EQUILIBRIUMS OF SOME NON-HOLDER POTENTIALS

Huvyi Hu

ABSTRACT. We consider one-sided subshifts o with some potential functions ¢ which
satisfy the Hoélder condition everywhere except at a fixed point and its preimages.
We prove that the systems have conformal measures v and invariant measures u
absolutely continuous with respect to v, where yu may be finite or infinite. We show
that the systems (o, 1) are exact, and p are weak Gibbs measures and equilibriums
for ¢. We also discuss uniqueness of equilibriums and phase transition.

These results can be applied to some expanding dynamical systems with an in-
different fixed point.

0. INTRODUCTION

The motivation of the paper is to understand statistical properties of physical
measures for almost expanding dynamical systems with Markov partitions. We say
that a piecewise smooth system is almost expanding if it is expanding everywhere
except at a finite number of periodic orbits. Examples of such systems are given in
Section 2, which include piecewise expanding maps on the unit interval, parabolic
rational maps on Julia sets, etc. We only consider the case where the systems
contain one indifferent fixed point p. Systems with more indifferent fixed points or
periodic orbits can be treated similarly.

Since we assume that the systems have Markov partitions, they can be repre-
sented by a one-sided subshift of finite type, and we can work on potentials ¢. With
the usual metric on symbolic space, the potentials we study do not satisfy Holder
conditions at the fixed point and its preimages. Therefore, statistical properties of
the systems become different from those with Holder potentials.

We obtain existence of a conformal measure v and an invariant measure p for
such a potential, where p is a physical measure of the system we are interested
in, and study the properties of the measures. We show that such a system (o, 1)
is exact, and therefore is ergodic if the symbolic system is topologically mixing.
We prove that p is a weak Gibbs measure, and obtain conditions under which the
formula P(o,¢) = h,(0) + u(p) holds. We also study uniqueness of equilibriums
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and phase transition. Lastly, we give the rates of convergence, without proof, of
test functions to their equilibriums under the transfer operators.

There are many literatures related to the topic. For non-Holder potentials, exis-
tence and uniqueness of equilibriums, and rates of convergence to the equilibriums
are studied by Hofbauer, Fisher-Lopes, Maume-Deschamps and others (see e.g.
[Ho], [M], [KMS], [N], [FL]). In those references, potentials are usually assumed
to be piecewise constant, or to be summable. The systems with indifferent fixed
points are sometimes coded by a subshift with countably many states (see e.g. [S1]-
[S4] and their references). Also, some ergodic properties have been studied for the
systems discussed in Section 2. For piecewise expanding maps with an indifferent
fixed point on the unit interval, existence and condition for finiteness of absolutely
continuous invariant measures was proved by Pianigiani ([Pi]) and Thaler ([T]).
When the invariant measure is finite, weak Gibbsianness, thermodynamic formal-
ism, and phase transition have been studied by M. Yuri (see e.g. [Yul]-[Yu4] and
their references). When it is infinite, ergodic properties were studied by Zweimiiller
([Z]). Parabolic rational maps on Julia sets have been studied by Denker-Urbanski
(see e.g. [DU2], [DU3]). These results were extended to parabolic Cantor sets by
Urbanski (see [Ul] and its references). Rates of convergence to equilibriums and
rates of decay of correlations of systems were studied in [Y2], [H1], [S4], [G], and
others (see [H2] for more references).

In this paper, we try to give the simplest conditions on the potential functions
and to obtain most ergodic properties for varieties of almost expanding systems.
Hence, among the systems discussed in Section 2, an ergodic property found in one
kind of system may also hold for others. The conditions we give are weaker since for
most results we do not need Assumption(IIl’), i.e. we only need the lower bound
of |p(0) — p(z)|. Further, the potentials we study are more general. For example,
in one dimensional almost expanding systems, our potentials are not necessary to
have the form —tlog f’(x). We may have bounded density functions and exponential
rates of convergence to the equilibriums. In this case, the behaviors of the systems
are just like those with Holder potentials. We may also have unbounded density
functions, finite or infinite invariant measure. In this case, the measures of the tail
of the Young’s tower may or may not converge to 0 (see Corollary A.2), and the
rates of convergence to the equilibriums are only polynomial. Moreover, we prove
exactness and study Gibbs property in both cases where p are finite and infinite.
We prove uniqueness of weak Gibbs state and equilibrium, and give a complete
description for phase transition. Our main approach avoids the first return maps
and goes down to Bowen’s method.

This paper is organised as follows. The assumptions and results are stated in
Section 1. In Section 2 we apply these results to piecewise smooth almost expanding
maps. In Section 3 we prove Theorem A, that mainly deals with existence of
conformal measures and invariant measures. In Section 4 we discuss properties
of the density functions of the invariant measures, which are stated in Corollary
A.1. The measures of the tail of tower are estimated in Section 5, Section 6 is for
exactness and a proof of Theorem B, while Section 7 is for Gibbs properties and a
proof of Theorem C. The last section, deals with equilibriums and uniqueness.
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1. ASSUMPTIONS, STATEMENTS OF RESULTS AND NOTATIONS

Let ¥t =[[;7{0,1,--- ,r* =1} and 0 : ©F — X% be the left shift.

If Ais an 7* x r* matrix of 0’s and 1’s, let S = {z € ST : A,,,,., =1Vi> 0}
It is well known that O'Z_A— = EZ. We assume that o is topologically mixing. We
also assume Agg = 1, so, 0 = 000 - - is a fixed point of o.

For convenience we assume that A;; = 1 so that 1 = 111--- is another fixed
point. We can check that the results are still true without the assumption.

We say that w is an n-word if w = wow; - - - w,—1 and A, =1V0<i<n-—1.
The word uw is the word u followed by the word w.

Given an n-word w = wowy -+ - wy_1, we define

Wi41

:{xEZX: x; =w;, V0 <i<n-—1}.

This set is called an n-cylinder, or simply a cylinder.
Let ¢ be the partition of X% into {Rs:s=0,1---r* — 1}, and

n—1
=\ o7 (1.1)
1=0

For any n-word w, we have R, € &,. We simply write w € &, instead.

For k > 0, we denote O = Rgr, P = Or\Ok+1, and Qi = Zj\@kﬂ. In other
words, O, P, and Q)i are sets of the points that start with at least, exact, and at
most k zeros, respectively. Also, we denote P} = Py_1 U P, U Pyy1.

Take x € (0,1) and v > 0. Let Ky be the largest number k such that x*
(k+ 1)~ Define a metric on ZZ inductively by the following rules:

i) d(z,y) =11if zo # yo.
i) d(z,y) = kd(ox,0y) if 29 = yo and z,y € Qk,.
i) d(z,y) = (k+1)~0+Vd(o*x, o*y) if x € Py, y € P}, k > K,.
k+l—1
) d(z,y) = Z d(z® 20D if x € P, and y € Ppyy, k > Ko, where
) = g, x(kH) =y,and 2z e P fori=k+1,--- ,k+1—1.

With this metric, the left shift o : E+ — Z+ is uniformly expanding with a rate
k™1 on Q,. The expanding rate of ¢ on Py converges to 1 if k — oo.

By the metric we can see that if z = 0*% € Py, y = 0§ € P] such that &g # 7o,
then d(r,y) = max{x*, (k + 1)~(@FD}. Hence, there exists C, > 1 such that

iv

diam O < C k77 Vk > 0, (1.2)

where the diameter of a set S is defined by diam S = sup{d(z,y) : z,y € S}.
We assume that the potential function ¢ satisfies the following.

Assumption A.

(I) ¢ is a continuous function on X7 ;

(I) 36 €(0,1], « € [0,0(1 4+ 7)) and C, > 0 such that

lp(z) — o(y)| < Cpmax{K§™ ', k* "Hd(z,y)’ Vo € P,y € Pj;
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(III) 3 8> —1, K1 > 0 such that for all k > K,

- B+1 Cs
©(0) — p(x) > E+ 1 - (k + 1)1+

Vo € Py

for some constants 6 > 0 and Cs > 0 independent of k and x.
Sometimes we also assume
(IT1") 3 " > B, K| > 0 such that for all k > K7,

_ B +1 Cs

PO0)=¢@) = Ty + oy

Vo € Py.

We may assume § < min{1,~v60} since we can always reduce 0.
We will also assume (0) = 0 since otherwise we can use ¢(x) — p(0) instead.

Remark 1.1. With the standard metric J(m,y) = 2% where k = min{i : z; # y;}
for x = {z;} and y = {y;}, ¢ is not a Holder function because of Assumption A (III).
However, under the metric we define, ¢ satisfies the Holder condition.

Remark 1.2. If we denote

vary(p) = max{|p(x) — p(y)| : zi = y;, Vi =0,k =1}, (1.3)

then by Assumption A(III) varg(¢) > Ck~! for some C' > 0. So the potential ¢

does not have summable variations since »_ varg(p) is not summable.
k=0

Let C°(S) denote the set of continuous real functions on the set S. Define the
Perron-Frobenius Operator £, from C°(XH\{0}) or C°(Z}) to itself by

Log(x)= Y e*Wy(y).

yEo~ 1z

Denote by L7, the dual operator of £, on M(X7).

Denote by ¢ the first return map with respect to Py, and by ¢ the corresponding
potential, that is, for any = € Py, 6z = o™z and @(z) = S,p(z) where n = n(x)
is the smallest positive integer such that ¢"xz € Fy. The corresponding Perron-
Frobenius Operator £~¢ is given by

5 5 = (5071 -
Logx) = ePWgly) =3 e5et0 0 g(s07 ), (1.4)
Gy=x 7=1 s7#0

Denote Dy, = max{k, Ko}. For J > 0, we define

Gy =1{g € CO(TH\{0}) : 9> 0, g(y) < g(x)e’ PR v € Py € P, Vk > 0}

Denote by M (X)) the set of Borel probability measures on X7.
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Theorem A (Existence of the invariant measures). Suppose ¢ satisfies either
Assumption A(I)-(1II) with § > 0, or Assumptions A(I)-(III) and (III') with
—1 < B < B <0. Then there is a measure v € M(X}), which is positive on
nonempty open sets, a constant A\ > e?(0) — LA>1if-1<p <0, and a
function h € ij for some J, > 0 such that LLv = Av, Loh = Ah.
Moreover, u(g) = v(hg) defines a finite or infinite o-invariant measure L.
- is finite if either h*(1) <0, or h*(1) =0 and B > 1;
- w 18 infinite if either h*(1) > 0, or h*(1) = 0 and Assumption A(III') holds
with 0 < B’ <1,

where

h*(x) = h(x) — i Zesj‘p(soj_lx)h(soj_lx). (1.5)

j=1 s#0

If p is finite, then we assume that p is a probability measure.

By Corollary C.1, we see that log A is the topological pressure P(o, ) for the
potential function ¢. We will prove in Lemma 4.3 that the sign of h* is independent
of z, and A > 1 if and only if A* < 0.

Remark 1.3. Let & be the first return map and @(z) the corresponding potential.
If the topological pressure P(&,¢9) can be defined, then one should expect that
P(6,¢) and h* have the opposite sign.

