there is a constansuch that

S (K) C B(mo"z,19).

Tn+1Tntk
This together with (66) yields
(67)

diamSy, .. ., ., (K) < diamSy, ..., (B(mo™x,70)) < c"p(x) .. (o™ ).
Since K is not a singleton, there exisfs< r; < ro such that for each € K,
there existsv € K such that; < |z —w| < ry. Indeed, to obtaim;, one chooses
an integemy large enough such thaip,cy; diamS, (K) < rq, then set

r1=(1/2) ué%f diamS, (K).
no

For each such pairz, w), applying (54) repeatedly yields

n

diamSy, . ., (K) > |Sm1...:vn (2) — Szy..xn (w)| = ric™ HHS;C]. (S:rj+1...:rn (Z)I]
j=1

Hence by taking = wo™x, we have
(68) dianSy,, ..., (K) > ric "p(x) .. .8(0"7137).
Denote

log diamS,, ., (K)

g« (x) = lim inf and
n—00 n
1 i o1 (K
g*(z) = limsup og diamSis, ., ( )

n—oo n
It is clear thatg,(x) = g.«(cx) andg*(x) = ¢g*(oz). LetZ denote ther-algebra
{B € B(X) : o7'B = B}. Then by (68), the Birkhoff ergodic theorem, and
Theorem 34.2 in [7], we have fon-a.ex € %,

(69)
~ —nlogec+ Z?z_l logpoo™
6.(2) = Bn(g|T)(x) > By, (nh_{go =0 8227 1) (a)
1 n—1
— ] lim — ) E,( Iz
ogc+nggon; (log p o 0~'|Z)(x)
= —logc + Ey,(log p|T)(z)

and similarly by (67),
(70) 9" (x) <logc+ Ep(logp|T)().
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Forp € N, write A, (z) = log|S;, ...,, (moPz)[| and Ay (z) = log ||.S5,, ..., (moPz).
Consider the IFYS;, i, : 1 <i; < ¢,1 < j < p} rather than{S;}{_,. Then
(69) and (70) can be replaced by

1 * 1 *
g+(2) 2 —loget Enm(4plTp)(x), (@) <loge+ “Em(4;[Ty)(@),

whereZ, := {B € B(X) : ¢ PB = B}. Taking the conditional expectation
with respect tdZ in the above inequalities and noting that ¢* areos-invariant,
we obtain

(71) g«(z) = —loge+ ;Em(Aplf)(w), g*(x) <loge+ ;Em(AZII)(fﬂ)-

SinceAy(r) is sup-additive (i.e.4,4(z) > Ay(z) + Ay(oPx)) and Ay () is sub-
additive (i.e., A5, (z) < Aj(z) + A (oPz)), by Kingman’s sub-additive ergodic
theorem (cf. [63]), we have

(72) Jim Ay (x)/p = —A(=), lim A} (z)/p = —A(z)

p—0o0

almost everywhere and ih'. Hence letting: — 1 andp — oo in (71) and using
Theorem 34.2 in [7], we obtain that(z) > —\(z) andg*(z) < —A(x) almost
everywhere. This finishes the proof of (i).

To see (i), assume thdtS; }¢_, is weakly conformal and» € M, (X). Then
|Ap(x) — Aj(z)|/p converges td uniformly asp tends to infinity. This together

with (72) yields\(z) = A(z) for m-a.ex € X. This proves (ii). O

6. ESTIMATES FOR LOCAL DIMENSIONS OF INVARIANT MEASURES FORC'!
IFS

In this section, we prove a general version of Theorem 2.6, which is also needed
in the proof of Theorem 2.11. LgtT;}¢_, be aC! IFS onR¢, and{S;}{_, aC!
IFS onR”. Let¢ : ¥ — R? andrn : ¥ — R* denote the canonical projections
associated witf7; }5_, and{S;}¢_, respectively. Let) and¢ be two partitions of
Y. defined respectively by

n={s7"(2): zeRY,  E(=0a""n
Let P be the partition of given as in (3) and lef(z), p(z) be defined as in

(58). Applying Lemma 5.3 to the IF§S; le, we have for any: > 1 there exist
0 < 6 < c¢—1andrg > 0 such that for any € (0,79) andx € 3,

(73)

B™(z, (0—5)*1B(x)r)ﬂ77(x) C B™ (xz,r)NP(z) C B™(z, (c—=98)p(x)r)NP(x).

The following technical proposition is substantial in our proof.

Proposition 6.1. Letm € M,(X) andc > 1. Letd, o be given as above. Then
there exists\ C X withm(A) = 1 such that for allz € A andr € (0, ro),
mi(B™(z, cp(x)r) N P(x)) ~m§(B™ (z,7) N P(x))

(74) WL (B (o2, 7)) mE (B (2.1))

> f(x)
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and
(75)
md(B"(z,c p(a)r) N P(x) _ fa)- m§ (B (x, (1 — c6/2)r) N P(x))
mga (BT (0, 7)) - ms (B («, (1~ ¢6/2)r))

-1
wheref := 3 1cp Xy e ity 7 = BRY).

)

Proof. Write R, ,(2) = T,,' B(Ty,z,t) fort > 0, z = (2;)°, € £ andz € R

It is direct to check that

(76) o ¢ Ry . (¢pox) N P(x) = B(2,t) N P(2).

Hence form-a.ex,

m(¢~ ' Ria(¢ox)) _ m(B(z,t) NP(x)) m(¢~ Riu(dor))

m(B?(z,t)) m(B?(z,t)) m(B®(z,t) N P(x))
m(B?(z,t) N P(x))  m(o~'¢ Ryu(¢ox))

m(B®(x,t)) m(o~1¢ 1 Ry z(dox) N P(x))

Lettingt — 0 and applying Proposition 3.5 and Remark 3.6, we have

m(¢” Reo(don)) En(xal¢™'v)(@)
@) i = s~ 2 A E ey = @

for m-a.e.z. Let A denote the set of € X such that the following properties
(1)-(4) hold:

. m(B®(z,t) NP(z)) _
(1) lim mBr D) %XAEm(XAﬁb () > 0.

) m(0_1¢_1Rt7x(¢ax) NPz
R e R ()
(3) Forallg € Qt,

AeP

) S Bl 67 (@) > 0.

AeP

m (B™(z,q) N P(z) N B?(z,t))

m!(B™(x,q) NP(x)) > limsup

t—0 m(B¢($7t)) ’
. (B0 N P@) N BY@,)
mi(U"(z,q) NP(z)) < lim inf m (B (z.1)) ;
m (B™ (z,q) NP(z) No~ ¢ Ry 4 (dox))

¢ pmo i
mg(B™ (z,q) N P(z)) = hr?_?(l)lp m (o~ ¢ Ry o (dox)) 7

m (B (z,q) N P(z) No~ ¢ Ry z(do))
m (o g IRy »(dox)) ’

mS (U™ (z,q) NP(x)) < liltn i(l)qf

whereU™(z,q) := 7 U (rx,q), U™ (x,q) := o ‘7 'U(rox,q) andU(z, q)
denotes the open ball iR* of radiusq centered at.
. m(¢_1Rt,x(¢U$)) _
O B,y
Then we haven(A) = 1 by Proposition 3.5, Lemma 3.7, Remarks 3.6, 3.8 and
(77).
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Now letA = Ano'A. Thenm(A) = 1. Fixz € A andr € (0,r). Let
q1 € QTN (r,er/(c—4¢)). Choosep, g3 € QT suchthay; < g2 < cr/(c—4) and
g2(c—0)p(x) < g3 < cp(x)r. By (73), we haveB™ (z, ¢3) N"P(z) D B™ (z,¢2) N
P(x). It together with (76) yields
(78) B™(x,q3) N'P(x) N B®(x,t)) D B™ (x,q2) NP(z) N U_lqﬁ_lRt,m(cbax)).
Hence we have

mg (B (x, cp(z)r) N P(z))

v

Mmaz (B (oz,7))

ma(B™(z,q3) NP(x))

v

ma2 (U™ (z, q1))
lim sup,_,o m(B™(z,q3) N P(x) N B?(z,t))/m(B%(z,t))

v

lim

t—0

= lim
t—0

Denote

liminf; o m(B™(ox,q1) N ¢~ Ry z(dox))/m(d~ 1 Ry »(Ppox))

(by Lemma 3.7 and Remark 3.8
m(¢~ Ry o (¢0)) m(B7(x, g3) NVP(x) N B(x,1))

m(Bo@,0)  rn® mo B (02, q1) N o~ 1p~ Rya(60))
(@ Ria(bow) (B (@.gs) 0 P(@) 0 B 1)
m(B?(x,t)) t—0 m(B™(z,q1) o t¢~ Ry o(dox))

Xy = m(B™ (x,¢2) N P(x) Vo "¢~ Ryu(dow)),
Y, i=m(B™ (z,q1) No "¢ Ry (o)),
Zy :=m(o " ¢ Ry u(gow)).

Using the property (4), we have

Vv

v

Vv

v

>

ma(B™(z, cp(z)r) N P(z))
May(B™(ox,7))
, m(B™(z,q3) N P(z) N B®(x,t))
J) s (57 (5, q1) M o1 B (G72)
f(x) - fin sup X/,  (by(78)
. X1/ 2y
fz)- lim sup Vi, > f(z)
. m& (U™ (2, q1) N P(x))
m&(B™ (x,q1))
~m§ (B (z,7) N P(x))
m$(B™ (2, q1))

lim il’lft_>0 Xt/Zt
limsup, o Y:/Z,

f(z) (by Lemma 3.7 and Remark 3.8

f(x)

Lettingq; | r, we obtain (74). (75) follows from an analogous argumentL]
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Let (¢, 7) denote the ma — R? x R¥, z — (¢, 72). Itis easy to see that
(¢, ) is the canonical projection w.r.t. the direct produc{@f}¢_, and{S;}¢_,.
In the following we give a general version of Theorem 2.6.

Theorem 6.2. Letm € M, (X). Then form-a.e.x € ¥, we have
logmz(B™(2,7)) _ Em(g|T)(x)

(79) lim sup < and
r—0 logr —\(z)
(80) lim i 10EE(B(@.1)  Eu(91D)(@)
r—0 logr = —X(m) )
where
g = L,(Plo ¢ 'BRY) — I,(P|¢ 'BRY)

+Ln(Pl(¢,0) ' BR? x RY)) = Ln(Plo ™! (¢, 1) ' B(R? x R)),
and A(z), A(z) denote the upper and lower Lyapunov exponent§Sef¢_; at x
(see Definition 2.5). In particular, iS;}¢_, is m-conformal, we have

lim logm(B™(x,7))  h(px(o,m,z) — hy(o,m,z)
r—0 logr N A(z) '

Proof. It suffices to prove (79) and (80). For short we only prove (79). The proof
of (80) is analogous.
We first prove the following inequality

. logmd(B"(z,7)) _  Em(g|Z)(z)
81 lim su <
(81) o log 7 = En(log7|7)(z)
wherep(z) = [|S,, (ox)| for x = (x;)$2,. To see it, let > 1 so that

m-a.e,

csupp(x) < 1.
reX

Letry andf be given as in Proposition 6.1. Fere N andx € X, define

Pu(x) = p(x)p(ox) - plo” ).
Write
mg (B (x, " py,(2)70))
mdz (B™ (o, 1D, _1(0x)ro))
mg (B7 (z, "By, (x)r0) N P(x))
mg (B™(z, "By, (2)ro))
m§ (B™ (z,c"" 15, (0x)ro) N P()) .

mé (BT (2,15, 1 (o2)r0))

)