Remark 1.4. Sometimes the measure v is called an e!°8*~%-conformal measure in
the sense that for any Borel set E such that o|g is injective,

(o) = /E oE A2y, (1.6)

For any function g defined on X% or ¥\{0}, we denote

g(0z) = Z e?5%) g(sx). (1.7)

s7#£0

Corollary A.1 (Properties of the density function).

_ h(0
i) If h*(1) <0, then lim h(x) = %; otherwise lim h(x) = oo.
z—0 - z—0

ii) If h*(1) = 0, then for any x # 0, limsupgh(()"a:) < h(0). Suppose As-
/

sumption A(III') also holds; then lim inféh(()”x) > h(0). Soif =2,
n—oo N
then the limsup and liminf become limit.
_ 1
iii) If h*(1) > 0, then there exists By, > 0 such that linniigf e h(0"z) >

Byh*(z) for any x € Py. Suppose Assumption A(IIl') also holds; then there

1
exists B;, > 0 such that hgl—igp Wh(onx) < Bjh*(z) for any x € P,.

Further, if 8 = (', then lim h(0"z) = Bjh*(x) for some B} > 0.

nB+1
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Since functions in G J, are undefined at 0, by Corollary A.1 and Lemma 4.1, we
can define

h(0) = h(0)A—1)"' if A>1, and h(0)=oo otherwise (1.8)

It is well known that the convergence rates of the tail of Young’s tower ([Y1],
[Y2]) determine the rates of convergence of test functions to the equilibrium, and
the rates of decay of correlations.

Corollary A.2 (Convergence rates of the tail).
For any k > 0, there exist B, = By, \, B, = B!’L’k, Cp=Cur >0and C, =

Cl.r. > 0 such that the limits kli)rglo Ak, where A = B,B',C,C" exist, and for all
n>k:
i) if h*(1) <0, then pP, < B, A""n~ B+ and p0O,, < C, A "n5;
ii) if h*(1) =0, then uP, < Bu,kn_ﬁ vE >0, n0, < C’mkn_(ﬁ_l) V3 > 1;
iii) if h*(1) > 0, then nh_}n;O pP, >0 and pO = co.

Suppose Assumption A (III') also holds; then i) and ii) are true if we replace
Bk, Cug and “ <7 by B), ., C/ . and “>7 respectively, and for case ii) it also
holds that nO,, = oo V0 < ' < 1.

Moreover, if 3 = [, then B, i, and B!’L’k, and C,, 1, and C’;LJC can be chosen in such
a way that the following limits exist: lim B, = lim B;a,k = lim A\"nPvP, for

k—oo k—oo n— oo

B > 0, and klim Cuk = klim CL,k = lim )\”nB_lVOn for B > 1, where B =0+1

n—oo

in case i) and B = B in case ).

Estimates for vP,, and vO,, are given in Lemma 4.5.

Define ¥(x) = p(x) +logh(z) — log h(oz) — log A for € X7, where we regard
log h(0) — log h(a0) = 0 if h(0) = occ.

d d
It is easy to see that i (z) = —log poO reg

(x), while p(z) = —log

(). So

we can put assumption on v instead of ¢ to get statistic properties of the systems
(see [H2]). We only state the results for the case h*(1) = 0, since this is the most
interesting case.

Note that if z € 0~ !(0Py), then 2 has the form s0* 1w, where w = wow; - - -

with wg # 0.

Corollary A.3 (Properties of the function ).
Consider the case h*(1) = 0.

(I) « is continuous on each R except at s0, s # 0.
(II) 3 Jy > 0 such that for all n-words w = wowy - - - Wp_1,

’Snd)(wx) — an/)(wy)} < Jy max{K§, kYd(z,y)? Vo € P,y € P,
and if w,—1 # 0, then

| (Snp(wa) +log h(z)) — (Spw(wy) + log h(y))| < JpK§d(x,y)? Va,y e 2.
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(III) 3 K3 > 0 such that for all k > Ko,

¥(0) — () ~ i Vo € By

v

_ B Cs
k

for some Cs > 0 independent of k and x.
Moreover, if Assumption A (III') also holds and \ = 1, then
IIT") 3 K > 0 such that for all k > K},
2 2

¢(0)—¢(x)§%+% Vi € P

for some C§ > 0 independent of k and x.

Recall that a o-invariant measure p is ergodic if for any measurable set FE,
0~ 'E = E (mod p) implies uE = 0 or u(X5 \ E) = 0. A system (o, ) is ea-
oo

act if the tail o-algebra ﬂ o~ "B is trivial, where B is the o-algebra for the system
n=1

(o, 1). These definitions work for both probability and infinite measures. (See [A]

for the infinite measure case.) It is well known that exactness implies ergodicity.

Also, if p is a probability measure, then exactness implies mixing.

Theorem B (Ergodicity and exactness). Under the assumptions of Theorem A,
the system (o, ) is exact. Therefore, u is an ergodic measure.

Recall that a measure p is a Gibbs measure, if there exist constants P and C
such that for any z, and n > 0,

— pRm Ty Tpy—
ct< VRIS < C.
~ exp{—nP + Syp(x)} ~

In our case one cannot expect that the measure p obtained in Theorem A is a
Gibbs measure, since if we take z = 0, then by Corollary A.2, uO, may decrease
polynomially, while exp{—nP + np(0)} = e " decreases exponentially if P > 0
or equal to 1 if P = 0. However, u is a week Gibbs measure. A measure p is
a weak Gibbs measure, if there exists a constant P and a sequence {C,} with
lim 1 log C';, = 0 such that for any x, and n > 0,

n—oo n

_ pR$ T Ty —
cl< 0% n 1 < C,. 1.9
" T exp{—nP + Syp(x)} ~ (1.9)

We refer to [Yu2] and [Yu3] and their references for more information about weak
Gibbs measures.

We can extend the definition for o-finite measures. An invariant measure p is
said to be an infinite weak Gibbs measure if p(X7}) = oo, and (1.9) holds for all
z € X} and n > 0 provided pRyyz, -z, _, < OO
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Theorem C (Gibbs properties). Under the assumptions of Theorem A, u is a
weak Gibbs measure or an infinite weak Gibbs measure. Moreover, p is the unique
mvariant measure satisfies the following properties: There is a real number P, and
a function p(x,n) such that for every z,

1 < URzomy a1
p(z,n) = exp{—nP + S,p(x

T < p(z,n), (1.10)

provided pRyz, .z, _, < 00, where p(x,n) satisfies the following:
1 _
a) lim —logp(z,n) =0 for any x # 0;
n—oo N

b) lim 110g sup p(z,n) = 0.
k—oo TEQRNo~"T1Qg
Remark 1.5. Part b) implies that for each k, we can find uniform bounds for cylin-
ders R, if R, C @ and the last symbol of w is nonzero. If we think that such
cylinders are “good” cylinders, then for any x € Q) which is not a preimage of 0,
Raoxy-z,_, 1S @ “good” cylinder for infinitely many n.

Corollary C.1 (The constant P). The constant P in both (1.9) and (1.10) is equal
to the topological pressure P(o,y) and log \, where \ is given in Theorem A.

For entropy of a o-finite measure p, we follow the definition given by Krengel
(see [Kr], also [Z]). For a subset I' C ¥, we denote by or the corresponding first
return map, and by pr the conditional measure of p, that is, prS = pS/pl’ for
S C I'. The measure theoretic entropy of p is defined by

hp(o) = p(T)hpy (o) (1.11)

for any subset I' of positive finite measure.
Recall that a probability measure p is an equilibrium state for a potential 7 if it
satisfies

P(o,n) = h,(o) + /ndp. (1.12)

We also denote P(n) = P(o,n).

Theorem D (Equilibrium states). Under the assumptions of Theorem A,

- w satisfies (1.12) with n = ¢ if and only if h*(1) < 0;

- the Dirac measure 0y satisfies (1.12) with n = ¢ if and only if h*(1) > 0.
Further, the only ergodic (probability) equilibrium for ¢ is

- pif P(e) > 0;

- 1 and & if P(p) =0 and uX} = 1;

- 8p if P(p) =0 and puXh = .

Suppose Assumption A (III') also holds; then p is the only possible infinite

ergodic measure p with |p(p)| < oo such that (1.12) holds with n = .

By Theorem A and Corollary C.1, if p is an infinite measure, then P(o,¢) = 0.
So Theorem D provides conditions for the Rohlin’s formula h, (o) = — [ pdp.
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Corollary D.1 (Phase transition). Suppose ¢ < 0 satisfies Assumptions A (I)-
(III) and (III') with B = 3'. Then there exists to > 0 such that
i) for 0 <t <ty, P(te) >0 and ¢ has the unique equilibrium fis,;
ii) for t = to, P(te) = 0 and ¢ has exactly two equilibriums j, and 05 if
to(B+ 1) > 2, and has the unique equilibrium &g otherwise;
iii) fort > tg, P(ty) =0 and ¢ has the unique equilibrium &;.

Corollary D.2 (Uniqueness of weak Gibbs measures). Under the assumptions of
Theorem A, if v is a probability measure, then it is the only o-invariant weak Gibbs
measure for p.

1
We define Ly, : C*(Z]) — C*(Xh) by Lyg = Eﬁw(h9)7 or, equivalently

1
Ah(x)

Lyg(z)= > e'Wg(y) =

yco~ 1z

> e#Wh(y)g(y).

yco 1z

If h*(1) < 0, the convergence rate of a test function to its equilibrium under the
operators Ly, is determined by P(¢) and 8. We state the results here.
Denote

G={geC(X%): 3C >0, st. |g(y) — g(x)| < CDpd(w,y)°
Vo € Py,y € P, Vk > 0},

Go ={g€G: g(0) # p(9)},

Gs Z{g €G: AL >0, s.t. |g(0) — u(g)| < L(n + 1)_5 Vn > 0}.

Let F(X7) be the set of all bounded real functions on ¥7. Denote

9(0)]
9(0)

(n+1)"7 VxEPn,nz()},
(n+1)"7 Vz € P,,n>0}.

Fr={geFE}): 3L >0, s.t. |g(z)
+
A

L
Fr={geF(})): 3L’ >0, s.t. g(z) L

Theorem E (Rates of convergence). Suppose ¢ satisfies Assumptions A(1)-(1I1).
If h*(1) < 0, then there is A > 0 such that for any g € G, there is A > 0 with
|Ly9(x) — pu(g)| < AN Vr € Qr,n > 0.

If hk*(1) = 0 and B > 1, then for any g € G,, T € [0, 1], there is A > 0 such that

n A
1L9(x) — u(g)] < (g Dty € Qe >0

Moreover, if Assumption A (III') also holds with 3’ < 3+ 1, then for any g € Gy,
there is A’ > 0 such that

A/

|£Zg(aj) —u(g)| = m

Vo € Qr,n > 0.
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The above inequalities are also true if we replace | L7 g(z) —u(g)| by | Lyg9—n(9)ll-
If h*(1) = 0 and Assumptions A (III') also holds with 8 = 3 € (0,1], then for
any g € F, there is A > 0 such that

A(n + l)maX{O,lfﬁfT}

Vre Xt n>0:;
(n+1)1-8 TE L 2

1L9(x) — g(0)] <

and for any g € F, there is A" > 0 such that

A’(n—l— 1)max{0,1fﬁ77}
(n+1)1-6

»9(x) —g(0) > Vo € Qp, n21,
where (n+1)1=7 or (n+1)'==7 in the inequalities should be replaced by log(n+1)
if 6=1or B+ 71 =1, respectively.