H,(x) :=log

Grn(z) :=log

Then by Proposition 6.1 we have fot-a.e. z, H,(z) + Gp(z) > log f(z) +
Wy (z), that is,

Hn(x) > log f(q;) - Gn(x) + Wn(x)
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However
n—1
logml} (B™ (x, "y (2)r0)) = > Hy—5(07) + logmlln, (B™ (0", 70)) .
=0
Hence form-a.ex,
logml (B™(x,c"p 1 & - : 4
08z ( (::l’ <"Pal®)70)) = j;o [log f(0?2) — Gp—j(0?x) + Wi_j(o'x)]

+ %log mln, (B™(c™z,10)) .
Note that by Proposition 3.5,
Gy — G = —L,(Pli v 7 'B(RY)),
W, — W = —I,(Plo ‘9 Vv o a1 B(R¥))
pointwise and inL.!. By Lemma 4.13 and Proposition 3.9, we haverfoa.ex,

n ™ n—
L ogmll (B (x, ', ()r0))

n—00 n

v

En((log f =G+ W)|I)(x)

= En(9|7)(2).
In the meantime, by Birkhoff ergodic Theorem, we have
1
lim —log(c"p,(x)ro) =logc+ Ey(logp|Z)(z) m-a.e.
n—oo n,
Hence we have

logmz (B™(z,7)) log mz (B™(z, c"p,,(z)r0))

1i li
T logr sl log(ep,(2)r0)
Em(9|7)(x)
log ¢ + Ep,(logp|Z)(z)

Takinge — 1, we obtain (81).
Let ¢ € N. Considering the IFST;,.;, : 1 <i; < ¢, 1 < j < ¢} and
{Si..i, + 1 <45 < £, 1 <j < g}, analogous to (81) we have

log mz(B™ (x,7)) < E..(94/7)(z)

2 li
(82) 1r:1_s)(1]1p log r ~ E,(loghy|T)(x)’
where
9q = Ln(P{ o %7 BRY) — Ly(PE |67 B(RY))

+Im(Pg_1|(¢,W)_1B(Rd x R¥)) — Im('Pg_l\G_q(gb,ﬂ')_lB(]Rd x R¥))

andhy(z) == ||, 4, (%) for z = (2:)72;.

Due to (23), we hav&,, (g4|Z)(x) = ¢E(9/7)(z). Itis easily seen that,(z)
is sub-multiplicative in the sense that, ,(z) < hy(z)he(cPz). Thus by Kingman
sub-additive ergodic theorem (cf. [63]), we have

1
lim 5Em(log hqe|Z)(z) = —A(xz) form-a.ex.
g—00
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Hence letting; — oo in (82) we obtain (79). This finishes the proof of Theorem
6.2. O

Proof of Theorem 2.6ln Theorem 6.2, we také;(z) = z/2forall1 < i < ¢
to obtain Theorem 2.6. To see it, we know that the attractof7o}_, is just
the singleton{0}. Hencey is the trivial partition{>, (} of 3, and thus we have
ml =m. O

7. PROOFS OFTHEOREM2.11AND THEOREM2.12

7.1. Proof of Theorem 2.11. Let ® = {S;}{_, be the direct product of C! IFS
®q,..., P, which are defined respectively on compaGtc R% (: = 1,...,k).
For eachi, letT"; denote the canonical projection w.dt;, and let\;(x) denote the
Lyapunov exponent ob; atx provided it exists.

Letm € M,(X). Assume thaf,, ..., &, arem-conformal. Let2 denote the
collection of all permutations ofl, ..., k}. Forr € Q, we denote

A :={zeX: \(z)exists foralli, A.)(x) < Aro)(2) < < Ay ()}

Thenm (U, A-) = 1. Letw denote the canonical projection associated with the
IFS ®. In the following we show that the local dimensidtwn o 71, 7z) exists
for m-a.ex € X.

Without loss of generality we only show thétm o =1, 7x) exists form-a.e.
x € A, wheree denotes the identity if2. Here we may assume(A.) > 0. For
otherA.’s, the proof is essentially identical under a change of coordinates.

Fori =1,...,k, letw; denote the canonical projection w.ii; x --- x ®;. It
is clear thatr = 7. Bear in mind that

A(z) < Aa(x) < - < () (x € Ae).

Fori = 1,...,k, we use{m.} to denote the family of conditional measures
{mz'} of m associated with the partition

N = {ﬂi_l(z) A AS Hth}.
t=1

For convenience, we usen?} denote the family of conditional measuresrof
with the trivial partition{, 0}. Itis clear thatn? = m for all x € X.
Fori =1,...,k, we give a metriel; on[[;_, R% by

di((z1,.. ., 2i), (Wi,...,w;)) = sup |z — we|Rae.
1<t<i

and definel = d;,. We claim that for any € A, ande > 0,
(83) ni(x) NPy (x) C B™(z, e_n(Ai-H(l’)_ﬁ))

whenn is large enough. Her8™ (z, r) is defined as in (12). To see the claim, let
x € A andy € n;(x). Thenm;y = m;z. Thus

d(ry,mx) = sup |[[yy,Tixlre = sup [Tyy, iz|ra:.
1<t<k iF1<t<k
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Sincey € P (z) andAi41(z) < ... < Ak(x), by Proposition 5.6, we have
d(ﬂy, 77'1') < e_n(/\i+1($)—€)

whenn is large enough, and (83) follows.
Fori =0,1,...,kandx € X, denote

-1 % n
n—00 n+1
provided that the limit exists. By Proposition 4.14,
(84) hi(z) = h(o,m,x) — hy,(o0,m,z) form-a.ex € X.

Fori=0,1,...,k —1andx € X, denote

log m,(B"i+1
¥i(x) = liminf 08 15 (x,r)).
r—0 logr

By Theorem 6.2 and (84), we have

Ry (0,m, ) — by (0,m, ) hy(z) — hiyr(x)
85 191 ) = i+1 9 9 i ) ) _ 7 )
(85) (@) Aig1(z) Aig1(z
for m-a.ex € X.
Fori=0,1,...,kandx € %, define
= log mg, (B" (7))

) .. dogmi(B™(z,r))
(z) =1 . 8.(x) = liminf z .
%(@) H;f(l)lp logr 8(x) gy log r

We claim that
(C1) 0y () = &(x) = 0 for all reEX.
(CZ) hl(a:) — hi_:,_l(l') > )\Z+1(5l(a:) — (51_:,_1(.%')) for m-a.e.x € Ae andi =
0,1...,k—1;
(C3) 6;41(x) + Vi(x) < 6;(x) form-a.ex € Acandi =0,1...,k—1;
It is easy to see that (C1)-(C3) together with (84)-(85) force thatifea.e.
x € Ae, 9;(x) = 0;(x) (we denoted the common value @éx)) fori = 0,...,k
and, furthermore
k—1 k—1
_ hi(x) — hiy1(z)
86 dmon !, 7mz) = do(z) = %(x) = .
( ) ( ™ ™ ) 0( ) g ( ) g >\7j+1($)
which is the desired result in Theorem 2.11. In the following we prove (C1)-(C3)
respectively.

Proof of (C1). Sincen, = {77_1(2) 1z € Hle RQt}, we have

my(B" (2, 7)) = mi (1 (x)) = 1
forall z € 3. Thusdy(z) = &, (x) = 0forallz € 3. O
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Proof of (C2). We give a proof by contradiction, which is modified from [400.2].
Assume that (C2) is not true. Then there exists ¢ < k such that

hi(x) = hivi(z) < Aig1(2)(0i(z) — di1(x))
on a subset ol . with positive measure. Hence there exist 0 and real numbers

Ry hiv1, Aiv1, 04, 0541 With A;11 > 0 such that
(87) hi — hit1 < Xig1(0; — 0i41) —
and for anye > 0, there exist®3. C A, with m(B,) > 0 so that forz € B,,
|hi(@) — h| < €/2,  |hit1(2) = hiy1] <€/2,  [Aip1(@) = Aig1] < €/2
and B B B B
10;(z) — 0;] < €/2, |0i41(x) — dip1| < €/2.
Fix e > 0. There existsy: B. — N such that form-a.e.x € B. andn > ng(z),
" hav?og mitt (B™(z e‘”(’\i“_?e)))
(1) = Ot = 26) < i1+ €
(@)~ logmi (PY(@) 2 hiy — ¢ (by (84));
(3) mi(x) NPy (x) C BT (z, e "X+1720) - (by (83));
(@) —logmb(Ph() < hi+e  (by (84)).
Take Ny such that

A :={z € B:: no(x) < No}
has the positive measure. By Lemma 3.3 and Lemma 3.10, there-exi$tand

A" ¢ A with m(A’) > 0 such that forr € A’, there exists: = n(z) > Ny such
that

mi—l—l
5 TEHINA)

A > ¢, where

mi (L)

L := B™(x, 67"()‘”1726));

©) log m; (B’r(m‘, 26_”(’\i+1_2€)))

—n()\i+1 — 26)
a)b$5“)<e

Takex € A’ such that (1)—(7) are satisfied with= n(x). DenoteC' = 7;+1(z)

andC’ = n;(x). Then by (5) and (1),
m;—i—l (LN A) > cm?‘l (L) > Ce_n(/\i+1_2€)(gi+1+5).

But for eachy € L N A, we have by (2! (Py(y)) < e "hi+179) It follows
that the number of distind®y-atoms intersecting’ N L N A is larger than

mi (LN A)erthiv=e),

However each such@j-atom, sayPj (y), intersects”’ N LN A, and this together
with (3) guarantees that’ N PJ(y) is contained inC’ N B (z, 2e~"\i+172¢)),

>3¢—e;
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To see this, let € Pi(y) N C' N LN A. Sincez € A, we haved(nz, mx) <
e "i+1-2¢) Thus
CNPHY) = ) NPI() € B (a6 720) € B (g, 270020,

CB
Meanwhile by (4)m (P (y)) > e n(hite) (for w € P(y) N C' N L, we have
ni(x) = n;(w) and thusn’ (P (y)) = mi,(PF(w))). Hence we have

mi(B™ (z, 2e " Ni+1729)y) #{Py-atoms intersecting’ N L N A} - e "(hite)

>
> ;‘H(LQA) n(hjy1— 6) —n(h;+e)

n()\i+1 726) (Si+1 +6) en(hiJrl 76)€7n(h1‘+6) )

v

ce
Comparing this with (6), we have
(Ai+1 — 2¢)(0; — €)
< (Nig1 = 26) (051 + €) (A — 2€) +
< (Niv1 —26)(0i1 + €)(N\i — 2€) + h; — hiyq + 3e.

Takinge — 0 yieldsh; — h;11 > X\i11(6; — 6:41), which leads to a contradiction
with (87). 0

log(1
og(1/c) + h; — hit1 + 2¢
mn

Proof of (C3). Here we give a proof by contradiction, adopting an idea from the
proof of [40, Lemma 11.3.1]. Assume that (C3) is not true. Then there exists
0 <i <k —1suchthat; ,(z)+ ¥;(x) > J;(x) on a subset ol with positive
measure. Hence there exigts> 0 and real numbers;, 9, ;, A; such that

(88) éz’—&-l + 191’ > éz + ﬁ>
and for anye > 0, there existsd, C A, with m(A.) > 0 so that forx € A,
(89)  [0;(x) — &l <e€/2, [G41(®) = dipa| <€/2,  |Vix) — 0| <e/2.