We are not going to prove the theorem in this paper. For the case P(y) > 0, we
have A > 1. By Corollary A.2, uP; and pQO,, decreases exponentially fast. Then
we can apply results of Young ([Y1]) to get exponential convergence. For the case
P(p) = 0, the results and more details can be seen in [H2] and [HH] for the case
B> 1and g =0 <1 respectively. (See also [Y2], [S4], [G] for the case 5 > 1.)

From this theorem, we can get corresponding results for rates of decay of corre-
lations when the invariant measure is finite. Further, if the covariance

ulg-goa™) —u(g)?

is summable with n, then the Central Limit Theorem holds. In our case, if 3—1+7 >
1, then the Central Limit Theorem holds for any g € G,.

2. ALMOST EXPANDING MAPS: APPLICATIONS

Consider a map f : X — X, where X = R™ or C, the Riemannian sphere.
Suppose f has an invariant subset A, i.e. fA = A.

Assumption B.
(I) fla : A — A is topologically mizing.
(I1) fla : A — A has a Markov partition into subsets {R; ;;51.
(IIT) f is piecewise smooth. More precisely, for each i, flint R, iSa C? map from

int R; to its image, and it can be C' extended to R;.

Here a Markov partition means a finite cover {Ryg, -, R.«_1}, R; = inty R;, of
A with int R; Nint R; = Vi # j; and f(R;) is a union of some R;.

A fixed point p of f is indifferent if D f,, has an eigenvalue on the unit circle in C.
We say that the map f is expanding on an invariant set A with an indifferent fixed
point p if f has an indifferent fixed point p € A and f is uniformly expanding away
from p. The latter means that for any open neighbourhood U of p, f is uniformly
expanding on A\U.

If f is expanding on an invariant subset A, with or without indifferent fixed
points, and has a Markov partition, then there is a map m : ZZ — A given by

m({z;}) = N f'Ra,, where {z;} € X}, such that for =moo.
j=0



EQUILIBRIUMS OF SOME NON-HOLDER POTENTIALS 11

Assume that f has an indifferent fixed point p. Then we can choose a Markov
partition {Ri};al such that p € Ry. Hence, 7(0) = p. Note that the projection
m: 3k — A induces a map 7* : CO(A) — CO(Z}) by g =gonm Vge COA).

Assume further that near p, there is a local coordinate system such that

fr=a(l+2") + g(), (2.1)
where /
lg(@)], 2| |1Dg(@)[l, |=[* [[D*g()] = O(|«|"*") (2.2)
for some 1’ > r as x near p.

Lemma 2.1. Suppose f(x) satisfies (2.1) and (2.2). Then there is 0 < § < 1, and
an integer ko > k{ such that for all large k,

! 1 " 1 1
(k + ko)r (1_ (k+k0)5) < 2" < AL (1+ (k+k6)5) Vi€ P (2.3)

Proof. We may assume that A C I so that we can drop the norm sign | - |.
We claim that if fz < z+ 2™ +toz' ™ for some t > 0, then thereis 0 < § < 1

1 1
such that for all large n, 2" < — (1 — —6> implies
nr n

(fz)" < ﬁ(l - ﬁ) (2.4)

This implies the first inequality of (2.3). In fact, for any large k we can always find

. 1 . .
k?() such that x Z m (]_ — m) Vx € Pk_|_k-0. Then we use induction.

Denote v, = (1 — n_‘s)_l. By the condition,

1 1 t gl
(1t )

nYn nyn o (nyn)7/Y

To prove the lemma we only need to show that

1 1 t gl 1
IV SN D
NYn NYn (n’}’n)’y /v (TL - 1)7n—1

(f2)" <a¥(1+a" +to-2")" <

or, equivalently,
_ e 1\=6
n 1<1+i_ 1 N to, )VS Tn :1 (n—1) .
n ny  nltoy o (ny,)Y/Y Yn—1 1—n—9°

Take § < min{1,7'/y — 1}. Then (n,,)~'/7) is of higher order. It is easy to see
that

(2.5)

-1 1 1 1
lim o+ (S (1 = )T 1) = T ot (T ST -
n—oo n ny nltoy n—oo nltor 2n2~y
and 6 1\—6
1—(n—-1)" 1-(1—-n"")"
lim n1+5<L — 1) = lim n- ( n) = —0.
n—oo 1—n-9 n—oo 1—n-9

So we know that as n — oo, the left side in (2.5) is like 1 — n~(1+9) and the right
side is like 1 — dn~ (9, Since 6 < 1, the right side is larger for all large n.
The second inequality in (2.3) can be proved similarly. U
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2.1. Maps on the unit interval. Let f be a piecewise smooth expanding map
from the unit interval I onto itself with an indifferent fixed point p = 0. Denote by
f' the derivative of f.

Theorem F. Suppose f : I — I is an expanding map with an indifferent fixed point
0 that satisfies Assumptions B(I)-(III) with A = I, and near 0 f has the form (2.1)
with r > 0. Then for any potential ¢ such that ¢ satisfies Assumptions A(I)-(III)
with B > 0, or Assumptions A(I1)-(111) and (III") with —1 < § < (3’ <0, Theorems
A-FE and their corollaries hold.

In particular, if we take p(x) = —log f'(x), then ¢ satisfies Assumptions A(I)-
(III) and (III') with o = 3 = 3’ = v = r~'. In this case, the measure v obtained
in Theorem A is the Lebesgue measure, the measure p is an absolutely continuous
invariant measure, and the density function h satisfies h*(1) = 0. Moreover, i is
finite if 0 < r < 1 and infinite if 1 < r < oo.

Remark 2.1. If we take v = r—!, then the map 7 : Ez — [ is Lipschitz. So any
Holder potential on I satisfies the condition in the theorem.

Remark 2.2. The requirement of conditions (2.1) can be slightly relaxed. For ex-
ample, the same proof can go through if we assume z + az'*t" < fo < z + bax!'*"
for some 0 < a <b.

These systems with potential ¢(z) = —log f’(z) have been studied extensively.
The part concerning the existence of the absolutely continuous invariant measure
p is well known (see e.g. [Pi], [T]). It is proved that u is a weak Gibbs measure (see
e.g. [Yu2], [Yu3]) and an equilibrium (see e.g. [Yul], [S1]).

The rates of convergence to the equilibriums and rates of decay of correlations
are also well known for the case r € (0,1) ([Y2], [H1], [S4], [G], also [LiSV], [PY]).

Proof of Theorem F. We only need to show that if ¢(z) = —log f'(x), then it
satisfies Assumptions A(I)-(III) and (II1"). Let a = =3 = =r"1.

Clearly, ¢ is continuous.

By (2.1) and (2.2), there exist t1,%2 > 0 such that

Fla) > 1+ (1 +r)a" —tyz”

f'(z) <r(1+ T)x*HT + tgafHT/ < Cx~ 1t

for some C' > r(1+r).
Let k£ be a large integer and z € Py. By the first inequality in (2.3), we have
" > (k+ ko)~ 'r~! and therefore

a(l—r)

f(x) < C((k+ ko)r)

for some Cy, > C(2r)*~1 > 0 if k > ko. Also, note that f’(x) is bounded below by

3 \A B/
1+(1+T)(k+1k0)7’<1_(k—}—1k0)5>_t1<kﬁ+ko> <1_m> '

Since fr’ > 1+, we can find C5 > C§ > 0 such that

<Or k4 ko)t < C k! (2.8)

1+7r " B+l O
! >1 — é > - -
! (1‘) = (k + ko)?‘ (k + k'())H"S =1t k k1+o
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Hence, Assumptions A (II) and (III) follow from the definition of ¢ and the fact
that s > log(1 + s) > s — s2/2.
Assumption A (III') can be obtained similarly. O

2.2. Parabolic rational maps. A rational map f : C — C on the Riemannian
sphere C with degree larger than or equal to 2 is parabolic if its Julia set J =
J(f) contains indifferent fixed points or periodic orbits but no critical point. The
equivalent condition is that restricted to J, the map is positive expansive but not
expanding in the spherical metric ([DU2]). The map has Markov partitions of
arbitrarily small diameter ([DU3]).

In the case that an indifferent orbit contains more than one point, we can take
f™ to get indifferent fixed points.

We say that a measure p on J is a measure of full Hausdorff dimension if
dimg (p) = dimg (J), where dimpy () = inf{dimg(Ag) : Ao C A, pu(Ag) = 1}.

Theorem G. Suppose f : J — J 1is the restriction to the Julia set of a para-
bolic rational map on the Riemannian sphere with an indifferent fixed point p and
where f is topologically mizing. Then for any potential ¢ such that ™ ¢ satis-
fies Assumptions A(I)-(1I1) with 3 > 0, or Assumptions A(I)-(111) and (III') with
-1 < <3 <0, Theorems A-E and their corollaries hold.

Further, we suppose that near p, the Taylor expansion of f can be written as
f(2) = z + 2" +higher order terms, and that t is the Hausdorff dimension of J.
If we take p(x) = —tlog|f'(x)|, then ¢ satisfies Assumptions A(I)-(111) and (III")
witha=y=r"tand =03 = t(l—l—r‘l) —1. In this case, the conformal measure v
and invariant measure p are measures of full Hausdorff dimension, and the density
function h satisfies h*(1) = 0. Moreover, p is finite if 2 < t(l + 7“_1) < 00, and
infinite if 1 <t(14r~1) <2.

For potentials of the form p(x) = —tlog|f’(x)|, existence of conformal measures
and invariant measures of such maps was proved, and some statistical properties
such as central limit theorems and the wandering rates have been established by
Denker, Urbaiiski and Aaronson (see e.g. [DU2]-[DU4], [ADU] and their references).
We refer to [U2], Section 3, for complete information on what is known before.

For general rational maps f on C and general Holder potential ¢, it is known
that if P(f, ) > sup{|p(z)|: x € J}, then all of the main results corresponding to
P(f,9) > 0= (0) in the above theorem hold (see [DU1], [Pr], [Ha]).

Remark 2.3. The Hausdorff dimension dimg (J) of J is larger than r/(1 + r) (see
e.g. [ADU]). So we always have 1 < dimy (J)(1+r"1).

Remark 2.4. Note that here a conformal measure v means an e'°8*~%_conformal
measure. That is, v satisfies (1.6). If A = 1, then v is the same conformal measure
studied by Denker and Urbenski.

Proof of Theorem G. It is obvious that Assumptions B(I)-(III) are satisfied. So we
only need consider the case ¢(x) = —tlog f'(z).

Assumption A(I) is clear. Assumption A(II) follows from the definition of ¢ and
the same arguments for (2.8). For Assumption A(III), by the same arguments for
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(2.9) we get that for x € Py,

1471 Cs t(l—l—?”_l) tCs 1
—ple) 2 tlog (14 == = 75 ) = = = 15+ 0(33)
for some Cs > 0. Assumption A(IIT") can be obtained in a similar way.
By Corollary C.1 and Theorem A, P(p, f) = logA > ¢(0) = 0. So by Theo-
rem D,

0< Py, f) =hu(f) + /sodu = hu(f) = t/logf’du-

That is,
p o tulf)
~ [log f'du

Since p is ergodic, and f is a conformal map, the right side of the equality is equal
to dimgy (u). So we get t < dimpy(u) and therefore dimy(J) =t < dimpgy (). It
means that p is a measure of full Hausdorff dimension. Since u < v, v is also a
measure of full Hausdorff dimension. O

2.3. Parabolic Cantor sets. Let f : I — R be a piecewise smooth expanding
map.

Denote A={z € I: f"z e lVn>0}. Clearly, fA=Aand 0 € A. If f(I) =
then A = I, and it becomes the same case studied in Subsection 2.1. If f(I) D
then A is a Cantor set topologically.

Let t be the Hausdorff dimension of A.

1,
1,

Theorem H. Suppose f|p : A — A is an expanding map with an indifferent fized
point O that satisfies Assumptions B(I)-(I111), and near 0, f has the form (2.1) with
r > 0. Then the same conclusions stated in Theorem G hold, including the case
p(x) = —tlog f'(x), the choice of o, B, B’ and vy, and the conditions for finiteness

of 1.

Parabolic Cantor sets were studied by M. Urbanski (see [U1] and its reference).
He obtained the existence of invariant measure and conformal measure of full Haus-
dorff dimension and investigated the equilibrium state and the phase transition of
the systems.

Proof of Theorem H. 1t is the same as for the proof of Theorem G. U

2.4. Maps on higher dimensional spaces. We can generalise the results in
Subsection 2.1 to a higher dimensional case. For a map f from the m-dimensional
cube I"™ to itself, we denote by det D f(x) the determinant of D f at x.

Theorem 1. Suppose f: I™ — I™ is an expanding map with an indifferent fixed
point 0 that satisfies Assumptions B (I)-(11I) with A = I™, and near 0, f has
the form (2.1) with r > 0. Then similar results stated in Theorem F hold with
o(x) = —log|det Df(z)| and o = v = r~1, B = ' = mr~L. Also, p is finite if
0 <r < m and infinite if m < r < oo.
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Some expanding maps with indifferent fixed points in higher dimensional space
are studied by M. Yuri ([Yul]-[Yu4]), and the maps we discuss here also satisfy her
assumptions, though she did not give these kinds of examples explicitly.

Remark 2.5. In these examples we require that near 0 the map f has about the same
expanding rates along different radial directions. If f has two neutral directions
along which f has different expanding rates, then Proposition 3.1 fails to hold and
therefore Assumption A(II) cannot be true (see examples in [HV]).

Remark 2.6. We can also discuss the case that A is a fractal in I™ which has the
form {(c,s) : c € I', s € S} near the fixed point, where I'[0, 00) is a parabolic Cantor
set and and S C ™! is a fractal.

Proof of Theorem I. We only need to verify 8 = 3 = mr~!. The rest proof is the
same as for Theorem F.
In fact,

rym—1 r r’ r r’
|deth(x)|:(1+|ac| ) (1+(1+7“)|ac| )+O(|x| y=14+m+r)z]"+0(=|").
If x € Py, then by (2.3),

~p(x) =log|det Df(x)| = log| (1 + (m + r)la]") + O(Jz[")]
S (m+r) Cj mr—t 41 Cs

“(k+ko)yr (k+ko)* = Kk kS

1

So we have 3 = mr~!. /' = mr—! can be obtained similarly. O

3. THE OPERATOR L,: PROOF OF THEOREM A

Proposition 3.1. There is J, > 0 such that for all J > J,, the following holds:
1) FOT%?J S Qk:

|0(02) — (0y)| + JDg1d(0z,0y)° < JDRd(z, y)’,
and if s # 0, then for x,y € X7,
|o(s2) = @(sy)| + JK§d(sw, sy)” < JKGd(,y)”.
i) Forxz,y € Qk, w = wowy + - Wp_1 With wr,wy € Qu,,
|Snp(wa) — Spep(wy)| + JDg d(wa, wy)? < JD&d(z,y)°,
and if w,_1 # 0, then for x,y € Zz,

|Snp(wz) — Spp(wy)| + JD% d(wz, wy)? < JKgd(z,y)°.
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Proof. 1) First we assume k > Ky and z,y € Q. It is easy to check by the
definition that d(0z,0y) < k71 (k 4+ 1)+ Vd(z,y). By Assumption A(II),

}90(01:) - @(Oy)‘ + J(k + 1)*d(0x, 0y)°
<C,(k+1)*71d(0z,0y)? + J(k + 1)*d(0z, 0y)®

LO(v+)—a Lo+ —a N )
<J-(c T+ 1)P0r 01 Ty 1)9<v+1>—a>’“ dz,y)".
If J, is large enough and J > J,, then the quantity in the parentheses is less than
1.
If k < Ko or s # 0, then we take J, > 0 such that (C,K§ + JK§)r’ < JK§
whenever J > J,. Therefore we can get the results in a similar way.
ii) It can be obtained from i) by induction. O

Recall that ¢ is defined in (1.7).
Corollary 3.2. LetJ > J,and = 0z,y =0y € Os. If g(sy) < g(s:i’)e‘]Kgd(SE’sg)e
Vs #0, then j(y) < g(x)e’ Ko d@v)",
Proof. Tt follows from the above proposition and the fact that
J(y) { €‘p(sf7)9(837) } < max{ép(sg)w(sz)eJKgd(sf;,sg)G }
g(fL’) T s#£0 e‘P(Sm)g(Sf) T s#0
By Proposition 3.1.i), the right side is less than or equal to eI K@) O

Proof of Theorem A. By Lemma 3.3 there exist \* > e#(") = 1, and v € M(X}),
which is positive on nonempty open sets, such that LZv = A*v.

Fix J > J, and take a constant J* > J, large enough, which can be determined
in the proof of Lemma 3.5. Let B = C°(X}\{0}) but with the norm

lgl = sup {e"*g(a)}, (3.1)
zex i\ {0}
where k(z) = k if € P;. It is easy to check that B is a Banach space.
Lemma 3.4 below implies that £, : B — B is continuous.
Take
H={geG;: g(1)=1}.

H is not empty since it contains a constant function g(z) = 1. Clearly, H is a
convex set. By Lemma 3.5, 'H is compact.

Define an operator £ : B — B by Lg = L,g/(L,9)(1). L is continuous because
L, is continuous. By Lemma 3.6, LH C H. By the Schauder-Tychonoff Fixed
Point Theorem (see e.g. [DS]), £ has a fixed point h € H. So we have h € G,
VJ > J,, and Loh = ((Lyh)(1))h. Denote A = (L,h)(1).

By Lemma 3.7, A = A*. Hence, we also have Liv = Av.

To prove that u is o-invariant, we can check directly that £, (h( goa))
then p(goo) =v(h-(goo)) =v(A ' Ly(h-[goa])) = v((A'LyR) - g)
1(g). (See e.g. [B] for more details.)

The part A > 1 if —1 < 3 <0 is proved in Lemma 4.5.

The last part of the theorem, concerning conditions under which p is finite or
infinite, follows from Corollary A.2 and the fact that X7} = Uizo Pi- U

9‘(£sah);
v(h-g) =



EQUILIBRIUMS OF SOME NON-HOLDER POTENTIALS 17

Lemma 3.3. There is a real number \* > e?©) | and a measure v € M(ZF), which
1S positive on nonempty open sets, such that Liv=Nv

Proof. The map pu — L3 u / is a continuous map from M(XF) to itself.
Since M(Ej) is compact in Wea,k* topology, by the Schauder-Tychonoff Fixed Point
Theorem the map has a fixed point v. So if we take \* = (L3, u)(1), then Lv = A*v.

To prove vU > 0 for any open set U, it is enough to prove that for any word u,
VR, > 0. Since o is topologically mixing, c"R, = EZ for some n > 0. Hence for
any x € ¥, there is an n-word v such that vx € R,,. We have

= Z eS”‘P(w"”)XRu(wx) > eSnevr)y o (vx) > —nllell 5 g,

where &, is defined in (1.1). So

1 1 . v(e~mlel) 1

VR, = (/\*) (L*) v(xr,) > XR.) = (AF)m - ()\*e||<P||)"

> 0.

Now we prove \* > ¢#(®)_ Suppose \* < ¢?(® . Since ® is a continuous function,
there is k > 0 such that (A\*)7'e¥(®) > 1 Vz € Oy. Note that if y € P;y;, then
oy € P;. We get that for ¢ > k,

vPiy1 =v((\) " Loxpy,) /)\* Z e?Wyp,,, (y)dv(z)

oy=x

/—e@(ox)xp z)dv(z) > /Xpi(l‘)dl/(l‘) =vP,. (3.2)

Hence, we have vP; > v Py Vi > k, contradicting finiteness of v. Il

Lemma 3.4. L, is a bounded linear operator.

Proof. Take g(x) = ¢/ ¥®) where k(x) = k if z € P. Clearly g is the maximal
element in the unit ball with respect to the norm in (3.1). Since L, is a positive

operator, we only need to prove that e_J*k(m)£¢g(x) is bounded.
Note that k(0x) = k(z) + 1 and k(sx) =0 if s # 0. So

e—J*k(m)£¢g(l.) _ e_J*k(a:) (egp(ow)ej*k(()x) +Z etp(sx)g]*k(sm)) < eH(p||+J* _{_T*e"@",
s#£0

where r* is the number of different symbols used in X7}. O

Lemma 3.5. The set 'H is compact.

Proof. For any g € H C G, we have

Jk—0+)+a

a o
9(y) < g(z)e’PRa=" < g(z)e
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if z € Py, y € P, and k > K;. So if = € Py, then we can choose z® e P,

i=1,---,k and z(*) = 1. Denote z = z(?). By the above inequality we get
k—1
g(m) < g(I) H g(m(z))/g(x(z—i—l)) < 62?;11(0 J(k—i)~ 00+t < ej*k1—9(1+v)+a (33)
i=0

for some J* > 0 independent of g and (. Since o < (1 + ), k1=00+V+a <k,
So e~/ *@)g(z) — 0 as © — 0, and the convergence is uniform for all g € H.

Since H C G, it is easy to see that H is uniformly bounded and equicontinuous
outside Oy, for any large k. With the above arguments we know that H is uniformly
bounded and equicontinuous.

Clearly, ‘H is closed in B. We get the result. O

Lemma 3.6. LH C H.

Proof. Take g € H. We prove Lg € H.
Take = € Py, y € P,. Then

S eWg(sy)

Lg(y) _ svezi i {
Lg(x) > e¢(sm)g(5$)  szsyeX’

smEZI

e@(sy)g(sy) }
e@(sw)g(sx) )

P 0 o
Note that 9(sy) < /Ko d(sz,5y)" i s # 0 and 9(0y) < eJDk+1d(O“’0y)9. By Propo-
(sz) 9(0z)

sition 3.1, the right side of the above inequality is bounded by e
Lgegy. B o B
It is clear that L,9 > 0 and (L,g)(1) = 1. So Lg € H. O

<

JDRd(z,y)’ Qo

Lemma 3.7. A= \*.