Let0 < e < #/4. Find N; and a setd. C A, with m(AL) > 0 such that for
x € Al andn > Ny,

(90) méfl (Bﬂ‘(x’2efn)) <e —n(d;4q e)

By Lemma 3.3 and Lemma 3.10, we can find 0 andA C A, with m(A”) > 0
and N, such that for all: € A” andn > Na,

mi (A, N B (z,e”™))
mi (B (v, e~™))
Forz € A andn > N», we have
mi,(B’T(x, e ™) < cflmﬁﬁ(A'6 NB™(x,e "))

o = [ AL B (e ) i)

= c_l/ 771;"'1(14’E N B™(x,e™™)) dm’ (y).
Blit1(g,e—n)

> C.
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Lety € n;(z) such thaty;11(y) N AL N B™(xz,e™™) # (. Then there exists
w € Al N B™(z,e ") such thatr;11y = mpiw. HenceA. N B™(z,e™™) C
B™(w,2e~™) and by (90)
my (AL N BT (w,e™")) My (AcN BT (w,e™"))
me (BT (w,2e7"))

e*n(éijqfe)'

IN N

Combining it with (91), we have

ml (B (z,e ")) < c_le_”(éiJrl_”)mi(BFi“(x, e ™) (x € A

€

Lettingn — oo, we obtaind,(z) > 6, — € + ¥;(x) for x € A”. Combining it
with (89) yields

éi Zéi+1 +79i —4e Zéi+1 +79i _ﬁa
which contradicts (88). O

7.2. Proof of Theorem 2.12.

Definition 7.1. A real square matriX is calledasymptotically similaif all the
(complex) eigenvalues oA are equal in modulus. Correspondingly, a linear trans-
formation7" on a finite-dimensional vector spabeis calledasymptotically simi-

lar if its representation matrix (associated with some basig)ds asymptotically
similar.

Lemma 7.2. Let(A4,..., Ay) be an/-tuple of commuting linear transformations
onR?. Then there are subspacks, . . ., V;, of R? such that
i) RI=Vi®- & Vi
(i) Viis Aj-invariantforl <i < kandl <j <¢,
(iif) The restriction of4; on V; is asymptotically similar fol < 7 < k and
1<j<e

Proof. For brevity, we only prove the lemma in the cdse 2. The reader will see
that the idea works for all cases.

Let S, T be two commuting linear transformations Bfi. Let f denote the real
minimal polynomial ofS. Supposef = ffl e ,ﬁ” is the decomposition of into
powers of distinct, real irreducible monic factgfis Let W; denote the null space
of [f;(9)]%,i=1,...,p. ThenW;’s areS-invariant andR? = W, @ - - - & W, (cf.
[62, Theorem 7.3]). Moreoves$yy,, the restriction ofS on W;, is asymptotically
similar.

Since ST = TS, W; is alsoT-invariant for eachi. But Ty, may be not
asymptotically similar. However, as above, for edagchve can decomposeld’;
into W; = W1 @ --- @ Wy,, such thatiW; ; are the null spaces corresponding
to some factors of the minimal polynomial @fy,. Again, W; ; is Tyy,-invariant
andSy,-invariant. Furthermoréyy, . andSyy, ; are asymptotically similar. Hence
R = D, ; Wi,; is the desired decomposition férand". O
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Proof of Theorem 2.12Let {S;}¢_, be the IFS given in the theorem. By Lemma
7.2, there is a non-singular linear transformatigpon R? such that{ Q.S;Q " le

is the direct product ok asymptotically conformal IFS. Hence the desired result
follows from Theorem 2.11. O

8. A VARIATIONAL PRINCIPLE ABOUT DIMENSIONS OF SELFCONFORMAL
SETS

In this section, we assume thétis the attractor of &' weakly conformal IFS
® = {S;}f_, on a compact sek C R?. The main result of this section is the
following variational principle.

Theorem 8.1. Under the above setting, we have

(92) dimy K = dimp K

(93) = sup {dimgp: p=mon"l, me M,(), mis ergodig
(94) = max{dimpgp: p=mon ', me M,(2)}

B hy(o,m)
(95) = Sup{f)\dm : me./\/lU(E)}.

Proof. Without loss of generality we assume thitng(K) > 0, wheredimp
denotes the upper box-counting dimension (cf. [13]). Let

O<tg<to<ty <ﬁB(K).

We first prove that there is an ergodic measure M, (X)) such thatdimg m o
7~1 > t3. To achieve this, letv = % — 1 and letry be given as in Corollary

5.5. Sincedimp(K) > t1, for any0 < € < rg, there existr € (0, ¢) and integer
N > r~% such that there are disjoint closed balt$z;, ) (i = 1,..., N) with

centersy; € K. By Corollary 5.5, we can find words; € ¥* (i = 1,..., N) such
thatS,,, (K) C B(z;,r) and

(96) S () = Sw(y)| =+ e —y| (2, € K).

This impliesritediam(K) < diam(S,, (K)) < 2r. According to this fact and
(59), there exist two positive constams B (independent of) such that

Blog(1/r) < |w;| < Alog(1/r)foralll1 <i < N.

Hence by the pigeon hole principle, there is a sugef {1, ..., N} with cardi-
nality

N rh
(A—B)log(1l/r) +1 - (A—B)log(l/r) +1 ="

such that the words; (i € J) have the same length, say
Now we adopt an argument from the proof of [12, Theorem 4]. Let

0 = min{d(B(z;,r), B(zj,r)): i,j € J,i # j}.

_t2

#J =
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For any positive integeg and distinct sequences, . .., i, andji, ..., j, taking
values inJ, let k be the least integer such thiat # jr. Applying (96) (k — 1)
times, we have

A(Sw;, 00 Sy (K), Sy, 0+ 0 Sy, (K))
> V“(HO‘)(kfl)d(B(Zik,T), B(zj,,r)) > rad+als,
Define a measurg on the class of finite unions of set§, o --- 0.5y, (K) by
letting 77(Sw,, o -+ 0 Su,, (K)) = (#J)~?. This extends to a measureon the

o-algebra generating by these sets. Uebe any subset ok with diam(U) < §
and letq be the least integer such that

plat+a)s < diam(U) < r(+a)g,
ThenU intersects at most one s&f, o --- o Sy,, (K), hence

nU) < (#J)71 <t < pri2g—t2/ () digm)ta/(1+e)
= r 2§ Bdiam(U)’.
This impliesdimg n > t3.