Proof. Define h(™ by
B () = { h(z) ifz € Qn;
0 otherwise.
We have £,h(") = A\p(n=1 4 hxo, , where h(z) is defined in (1.7). So
v(h™) =)7L () (™) = () e (Lh™)
=) (D) + () v (hxo,).
Since v(h™) = v(h("~V) + v(hxp, ), we have
(1= )T N D) = —v(hxp,) + (A) " v(hxo,)- (3.4)
Note that V(iLXOn) — 0 as n — oo since h is bounded on Qg and vO,, — 0. Now
we prove v(hxp,) — 0. This implies A = \*, because v(h("~1)) increases with n.
Since v(hxp, ) = pP, and pP, decreases, the sequence {v(hxp, )} decreases with
n. So if it does not converge to 0, then it is bounded away from 0. Hence by (3.4),
v(hxp, ) is roughly proportional to v(h(™~1). Since v(h™) = v(h("~V) +v(hxp,),
it implies that v(h(™) and v(hyp, ) increase exponentially fast. So restricted to P,,
h(z) increases exponentially fast. It contradicts (3.3) which says that functions in
G increase subexponentially. O
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4. THE DENSITY FUNCTION: PROOF OF COROLLARY A.1l
_ . h(0) . " .
Lemma 4.1. For x # 0, lim h(0"z) = if A > 1 and lim h(0"x) = oo if

n— o0 A—1 n— o0
A=1.

Proof. Since L h = Ah, we have PO ) B0t i) 4 (0" z) = AR(0"z), where
h is defined in (1.7). Hence

h(0" ) = e~ (AR(0"z) — (0" z)), (4.1)

or
h(0™Fix) _ (0" <)\ B iL(O”*%))
h(0"z) h(0"z)

Since h € Gy, h(onﬁlx)/h(ﬂnl‘) < eled0" 1 e0"T) 1 asn — 0o, We also
have e=#(0""'0) _ ¢=¢(0) — 1 and h(0""z) — h(0). The result of the lemma
follows. 0

Recall that h* is defined in the statement of Theorem A.

Lemma 4.2. Let x # 0.

h(z) = A5 O D p(0ng) + 3N N TS T R0 ), (4.2)
j=1 s#0

and if X =1, then h*(x) = lim,_ o, e“?O" @ h(0"2).

Proof. Note that for any z, h(z) = A~ 1e?C®)h(0z) + D540 A~ 1e?(5%) h(sx). The
equality holds by induction.

Let A = 1. The sum in (4.2) increases with n. So we know that eS»*(0"®)p(0"x)
decreases with n and therefore has a limit as n — oo. Then we use (1.5). O

Lemma 4.3. i) A > 1 if and only if h*(x) < 0 for any x # 0.
ii) If \ =1, then either h*(z) =0 for all x # 0, or h*(x) > 0 for all x # 0.

Proof. i) “=” If A > 1, then lim A\~"e5»?(C"®) b (0"2) = 0 because h(0"z) increases

at most subexponentially, and e%7#("?) decreases by Assumption A(III). So by
(4.2), for any x # 0, h*(z) < 0.

ii) Let A = 1. By Proposition 3.1 and the fact h € G, for any = € Py, y € P},
eSO W p(Ony) /eSO ) (0 ) < e/ K5 d@v)” < ¢TK§ S0 we know that the limit

lim e5»?(0" @) p(0"z) is either 0 or bounded away from 0 on any Pj, and therefore

on any Q. Since h*(x) is equal to the limit, the result follows.
i) “<” If h*(x) < 0 for some z # 0, then by part ii), A # 1. So A > 1. O
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Lemma 4.4. For any k > 0, there is B, = B, ;, > 0 with klim By = 1 such that
n E o \A+1
for alln >0, z € P, 7¢O ”)§B¢<k+ ) .
n
Suppose Assumption A (III') also holds. Then for any k > 0, there is By, =
Bl > 0 with lim B, = 1 such that for all n > 0, x € P, eSne(0"x)

— 00

B‘/p<k—l]€—n>ﬂ/+1'

Moreover, if 3 = 3, then the limit B:; = lim nt1e%¢0" %) cpists.
n—oo

Proof. By Assumption A (III), there exists Aj,, A, > 0 such that for all k& > 0, if
x € Py, then

Al 1 \A+1 A
vlz) <1 — b i <(1-+— 1+ ——=—).
© = k+1+(k+1)1+5—( k:+1) (+(k;+1)1+5)

v

Taking product, we get

kt+n—1 o0
eSne(07) < (kir)ﬂ“ H (H'(i_;_Aﬁ) = (kin)ﬁﬂnﬁ(l—k(i*flﬁ)'

1= 1=

We let B, i, be the product, which is convergent. Clearly, klim B, = 1.
—00
The results corresponding to Assumption A (III') can be obtained in a similar
way.
Let 8 = ('. We know that the sequence {n?+1e%»¢(0"#)1 is bounded. Note that
eSne(072) — Sn-rp(072)Ske(0°2) i hounded between B;’k(k/n)ﬁﬂes’“@(okx) and

By i (k/n)P+1eSs2(0%2)  We have

B, JoB+1eSke(082) < Bt Sni(072) < B, kB HLeSke (0 )

for any n > k. Also, kli)ngo B, = klingo By = 1. So {nf+1eSn¢(0"2)1 is a4 Cauchy

sequence, and therefore is convergent. U

Lemma 4.5. For any k > 0, there exist B, = B, > 0 and C, = C,;, > 0 such
that the limits lim B, and lim C, exist, and for alln >k,

k— oo k—o0
vP, <A "B,n Bt 0, <A "ConP.

Suppose Assumption A (III') also holds. Then the above inequalities hold if we
replace 3, B, C, and “<” by ', B.,, C!, and “>7, respectively. Hence, if 3’ <0,
then A > 1.

Moreover, if 3 = ', then B, j and B,’j7k can be chosen in such a way that

lim B, = lim B, = lim X'n"t'vP, = B;. (4.3)

k—oo n—oo
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Proof. By a similar method for (3.2), then by Proposition 3.1 and Lemma 4.4, for
all large k£, we have

1 Sn— on kg 1 kN B+1
- o /Pke v )dy(x)gB%kW< ) vP,.  (4.4)

n

vP,

So \"n~ Bty P, is bounded. We can take B, = By i mgg{)\"n_(ﬁH)VPn}; then

we get the upper bound estimates for v P,.

The estimate for vO,, follows from the fact that O, = {J,~,, -

If Assumption A (IIT') also holds, the lower bound estimates can be made simi-
larly. So if 5’ € (—1,0], then A > 1 since v is a probability measure.

Let 8 = ('. The sequence {\"n~B+UyP,} is bounded. By (4.4) we have

B/UkAkk.—(ﬁ-t-l)ypk < )\”n_(ﬁ“)yPn < B,,,kAkk‘_(BH)qu

for any n > k. Also, klirgo B, = klin;o B,r =1. So {A\"n=¥+DyP,} is a Cauchy
sequence, and therefore the limits in (4.3) exist. O

The next lemma is for the proof of uniqueness of equilibriums in Theorem D and
phase transition in Corollary D.1.

Lemma 4.6. i) If h*(1) > 0, then there exists a continuous function p* > ¢ on
YH\{0} such that for any * > ¢’ > ¢ satisfying Assumptions (I)-(III), h'* (1) > 0,
where h' is the density function given in Theorem A for ¢'.

If Assumption A(III') also holds with ' = (3, then ¢ can be taken in such a
way that p*(x) — p(z) > a/k for some a >0 as x € Py and for all large k.

i) If there exists ¢’ > ¢ with ¢’ # ¢ that satisfies Assumptions (I)-(111) such
that h'* (1) > 0, then h*(1) > 0.

Proof. i) From the proof of Lemma 4.3 we know that if A*(1) > 0, then h*(z) >
¢ > 0 for some c as x € Py. By the definition of A* given in (1.5) and £~¢ given
in (1.4) we know that h*(1) > 0 implies h(z) > Lzh(x) + ¢ for any = € Py. So by
continuity we can find ¢ > ¢ such that for any ¢t > ¢’ > ¢, h(x) > Lz h(z).

Take ¢ that satisfies Assumptions (I)-(ITT), and ¢+ > ¢’ > . Note that Lz
maps the set of continuous functions on Py to itself. So by the similar method as
in the proof of Lemma 3.3, we get that there is a conformal measure v’ on Py and
a constant A\’ such that ENZ‘;, v = XNv'. Hence,

NV'(h) = (L5 ) (h) = v/ (Lah) < V' (h).

That is, \' < 1.

Let b/ be the density function obtained in Theorem A for ¢’. We claim h'*(1) >
1. In fact, if not, then by Lemma 4.3 we have h'(x) < Lz b/ () for all € Py. Then
the same argument gives A'v/(h') > v/(h). It implies \' > 1, a contradiction.

Now we assume that Assumption A(IIT") also holds and § = (. By Lemma
4.3, h'*(1) > 1 implies A = 1, and then by Lemma 4.5 we have 8 = 3’ > 0. Take
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¢©] > ¢ such that p > ¢ on Qg,, where K; is given in Assumption (III), and
such that

ize o7 (s07 1w)h 5071 Zze Sjp(s07 ’1w)h s0/ 1) < ¢/2.

7j=1 s#£0 J=1 s#£0

This is possible; for example, we can let gpf = ¢ on Ok, 4+1. By Lemma 4.4 we

know that there exists B > 0 such that e%i%1 69 '2) < B;j=(+8) for all j > 0
and z € Py. So if we take @q(x) = o (x) + a/k for all z € P, and k > K;, and
va(z) = @] (z) for all x € Q,, then

Z Ze Sjpa(s0? :r)h S0 1y Z Ze et (07 m)h(st_lx),

j=K; s#0 j=K; s#0

as a — 0. Hence we can take a > 0 small enough such that the difference is less
than ¢/2. Therefore o™ = @, is the function we need.
ii) It can be proved in a similar way. O

The next two lemmas are for the case h*(1) = 0.

Lemma 4.7. Suppose h*(1) = 0. Then there exists H > 0 such that for all k > 0,
h(z) < Hk if x € Py.

Proof. Since h*(1) = 0, we have that for any x # 0,

ZZe j(s07 e h(s07 1),

7=1 s#£0

Since h is bounded on Fy, we denote by Hy the upper bound. Also, eSiw(s0' 1)
e (501 2) oSi—10(0" ') Qo if 1 € Py, then by Lemma 4.4, we get

el 7 12) — * el kN
h()<re“"Ho;e””’ <7"e"’HoBZ<1<;+j—1> < Hk

for some H > 0. O
Lemma 4.8. Suppose h*(1) = 0. Then there is Cy, > 0 such that for all x € Py,

for all large n,
B Ch)

—h(0"x) < h(0) (1 + =L (4.5)

If ¢ also satisfies Assumption A(III') and h*(1) = 0, then there is C} > 0 such
that for all x € Py, for all large n,

% h(0"z) > i}(‘)(l . C—/) (4.6)

nd

Proof. We only prove (4.5). The inequality (4.6) can be proved similarly.
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By Lemma 4.3, we have A = 1 and therefore by Theorem A, 3 > 0.
Recall that we assume 6 < min{1,~6} after Assumption A(IIl") is stated.
Take C'}, > 0 such that for all large n,

Bn—2-3  Cy (1+8)* n+B+2 284C, Cs(n+en—p)

2t 12 1P (miD)? D2 (i
where Jy = J, K.
First we claim that if there is = € P, such that for e > Cn~°,
gh(O”x) > h(0)(1 +¢) (4.7)
holds for some large n, then
nLHh(O”Hx) > h(0) (1 +e+ ﬁe). (4.8)
Now we prove the claim. By Lemma 3.3 and Assumption A(III),
=07 ) 5 g O L Cs (4.9)

- n+1 (n+1)149
Note that i € G;,. By Corollary 3.2 and (1.2), if n is large enough, then
h(0" 1 z) < B(0)e 00" w0 < f(D)e 0" < R(D)(1+ 2JoCyn ). (4.10)

So by (4.7) and (4.10), if n is large enough, then

1 SR Yous n 2.JoC
"0 ()\h(o ) — h(0 +1a:)> >S50 — (14 = 257)
:";5 %e— 2;7107(;” > n—ﬁ%‘ (4.11)
By (4.1) and then by (4.9) and (4.11), we have
16} h(OnJrlx) 16} (0" a) 1 noy 3 ntl
w1 o) > 1€ o) (R(0"z) — h(0"*'2))

I} n+6+2 n—0 n 2JoC, I6] Cs n+en—20
Tl Tt LB RS e | (n+1)H B
_(n+B+2)n=p)  (n+B+2n  n+p+2 2800, Cs(n+en—20)
= (n—|—1)2 (n_|_1)2 € (n+1)2 no (n_|_1>2+5
Note that

(n+B8+2)n—-pF) _, (1+p)?
(n+1)2 B (n+1)2’
(n+ﬁ+2)neze+ B E+ﬁn—2—ﬁ

(n+1)2 o(n+1) " 2n+1)2 *
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Also note that ¢ > C,n~°. By the choice of Cj,, we get (4.8). The claim is true.

Using this claim we can get the result of the lemma. Otherwise we have an
e > Cpny % such that (4.7) holds for some large ng. Then using the claim repeatedly,
we get

. n0+k—1
h(0™ ) > h(0) (1 +e+e Z

B
n0+k:

B
2(i+1)> vk 2 0.

no

Since the summation goes to infinity as k& — oo, it contradicts the fact given by
Lemma 4.7 that A(0"z) < Hn for all n > 0. d

Proof of Corollary A.1. The results for the case h*(1) < 0 and h*(1) = 0 are given
in Lemma 4.1 and Lemma 4.8, respectively.
For the case h*(1) > 0, by Lemma 4.2, lim eS”‘P(Onm)h(O”x) = h*(x), and by

Lemma 4.4, n~ B+ e=5ne(0"2) > B;j). So the first part of the case follows. The
rest can be proved similarly.

5. THE FUNCTION 1) AND MEASURE p: PROOF OF COROLLARIES A.2 AND A.3

Lemma 5.1. Let w be an n-word, n > 0. Then for any integrable function g,

[ e nguayin) = [ gauta).

w

Hence, if we take g = xr,,, for any word u, then / e W) () = R
Ru

Proof. Define g*(z) = g(z) if z € R, and ¢g*(x) = 0 otherwise. Then we have
eI ¥ (W) g(yr) = L3g* (z) for any z. So we get

/es”"’(m)g(ww)du(fr) = pu(Lyg") = ulg*) = /R g(x)dp(z).

By using xr,., (wx) = xr, (), we can get the second part of the lemma. O
<p(0:£)h 0 1 - _ 1
Lemma 5.2. ¢¥(9%) — eT(x()x) =1- Wh(()m). In particular, e¥®) = I

Proof. Since Lyh(x) = Mh(z), we have e?(®®h(0z) + h(0z) = Ah(z). So by the
definition of ¥,

eP(0z) b (0 R
e¥(02) — #&0) =1- )\hl(:c) h(0x). (5.1)

For the case x = 0, the result follows from the definition of ¢ and (1.8). O
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Lemma 5.3. There exists Bs > 0 such that for all large n, the following hold:

_ 1 B
. . % (0z) L ) ) .
i) if h*(1) <0, then e < 3 <1 + (& Tymin{La—6(1F)} Vo € Pp;
_ B
i) if h*(1) = 0, then ¥ <1 — g + nlﬁé V& € Py;
_ B
iit) if h*(1) > 0, then e¥(*®) > 1 — nljﬂ Vo € P,.

Suppose Assumption A (III') also holds. Then there exists B5 > 0 such that for
all large n, the above inequalities hold if we interchange “ <” and “>7, and then
replace By, and 3 by _Bqlp and (' in i) and i), and by Bq’p and (' in iii).

. . B+1 Cs
Proof. i) Note that by Assumption A (III), p(0x) < R + (1 2)
since h € Gj_, h(0z)/h(z) < eTen”d(@00)” < oo (D) Y D gl e (1) < 0, the
result can be obtained from the first equality of (5.1).

ii) By Lemma 4.8 and a similar method for (4.10), we have that for all large n,

vt Also

1
Ah(x)

- n nl—l—é

h(0z) > <1+C—§> 1%(0)(1_%) > B8 B
nh(0) n ny
for some large Bs. Now the result follows from the second equality of (5.1).

iii) Since h*(1) > 0, by Lemma 4.2, h(z) is of the same order as e~»#(#). By
Lemma 4.3, if z = 0"y € P,, y € Py, then e ¢ > B;l(n +1)8+L. Now we use
the second equality of (5.1).

The other direction of the inequalities can be estimated in a similar way. U

Lemma 5.4. For any k > 0, there is Cy = Cy . > 0 and Cy, = Cy ;. > 0 with
lim Cy = klim C{p,k =1 such that for alln > 0, x € Py, the following holds:

k—oo
_ n k B+1
N if BT th Sn(0"x) < )\—n( > .
i) if h*(1) <0, then e < Cy kk+ﬁn ;
G) if B (D) = Spip(0"z) < )
i) if h*(1) =0, then e _C¢<k—|—n> ;

iii) if h*(1) > 0, then Ch*(z) < €50 < Cyh* ().
Suppose Assumption A (III') also holds. Then i) and ii) are true if we replace
“<7 B and Cy by “>7, 3" and Cy,, respectively.

Proof. i) Use Lemma 4.4 and the fact that both h(0"z), h(x) — A~! as k — oo.
ii) It can be proved by using Lemma 5.3 and the same methods as for the proof
of Lemma 4.4.
iii) Since = € Py, we know that z = 0¥y for some y € Py. By the definition of ),
we have ok
S (072) _ Sup(0"a) h(0"z) eSntnOTTW) (g
h(x) eSk (0 y) b (Oky)

S (()n+ky) n+k
eSdn+kP h(O y)
Then we take Cyp = 1%6}%21;%{ eSke(0%y) B (k1)

Lemma 4.2, C’¢7k,C’1’p7k — 1 as k — oo.

} and C, , = C’qﬁc By
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The other direction of the inequalities for i) and ii) can be obtained similarly. [

Proof of Corollary A.2. Note that by the definition of u, pPr = v(hxp,) <
vP, max{h(x) : x € P.}. Also note that O,, = |J,~,, P;. Hence, part i) follows from
Corollary A.1 and Lemma 4.5 with B, = B, max{h(z) : € Py}, and part i)
follows from Lemma 4.8 and 4.5 with B, = B, 137 h(0)(1 + Cpn~0).

By Lemma 5.1, puP4x = ka eIn¥ (0" 2) dy(z). So we use part iii) of Lemma 5.4
to get pPp ik > Cy Py min{h*(z) : x € Py} > 0. It means that {P,} are bounded
away from 0. Since this is a decreasing sequence, we get part iii).

If Assumption A (IIT") also holds, the lower bounds can be estimated similarly.

If B/ = f3, the existence of limits follows from (4.3) and the choice of these
constants. U

Proof of Corollary A.3. (I). It follows from continuity of ¢ on =% and h on X7\ {0}.
(IT). Take an n-word w = wow; - - - w,_1, and suppose wzx, wy € P,,. We have

_h(wy) + log M

Spip(wy) — Spip(wzr) = Spe(wy) — Spp(wr) + log h(wz) )

h(wy) 0 h(z) 6
< J,D¢% 1 < DY . B
h(wz) = JoDy, d(wz, wy)” and log hy) = JoDid(x,y) y

Proposition 3.1 ii), we get the first part of (II) with Jy = 2.J,,.
For the second part, we write
(Sntp(wy) +log h(y)) — (St (wz) + log h(z))
=Spp(wy) — Spe(wx) + log h(wy) — log h(wx)

Since h € H,,, log

and then use the second part of Proposition 3.1 ii).
(IIT) & (IIT"). The results follow from Lemma 5.3. O

6. EXACTNESS: PROOF OF THEOREM B

Recall that L is defined in Section 1, after Corollary D.2 is stated.

Lemma 6.1. i) Lyc = c for any constant function c.
i) pw(Lyg) = p(g) for any integrable function g.
iii) p(|Lyg|) < pllgl) for any function g in L*(X}, u). Further, if g is contin-
uous, and there exists x € X7, and n-words u and v such that g(ux) > 0
and g(vz) <0, then p([Lyg]) < p(|gl)-

1
Proof. i) Since L,h = Ah, we get Lyc = —L,(ch) = /\—Chﬁwh =c.

Ah

1 1
ii) This is because pu(Lyg) = v(h- Eﬁw(hg)) = U(X/J(p(hg)) = v(hg) = w(g).
iii) It is easy to check by using part i) that for any z, |Lyg(x)] < Lylg(x)|.

Hence, by part ii), u(|Lyg]) < p(Lylgl) = n(lgl)-
For the second part, we have

Lhg@)| = |3 e glwa)| < 3 e |g(wa)| = (£)1g)) (@)

weg; weg;
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for 2 given in the lemma. So we have u(|LLg|) < (L |g]) = nu(lgl)- O

For any x, we denote

Y etng(se) 3 e h(sE)g(sx)
s#0 s#£0

9(0z) = S evGa) S eeOh(sz) (6.1)
520 520
That is, g(0z) is the average of g(sx), s # 0, with weights e#(*®). Since " e¥(5?) =
1 — e%(97)  we have 7
Lyg(x) = O g(0z) + (1 - e O)g(0z). (6.2)

Lemma 6.2. For any x € 1,

bolx) = g(0")e5 O 13 7L g) () (1 — eV ),
j=1

Proof. It can be obtained by (6.2) and induction. O

Lemma 6.3. For any continuous function g on X7 with u(|g|) < oo and pu(g) =0,

lim Llg(x)=0  Vzexh\{0},

n—oo

and the convergence is in L'(u) and uniform on Qy for any k > 0. Also,

_ 0 f A > 1;
lim £7g(0) = { i v

Proof. Let x € P;, y € P!. By Corollary A.3(II), for any n > 0 we have

|Lig9(@) = Lig(y)|
< Z eSnw(ww)‘g(wx) — g(wy)| + Z g(wy)esnw(wy)|eSn1/J(ww)—Sn¢(wy) -1
wey weln