We point out that the measureconstructed as above is, indeed, the projection
of ac™-invariant and ergodic measurainderrx. Actually v is the unique measure
on X satisfying

v([wiy .. wg,]) = (#T)™1 (geN, i,...,ig € T).
Applying Theorem 2.8 to the IF§S,,, : i € J}, We have
_ ) B hx(c™, v)

d =d ' = ’ :

P T o185, ., (mo™) [du

Takem = % 2?2—01 voo~t. Thenm is o-invariant and ergodic. Applying Theorem
2.8 and Proposition 4.3, we have

dimgmon~! = fix(0,m) = (0", V)
— [log ||S}, (roz)|ldm  — [log||SE, 4, (mo™z)||dv
= dimHn 2 t3.

Sincetz < dimpK is arbitrarily given, we obtain (92) and (93). To show (94), let
(m;) be a sequence of measures\ify, () with

lim dimgy m; o 7! =dimy K.
Take a sequence of positive numbéss) such that)>°, a; = 1. Thenm =
Yoy aym; is an element inV,(X) with

1

dimgmon™ " =supdimgm; o 7! =dimy K.

To show (95), according to (93), it suffices to show that
1 > hw(a> m)
~ = [log||SE, (mow)|| dm(z)

97) dimgmomn~ (m e Mq(%)).
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Fix m and lety = m o 7—!. Denote byA the righthand side of (97). By Theorem
2.8,d(u, 2) exists foru-a.ez € RZ. Hence to show (97), we only need to show that
for anye > 0, there is a Borel sef ¢ R¢ such thaj:(E) > 0 andd(u, z) > A —«¢

for z € E. Assume this is false. Thet(u, z) < A — ¢ for y-a.e.z € R Thus by
Theorem 2.8 again, we have

ha(o,m,x) < Mx)(A —€) for m-a.ex € X.

Taking integration w.r.tim on both sides yields
he(o,m) < (A — 6)/)\ dm,

which leads to a contradiction. O

Remark 8.2. Assume tha{S;}¢_, is a weakly conformal IFS which satisfies the
AWSC (see Definition 2.14). Then the supremum in (93) and (95) can be attained
by ergodic measures. To see this, by Proposition 4.20, thermap A (o, m) is
upper semi-continuous o, (X), hence the supremum in (95) is attained at some
member, sayno, in M,(X). Letmg = [ v dP(v) be the ergodic decomposition

of mg. By Theorem 2.2(ii), we have

hr(o,mo) fhﬂ(a, v) dP(v)

di K= = .
i Thdmo  [[ANdvdP(v)
Since% < dimy K for eachv, the above equality implies thé}*g"—c’;;) =

dimgy K for P-a.e.v. Hence the supremum in (95) can be attained at some ergodic
measure, so do the supremum in (93).

9. PROOF OFTHEOREM2.15
We first present some lemmas.

Lemma 9.1. Let {S;}¢_, be an IFS with attractotk. Forn € N, write &,, =
{1,...,¢}™ and denote
N, =#{S,: ueX,}.
Then
(i) sup{hr(o,m): m € My(2)} < 1&8Nn,
(i) Lett, =supyecpa #{Su: v € Xy, z € S,(K)}. Then
log N,, — logt,

sup{hr(o,m) : m € My(X), mis ergodig >
n

Proof. We first show (i). Let» € N andm € M,(X). By the definition ofN,,
we can construct a subsetof X, with #Q = N,, such that for any. € X,,, there
existsw € Q so thatS, = S,. Hence thereisamap: X, — Q such that
Su = Sy for eachu € 3,,. Let (QN, T) denote the one-sided full shift ove.

DefineG : ¥ — QN by
G((wi)Zo) = ()21 ((%9)i2) € X),
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wherew; = g(2(j_1)n+1Z(j—1)nt2 - - - Tjn)- LetT : QN — R? denote the canoni-
cal projection w.r.t. the IF$S,, : u € Q}. Then by Lemma 4.23(ii), we have

ha(o™,m) = hz(T,mo G™1) < log(#9) = log N,,.

It follows thath, (o, m) < log N, /n. This proves (i).

To show (ii), letr be the Bernoulli measure on™ with probability weight
(1/Np,...,1/Ny). Thenv can be viewed as a"-invariant measure olx. By
Lemma 4.23(ii), we havé, (o™, v) = hx(T,v). Note that forz € R?, there are at
mostt,, wordsw in 2 such thatr € S, (K). By Corollary 4.22, we have

hz(T,v) > h(T,v) —logt, = log N,, — logt,.
Lety = % Z?:_ol voo~' Thenu is o-invariant and ergodic, furthermore

1 1
hx(o, 1) = ﬁhﬂ(a",y) = Eh%(T’ v) > (log Ny, — logt,)/n,

as desired. O
Lemma 9.2. Let® = {S;}{_, be an affine IFS oiR? given by

Si($1, ceey l’d) = (,01:31, T aniUd) + (ai,lv cee 7ai,d)7
wherel > p; > po > --- > pg > 0anda; ; € R. Let K denote the attractor op,
and write \; = log(1/p;) for j =1,...,d and\s41 = co. View® as the direct
product of®y, ..., ®,, where®; = {S; ;(z;) = pjz; + a;;}*_,. Letn; denote
the canonical projection w.r.t. the IF8; x --- x ®;. Then we have
(98)
TS| — N T T
> < - ) Hj < dimp(K) < dimp(K) <) ( - ) Hj,
Aj j=1 Aj

= Aj+1 Aj+1
with H; = sup {hr,(o,m) : m € M,(X)} and

f[j: . log#{&(‘j): uEZn}’

n—00 n

4

Where{Si(j)} iSthe IFSD; x - x @ onRR/.