<vary(g) Z eSn(wz) 4 (erD?d(a:,y)e —1) Z g(wy)eSnlb(wy)
weEn weE,

«@ 6
<vary(g) + (evPrd@y)” _ DIL%9()],

where var, (g) is defined in (1.3). Note that evDid=w)’ _1 5 0 as d(z,y) — 0, and
the convergence is uniform for all z,y € Qi whenever k > 0 is fixed. Since Lg(x)
is the average value of the g(sz) with weight e¥(5?), {£%g : n > 0} is uniformly
bounded. The above arguments says that restricted to Qp, {Eﬁg : n > 0} is
equicontinuous. So the closure of {ng : n > 0} is compact. Therefore, there is
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a subsequence {n;} and a continuous function g*) on Qj, such that EZZ' g — g,
Since Qr C Qk+1 and Uk>0 Qr = X1\ {0}, by applying the diagonalization method,
we know that there is a subsequence {n;} and a continuous function g* on X7 \ {0}
such that £))'g(x) — ¢*(x) for all x € ¥\ {0}

Now we prove that g* = 0 on X% \ {0}. Tt is enough to show u(|g*|) = 0. By
Lemma 6.1, {su( 1L39l) s decreasmg So ¢ = hm n(|£yg]) exists. By taking

subsequences, we obtain that ¢ = ,u(|£ g*|) for all hrrut points g* of {E g} and

for all j > 0. If ¢ # 0, then by continuity of g*, we can find € 7\ {0}, and
l[-words w and v such that ¢*(ux) > 0 and ¢g*(vzr) < 0. By Lemma 6.1, we have
(|£ *[) < u(lg*]), a contradiction. So we get ¢ = 0. Hence, Li’g(z) — 0 in
LY(p ) Since this is true for any subsequence, we get L g(x) — 0 in LY(p). The
arguments in the previous paragraph imply that the convergence is uniform on Qj
for any k. '
For the case x = 0 and A > 1, we first note that as j — oo, £],g(s0) — 0 for

any s # 0 by the above argumentsand therefore (Lﬁfpg)(()) — 0 by (6.1). Also, by
Lemma 5.2, e¥(® = X\=1 < 0 and therefore ¢¥(0"0) = \=" —, (0 as n — co. So by
Lemma 6.2, £}g(0) — 0 as n — oo.

It remains to show that hm ( +9)(0) = g(0) if A = 1. Infact, A = 1 implies that

e?(® =1 by Lemma 5.2, and hence e?(s0) = 0 for any s # 0. So (Ly9)(0) = g(0).
We get the result. O

Proposition 6.4. (a) If i is a probability measure, then for any continuous func-
tion g on X7,

lim E

n—oo

1(g) if A\ >1 orax#0;
9(x) = {g(ﬁ) if \=1 and xz = 0.

b) If u is an infinite measure, then for any continuous function g on 7% with
H A
with p(|g|) < oo and p(g) =0,

lim Lig(x) =0 vz e XY,

n—oo

The convergence in both cases is in L'(u) and uniform on Qy for any k > 0.

Proof. Note that L7} (9(z) — p(g)) = Lig(z) — p(g). So part (a) can be obtained
from Lemma 6.3 by applying the function g — u(g).

For part (b), by Lemma 6.3 we only need to show that g(0) = 0. In fact, if
g(0) > 0, then by continuity g(z) > ¢(0)/2 on Oy, for some k > 0. Since u(Oy) = oo
we have u(gxo,) = oo. It implies that g is not integrable, a contradiction. O

Proof of Theorem B. By a theorem of Lin ([Li]; see also [A], Theorem 1.3.3), for a
nonsingular system (o, i), it is exact if and only if [|£}g[|y — 0 for any g € L' (u)

with u(g) = 0, where || - ||; denotes the L' norm.
Take g € L' (1) with p(g) = 0. We need show that for any e > 0, there is N > 0
such that for any n > N, [|£7g[[1 <e.
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Since g € L'(p), we can take k > 0 such that u(|gxo,.,|) < €/6. Then take
a function g, such that g/|o,,, = 0, g{|q, continuous, and u(|g; — gxq,|) < €/6.

By triangle inequality we have 1(|g! — g1) < p(lg. — gxaxl) + ilgxonn ) < /3.
So we can take a continuous function g. such that g.(0) = 0, u(|lge — ¢2|) < €/3

and p(g.) = 0. Now we have u(|lg — g¢|) < 2¢/3. By Lemma 6.1, for any n > 0,
n(1L39 — L gel) < u(Lijlg — gel) < 2€/3.
By Proposition 6.4, £jge — 0 in L'(u) as m — oo. So there exists N > 0 such
that for all n > N, (|E¢g€|) < ¢/3. Hence we get

w(1Lygl) < n(1L39 — Lygel) + n(lL}ge]) < e

This is what we need. O

7. GIBBS PROPERTIES: PROOF OF THEOREM C

Lemma 7.1. There is an increasing sequence of positive numbers {C,,} such that

1
lim — logCp,= 0 and eS»¢(0"?) > C1 for any x € Z+

n—oon,

Proof. Recall that var;(¢) is defined in (1. 3) Take C,, = eXi=o VaTi(¥)  Gince @ is

n—1

continuous, lim var,(¢) — 0. Hence lim —logC = lim — szarZ — 0.
n— o0 n—oo M n—oo M

Since 0z € O; and ¢(0) = 0, p(0'x) > —var;(¢). So we get
esngp(()":r) Z 672?:_01 var; () — C’gl
for any x € EI. O

1
Lemma 7.2. There is a sequence of positive numbers {C, } with lim —logC,, =0
n—oo N,

such that for any x € Py, n-word w with pR,, < oo,

C—]_ < /’LR’LU

< Cp.
" 7 exp{—nlog A+ S,p(wz)} ~

Proof. By Lemma 5.1 and the definition of 1, for any n-word w = uv, where u is
an ng-word, ng < n, we have

1
LR :/ eV (W) () = / S0P (12)dy(z). (7.1)
R, A" R,

First, we consider the case w = 0". If u0, < oo, then by Corollary A.2 and
Lemma 4.3, uO,, < A™"Cpon™P < A7"C, 0 if h*(1) <0, i.e. A > 1, and pO, <1
if h*(1) =0, i.e. A =1. We may assume C, o > 1 and then get

Ry = pOpy < X"Clo < A0, 00, e 07, (7.2)
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On the other hand, by Lemma 4.4, ¢5n¢(0"?) < B, for any . So applying (7.1)
with ng = n and Lemma 7.1, we get

[Ry = pOp > X"Crithe > X7"C tho B e (070,
where h_ = min{h(z) : = € X}}. By Lemma 4.1, h_ > 0. So we can take
C,, = C, max{C, 0, h_"'B,}. (7.3)

For the case w # 0", we may assume w = u0"', where u is an ng-word whose
last symbol is not equal to 0, and n = ng + ny. By Proposition 3.1 and (1.2), for
any z,

eS”O‘P(W)h(wz) < eJLPKg‘d(Onlm,O"lz)eesnocp(wm)h(wx) < €J¢CWngsn0<p(wx)h(wx)_
Hence, using (7.1) with v = 0" we get
PRy < AT0e e CrKS oSno e (W) b (42 ) O, .
Similarly to (7.2) we get vO,, < X" O, ¢C,,e5190" %) Note that

Snp(wz) = Sy p(wz)Sy, e(0™ x).

w, 1—0(1+v)+a % _1—0(1+~)+a
ng <elm . So we have

By (3.3), h(wzx) < e’

J*n179(1+'y)+o¢ —

PRy < A" "ele CHEG L.0€ G, eSnewr), (7.4)
Similarly, we have
(R > A0~ TeCr KT gSno (WD) (131 O,,.,
and v0,, > A‘”lé’ng;lesnw(O%). So

PRy > A e e KD C’;lh_BgleS”“p(“”). (7.5)

By (7.4) and (7.5), in this case we can take

Jrnt— 00+t

C,, = Cpele K6 max{C, ge ,hZ'B,}. (7.6)

Now we take C), as the larger one in (7.3) and (7.6). Clearly {C),} is subexpo-
nential and the inequalities of the lemma are satisfied. O



EQUILIBRIUMS OF SOME NON-HOLDER POTENTIALS 31

Lemma 7.3. There exists a constant A, > 0 such that for any n-word w =
WowW1 * + * Wp—1 With w,—1 # 0,

PRy
exp{—nlog A + S,p(wzx)}

A;lh(wx) < < A, h(wz).

Proof. We may assume that d(z,2)? < C, for any z,2z € X}. Since h € EJW b
Proposition 3.1 ii), we have e~ /¢ G K0 < eSn@(W2) h(yz) JeSn P (W) b (we) < eleCr KD
So by (7.1)

1 a 1 o
Ry /eJ“”C”KO e WD) p(wa)dy(z) < —ele O KT Inew)p (1),

- )\n A"
On the other hand, if wx € Z‘Af, then
ToCyK§ ]

iR e~ e OvES oSne(wa) p (1)) dy(z) >

> )\n
So we can take A, > e

Note that by [W2] Theorem 9.6, the topological pressure of o for ¢ is given by

P(o,¢) = limsup — logz inf ene(we), (7.7)

n—oo N WTERw

Lemma 7.4. A probability invariant measure i is an equilibrium state for a con-

tinuous function ¢ whenever it is a weak Gibbs measure for ¢, and the constant P

in the definition of weak Gibbs measure is equal to the topological pressure P(o,p)

for .

Proof. Since p is a weak Gibbs measure, by (1.9) we have
Cle™ iR oz w, < eSne(®) < Cre™ URuowr oz, - (7.8)

Hence,
1 1 1
P— —logC, < =Spp(x) — —log u(Ragwy ar,_,) < P+ — logC’
n n n

Note that Ryyzy..z, , iS the element of &, containing z. Let n — oo, by the
Birkhoff Ergodic Theorem, the Shannon-McMillan-Breiman Theorem, and the fact
(1/n)log C,, — 0, we have

P= /cpd,u + h, (o).

We show that P is equal to the topological pressure of ¢. We replace x by wx
in (7.8), where w is an n word, and then use the fact >, . ©(Ry) =1 to get

—lent < Z inf eSne(wr) < ¢ enl

WL ER
Ruw€én
By (7.7),
P — i 1 inf eSne(wz) — p 0
(o) =limsup o dog ) fuf, e

webn

The result in the lemma is also obtained by M. Yuri (see e.g. [Yul]) in a slightly
different setting.
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Lemma 7.5. Any probability or o-finite measure y' that satisfies (1.10) with a
function p'(x,n) satisfying a) and b) in Theorem C' coincides with pu up to a constant
coefficient.

Proof. Assume p’ satisfies (1.10) with constant P’ and function p'(x,n).
Similar arguments as in the proof for Lemma 7.4 show that P’ = P(o,¢) = P.
Fix k > 0. Denote By = sup,cq,no-n+1q, P(¥,n). Let w = wo -+ w,—1 be an
n-word, n > k, with R,, C Q.
If wy,—1 # 0, then by part b), p’(wz,n) < By for some B; > 0. So by (1.10),

{'Ry < Bpe MTTSmews) < g B R,. (7.9)

If w,_; = 0, then we can always find a sequence of words {u(?1%°, whose last

symbols are nonzero such that R, = {w0} U J R, . Since p is an invariant
i=1
measure, u{w0} = 0 for any w # 0 because 0 € 0~"0. By (7.9) we know that

PRy =Y WRyyo <BiBr > Ry = BiBriRoy.

i=1 =1

Since this is true for all cylinders in Qy, by taking a limit we know that p/(E) <
B, B, L(E) for all Borel set E C Q. It implies that u’ is absolutely continuous
with respect to p on Q) and therefore on Ej. By the Radon-Nykodym Theorem
we know that du’/dp exists. Since both p/ and p are o-invariant, dy'/du is a o-
invariant function. Since p is ergodic, du'/dp is equal to a constant ¢ p-almost
everywhere. Clearly, ¢ > 0. So we get u’' = cpu. O

Proof of Theorem C. By Lemma 7.2 with wz replaced by x, p satisfies (1.9) and
therefore is a weak Gibbs measure.