Proof. Without loss of generality we assume that

Si([0,119) c[0,1]¢  (i=1,....,0).
Forn € N, we write
NV =#{8D) : wex,} (j=1,...,d),

and

logps  logpg 4
= ; = — fori<ji<d-—1
@) =n,  gj{n) [(log pj  logpji1 " == ’

where[z] denotes the integral part of
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o _ @
Construct,, ; C Xy G =1,... ,d) such that#Qmj = qu(n)
u € qu(n), there isw € ), ; so thatSff) = Sfﬁ). Then the family of following
rectangles

and for each

d
(99) H Swdwd,l-“wj',j([oa ]-]) (wl € Q’n,].) e 7wd € Qn,d)
j=1
is a cover ofK. To see it, letu; € X,y (j = 1,...,d). Then we can find

w; € Q5 (=1,...,d)such thané) = Sfj'j). Hence

d
Sudud71~~~u1 (K) - Sudud71~~u1([07 1]d) - H Sud“dfl'“ulyj([(L 1])
j=1

d

d
- H Sududfr“uj,j([O? 1]) = H Swdwd—l“‘wﬁj([O? 1]).

j=1 j=1
It follows that the family of rectangles in (99) covel& One can check that each

rectangle in (99) is an almogp,)™-cube. Hence by the definition of box-counting
dimension, we have

d d G

=1 78 H': N n
dimpK < 1imsup@_ : Llj=1Vg;(m)
n—oo T 10g(pd)n n—oo log(pd)”

This proves one part of (98).

To see the other part of (98), fgr = 1,...,d, let Q; denote the collection
{[0,1)Y + a: « € Z7}, and define

M) = #{Q € Q; : diag(pt, ..., p)QN K; # 0},
where K; denotes the attractor @; x --- x ®;. Then by Proposition 4.18(ii),
()

we haveH; = lim,, . %. We claim that forn € N, there exists a subset
Q,.; C X, with cardinality> 7-i MY such that

(100) SS9 ([0,117) N SY((0,1]7) = 0 for all w,w’ € O ; With w # W',

To show the claim, we construct a finite subsetf denoted by, such that
() #W > 79 0; (i) diag(p?, . .., p7)Q N K; # 0 for each@ € Wi'; (iii)
2QN2Q = D for Q,Q € W with Q # Q, where2Q = Ugrcq . grrowun @
For each@ < Wéj), since diagp?, ... ,p}l)Q N K; # 0, we can pick a word
w(Q) € ¥, such thatdiay, ..., p})Q N Sg()Q)Kj # () and hence

diag(pf, ..., #)Q 1S9, ([0,11) # 0.
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Denote(,,; = {w(Q) : Q € W,(Lj)}. The separation condition (iii) for the

elements irWéj) guarantees (100). This finishes the proof of the claim.
As above, we can construgt, ; well for eachj = 1,...,d andn € N. Now
fix n and consider the following collection of rectangles:

d
H WaWq—1+Wj,J [O’ 1]) (wj eﬁqj(n),]# 1<;< d)

It is clear that the above rectangles are alnjpgj”-cubes and each of them inter-
sects withK. Furthermore they are disjoint due to (100). Hence by the definition
of box-counting dimension, we have

d el ()
L HQ, () 7TIMV
dimp(K) > liminfm > lim inf ] ! 4;(n)
n—oc  —log(pg)" n—00 log(pd)
d
1 1
= —— — | Hj.
;(Aj >\j+1> ’
This finishes the proof of (98). O

Proof of Theorem 2.15We divide the proof into two steps:
Step 1. Show the variational principle fdimy K.
We first give an upper bound faimy K. Fixn € N. Define

Nj=#{SV:uwex,} (i=1,...,d),
Where{Si(j)}f:1 denotes the IF®; x --- x ®;. Then we can construct
Q,C%, (j=dd—1,...,1)

such that#Q; = N;, 3, D Q4 D Q41 D --- D §; and furthermore, for each

u € X, andl < j < d, there isw; € Q; such thatS‘ftj) = ng). Hence there are
natural map¥,,04_1, ..., 61 with

64 04 0. 0
Sy 20 0, 23 B, Mg,

such thatS‘ij) = Séi)(u) foranyl < j < d andu € Q;41, with convention
Qg1 =25,
Let Z; : Q4 — R be the indicator of)y, i.e., Z4(u) = 1 for all u € Q. Define

Zoa(w)= Y Zg(u)  (weE Q).

Define inductively

Y Zip)ree (weQy, j=d-2,...,1).
u€9j_1(w)
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In particular, define

log pq

ZO = Z Zl(u)IOgQQ,

u€eNy

Using the technique by Kenyon & Peres [33] (which is an extension of McMullen
[44]), we have

log Zy
—nlogp1’
More precisely, define a probability vect@r(u)),, ., by

(101) dimy K <

log pj

H 9(9]+1 G () PEPT
Zj-1(0j-105 -+ 04-1(u))

with conventionZy(6y . ..04—1(u)) = Z, for anyu € Q4. Letv be the product
measure oii2;)" by assigning probability(u) to each digit. € 4. The measure
v can be viewed as a measure ¥nwhich isc™-invariant and ergodic. Let =
vor~!. Then

p(u) =

Zd19d1

log u(B(ma,r)) _ log Zy
log r — —nlog p1

A detailed proof of (102) was given by Shmerkin (see the proof of (4.3) in [60])
for the cased = 2, whilst a slight modification of the proof of [33, Theorem
1.2] provides a proof of (102) fo# > 2. Then (101) follows from (102) and
Billingsley’s lemma.

Now we want to indicate certain connection between the upper bg%é%l
and the projection entropies. First we define the projectéjns QI].“H — QIJ.N
(j=d-1,...,1) by

05 ((ur)iz1) = (05(ur))pz, (u)iy € Q).
Then it is easy to see that for eathk< j < d — 1, the measure
-1

(102) lim iglf (x € X).

vii=vo (#jolj 000 )

is a product measure cm?. Let T; denote the left shift operator cij. By a
direct calculation, we have

log Zy _Zdz 1 1 h(Tj,v;)
—nlogpr Aj ; n

j=1 A]"Fl
Thus we have
d
) 1 1 h(T;,vj)
1 K< - - AR
(103) dima K= Z <)\j )‘j+1> n
7j=1

Let7; ( = 1,...,d) denote the canonical projection frcm’f‘ to R/ w.r.t. the
IFS {S&j)}uegj (remember that; denotes the canonical projection fraorto R?
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W.r.t. {Sq(f) : u € ¥,}). According to Lemma 4.23(ii), we have
(104) hz, (Tj,vj) = hy; (0", V) (j=1,...,4d).

Since®; x --- x ®; (j =1,...,d) satisfy the AWSC, there is a sequeri¢g) of
positive integers withim,, log t,,/n = 0, such that

(105)  sup #{SP : wue Q) x e SP(K)} <ty  (j=1,....4d),
TERI

whereK; denotes the attractor df; x --- x ®;. By Corollary 4.22, we have
hﬁ-j (Tj,l/j) > h(Tj,Vj) —logt, > h(Tj, Vj) —logt,.

It together with (104) yieldé.,, (0", v) > h(Tj,v;) — logt,. Now applying The-
orem 2.11 to the IF$S,, : u € ¥,,}, we have

d
1 1 1
di -1 _ = - h7r. ’rL’
imgrvom - . 1<)\j /\j+1> (0" v)
d
1 1 1
> = — —— ) (hW(T;,v logt,
= n 4 <)\] )\j+1>( ( J ]) g )
logt d 1 1
> . . n L )
> dimyg K - g <)\‘ y 1) (by (103)
j=1 J J+

Letm = 13" voo~i Thenm is ergodic andlimy mon~! = dimy vor .

Lettingn tend tooco, we obtain
(106) sup{dimgmon=t: m e My(X), mis ergodic} > dimy K.

It is clear the " in above inequality can be replaced by sincem o 7! is
supported ork. Note thath, (c,-) (j = 1,...,d) are upper semi-continuous on
M, (%) (see Proposition 4.20 and (105)). By Theorem 2.2(ii) and Theorem 2.11,
we see that the supremum in (106) is attained at some ergodic elemeht(n).

This finishes the proof of the variational principle ftim K.

Step 2. Show the variational principle fdimp K.
By Lemma 9.2, we only need to show that under the assumption of Theorem
2.15,

(107) Hj>H; (j=1,...,d),

where

- () .
H; = sup{hs, (0.m) : m € My(5)}, 1 = lim 28#I 2 W€}

n—oo n

To see (107), by (105) and Lemma 9.1, we have
log # {S@Sj) T u € En} —logt,

H: >
7= n

(n € N).
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Lettingn — oo, we obtain (107) by the assumptibsy ¢,,/n — 0. This finishes
the proof of the theorem. O

Remark 9.3. With an essentially identical proof, Theorem 2.15 can be extended
to the following class of IF® = ®; x --- x &, onR?% x --- x R%, where®;

has the form{ 4,2, + ¢; j}¢_, such that4; is the inverse of an integral matrix and
all the eigenvalues ofl; equalsp; in modulus,p; > --- > pg, ¢; ; € Q%.

This together with Lemma 7.2 and the proof of Theorem 2.12 yields

Theorem 9.4. Let® = {S,;}¢_, be an IFS orR? of the form
Si(x) = Az + ¢ (i=1,...,0),

where A is the inverse of an integral expandidgx d matrix, c; € Z¢. Let K be
the attractor of the IFS. Then there is an ergodic measurd<oaf full Hausdorff
dimension.

10. AFINAL REMARK ABOUT INFINITE NON-CONTRACTIVE IFS

In the previous sections, we have made the restriction that an IFS consists of
finitely many contractive maps. We remark that part of our results can be extended
to certain infinite non-contractive IFS.

Let® = {S;}3°, be a family of maps ofR¢ of the form

Sl(SC) = szz(l') + a; (’L =1,2,.. .),

wherep; > 0, R; are orthogonad x d matricesa; € R¢.

Let (X, 0) be the left shift over the alphabét : ¢ € N}, and letm be an
ergodic measure o satisfyingH,,,(Px) < 0o, WhereP,, denotes the partition
of X given by

Poo = {[i] : i €N},
where[i] = {(z;);2, € X : x; = i}. Assume thaf is m-contractivein the sense
that

o o0

(108) > (logp)m([i]) <0, > (loga;|)m([i]) < oo.
=1 =1
Denote

[e.e]

A== (log pi)m(i).
i=1
Let X’ denote the set of points = (z;)°, € X such that
lim (1/n)log(pz, Pas - - - Pzn,) = —A, lim (1/n)log|as,| = 0.

ThenX' satisfiesr 1 (X’) = X'. Furthermore by Birkhoff’s ergodic theorem,
m(X') = 1.

Define the projection map : X’ — R? by

m(x) = lim Sz, 0S5y, 0---08;,(0) (x € X').
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It is easily checked that is well defined. Lej: = m o 7—! be the projection ofn
underr. We have the following theorem
Theorem 10.1.Under the above setting, = m o 7! is exactly dimensional and
hx(o,m)

N
whereH (0, m) = Hy(Poolo 17 1y) — Hy(Poo|m 1), v = B(RY).

dimg p =

We remark that whem: is a Bernoulli product measurg, = m o 7! is the
stationary measure of certain affine random walk determinedl agpdm, and the
decay property of: at infinity has been extensively studied in the literature (cf.
[24] and references therein).

The proof of Theorem 10.1 is essentially identical to that given in Section 6.
Indeed we only need to repla&ein Section 6 byX’, and replace ‘let > 1 so that
csup,ey p(z) < 17in the proof of Theorem 6.2 by ‘let < ¢ < e*'.
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