Take p(z,n) = min{C,, A, max{h(z), h(z)"'}} if z,—1 # 0 and p(z,n) = C,
otherwise. Clearly (1.10) holds by Lemma 7.2 and 7.3. Also by Lemma 7.2, p(z,n)
satisfies a). Since h(z) is bounded on @, for each k, p(x,n) also satisfies b).

The uniqueness follows from Lemma 7.5. O

Proof of Corollary C.1. By Lemma 7.2 and 7.3, we know that P in (1.9) and (1.10)
is equal to log A\. By Lemma 7.4, it is equal to P(o, ¢). O

8. EQUILIBRIUMS: PROOF OF THEOREM D

Since by Theorem C and Lemma 7.4 we know that p is an equilibrium for ¢ if
i is a probability measure, the main work in this section is to deal with the case
that p is an infinite measure, in particular, the case h*(1) = 0.

Lemma 8.1. Let {a,} be a decreasing sequence of positive numbers with

Z In < . (8.1)
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Then anlogn — 0 as n — oo.
Proof. First we know that there is a subsequence n; such that
an,; log(n; +1) — 0 as i — 00, (8.2)

because if otherwise, there would be M > 0 and € > 0 such that a,, > ¢/log(n + 1)
for all n > M, and therefore the series in (8.1) would diverge.

Denote
n 1 n
Sn = zl 1 =), T, = i—1 — Q4 1 .
i_zla og( +z) i_ZQ(a 1 —a;)logi
Since log(1 +t) < t for any t > 0, by (8.1) S = lim S, exists. Note that

n—oo

Sp = Zai (log(i+1)—logi) = an log(n—i—l)%—Z(aifl—ai) logi = ay, log(n+1)+T,.

i=1 i=2
So T, is bounded and therefore ' = lim 7T, exists. By (8.2) we have S = T'. Hence
ap log(n + 1) — 0. This implies the result. O

Lemma 8.2. If h*(1) <0, then for any o-invariant measure p with Zi_lpPi <
i=1
0o, for anyn >0,

/ log h(ox)dp(x) < oc.
Uﬁlon\on-kl

Suppose Assumption A (III') also holds; then the condition h*(1) < 0 can be
removed.

Proof. Since h*(1) < 0, by Corollary A.1, h(cx) < Cn for some C > 0 if z € P,.
So

/ log h(ox)dp(z) <log(Ci)p(o™" P; \ Piy1) = log(Ci)(pP; — pPit1),
o~ P\P;11

and therefore for any k > n,

k k
>/ log h(ow)dp(x) < 3 log(Ci) (pP; — pPisa)
i—n Yo P \Pit1

k

—pP, log(Cn) + Y _ pPiy1 [log(C(i + 1)) — log(C)] — pPry1log(C(k + 1))
!

<pP, log(Cn) + Zi_lpPiH — pPiy11og(C(k 4+ 1)).

Since Zi_lpPiH is convergent and pPj11log(C(k + 1)) > 0 for all k£ > n, the
sum in the left side of the inequality is bounded. Note that =10, \ O, is the
pairwise disjoint union of the sets o1 P; \ P;y1, i > n; we get the result.

If Assumption A (IIT') also holds, then by Corollary A.1, we have h(z) < Cn?'*1
and logh(z) < (8 + 1)logC'n for some C,C" > 0 if z € P,. Then the same
arguments can be applied. U
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o]
Lemma 8.3. If h*(1) <0, then for any o-invariant measure p with Zi_lpPi <

i=1
oo?

/(log h(z) —log h(ox))dp(z) = 0.

Suppose Assumption A (III') also holds; then the condition h*(1) < 0 can be
removed.

Proof. It is obvious if p(log h) < oo because p is an invariant measure. This is the
case if h*(1) < 0. So we assume h*(1) = 0.

Since 071Q,_1 = Q, \ 0710, = P, U (Qn_1\ 0710,) and p is an invariant
measure, we have

/Pn log h(ox)dp(z) + /Qn oo, log h(oz)dp(x) = / log h(z)dp(z).

n—1

Note that Q,_1 can be partitioned into {Q,_1 \ 07 O0,, 0710, \ Opn11}. So

/ log h}zg) dp(z) :/ log h(x)dp(z) — / log h(ox)dp(x)

n—1 n—1 n—1

:/P log h(ox)dp(x) —/_10 o log h(ox)dp(x).

Since ¥ can be partitioned into {Q,_1,0,}, we only need to prove

/ log hz) dp(z) = / log h(ox)dp(x) — / log h(ox)dp(x). (8.3)
O, h(oz) =10, \Ont1 P,
Since 0P, = P 1 U (07 1P; \ Piyq),

/P,-H log h(ox)dp(x) + /UlP.\Pi+1 log h(ox)dp(x) = /Pi log h(x)dp(z).

n+k
Therefore if we denote O,, 1, = U P; for k > n, then

i=n

M)
/. | low o) = / gk

n+k—1

+ Z /logh Ydp(x / log h(ox)dp(x /Ploghaxdp z)
'L+1 n

n+k—1
:/ log h(z Z / log h(ox)dp(x / log h(ox)dp(x).
Pn+k: g 1P \P’L+1 Pn
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Let k — oo; we get that this equality implies (8.3). To see this, we first note that
by Lemma 8.2 the integral

2 [, ottt = log h(o)dp(x)

U_lon\on+1

converges. Also, by Corollary A.1, we know that there is C' > 0 such that for z € P;,
either h(oz) < Ci if h*(1) = 0, or h(oz) < Ci°' ! if Assumption (IIT') holds.
Using Lemma 8.1 with a; = pP; we have that if k — oo, then [, ., log h(z)dp(x) <

pP, i log C(n + k)max{1F"+1} 0. This completes the proof of the lemma. O
p+1 Cs

n+1 (n+1)H9
where §, Cs and 3 are given in Assumption A (III) with 3 > 0,

Lemma 8.4. For any sequence {a,} with a, > and a,, — 0,

Z apke Zi=n 9t < oo Vn > 0. (8.4)
k=n

Proof. By adding the first n —1 terms and multiplying by e~ Y % we know that
if the result is true for some n > 0, then it is true for n = 1 and therefore for any

n > 0.
_ﬂ-l-l Cs

Let b,, = — .
n+1 (n+1)H9
By the same arguments as in the proof of Lemma 4.4, we know that there exist
B(n) > B'(n) > 0 with lim B(n) = lim B’(n) =1 such that for all k > n,

64’1 k n 64’1
B’ ( n ) <e Xi=ab < B ( ) :
W\t = =B\
Hence, we have
o ' [e’e) ‘|—1 n B+1
beke= St < SO OEL g . .
kz:% ke —§k+1 (n)<k+1> < (85)
B+1—¢€

Take € > 0 small such that > 1. Then take N > 0 such that for any n >

Bl—c 0 B+l—er n P L
N, > i B (-2=) > 1. Note that
> - an (n) ﬁ S > ote tha 2 (k+1)5+1 >
/T;+1 _tﬁ—{—ldt:m. We have that fOI a:nynZN7

ibkke_z:fnbi > i %k ) B/(n)( n >ﬁ+1
k=n k=n

: k1
B+1 1— &
>(B+1 —e)B’(n)B(Z+1)ﬁ > f”ﬁ EB’(n)(ni—l)ﬁ ‘n>n.  (8.6)
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Let . ,
C(]) o ag if k< 73
& b if k> j.
Then let -
(j) = Z e ke :
k=n

S(n) is the left side of (8.5) and S(o0) is the left side of (8.4). So by (8.5) we only
need to prove that S(j) decreases with j.

Let T;(t) be the function obtained from S(j) by replacing cg.j ) by t. So we have
T;(bj) = S(j) and Tj(a;) = S(j +1). Since a; > b;, we only need to prove that for
anyt>bk,T()<O In fact,

o0
TI(t) = je "Xt o _pjet-Tiae? _ ST ke =2k, e
k=j+1

Hence by definition of c,(cj ) and (8.6), we get

i-1, . - _ ok
TR STI(t) = j —tj— Y bpke” Zi=ni P < j—tj— (j+1) <0.
k=j+1
It implies T7(t) < 0. -

Lemma 8.5. If h*(1) <0, then u(|p|) < oo.

Proof. If y is finite, then the result is trivial. So we only need to consider the case
that y is infinite. In this case, h*(1) =0 and X = 1.

By Assumption A(III), ¢ < 0 on Ok, . Since u@, < oo for any n > K; and ¢ is
continuous, u(|p|) < oo if and only if u(—pxe, ) < co.

Denote a; = max{|¢(y)| : y € P;}.

The same arguments as for the proof of Proposition 3.1 give that for any k& > n,

k
= ai = Skon19(0" " )| < Jy(diam P,)? < CLJ,K§ Va € Py,
Since h*(1) = 0, by Corollary A.1, we can take n large enough such that h(z) <
2kh(0)/3 for any = € P, and k > n. Hence by (4.5) and the definition of 1, we get

o h(ok n+1£2§')
Pm [ oot MO
HLg o h(z) ()
<o~ ThnaitCy I K 2kh(0) - uP, < Cke~Xiznaiyp,

" Bmin{h(z):z € P,}
for some C' independent of k. So we have

/ p)dp = 2/ p)dp < C uP, Zakke i i,
O, Py,

By Lemma 8.4, the series on the right side converges 1f n is large enough. This is
what we need. U

Recall that the definition of entropy for an infinite measure is given in (1.11).
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Lemma 8.6 (Rohilin’s formula). If p is an infinite measure, then

hu(o) = —/wdu < 00.

Moreover, if h*(1) = 0, then
hu(o) = —/wdu-

Proof. Note that 3 < 0 implies A > 1 by Theorem A, and therefore h*(1) < 0 by
Lemma 4.3. So we have that h*(1) = 0 implies 3 > 0 and A\ = 1. By Corollary A.2,

(P; is of the order i —#, and therefore Z i~ uP; < oo. Hence we can use Lemma 8.3,
i=1

the definition of ¥, and the fact that A =1 to get [ pdu = [du. By Lemma 8.5,

the integrals are finite. So we only need to prove the first equality.

The other possibility for p being an infinite measure is h*(1) > 1. In this case
the integrals are finite as well because by Lemma 5.3, |¢)| = —1) is at most of the
order i~ B+ with 6 > 0 on P;.

Now we prove h, (o) = — [ dpu.

Take I' = P in (1 11) Denote by & and 1 the first return map of o with
respect to Py and the corresponding potential, respectively, that is, 5o = o (@) 2 and
(x) = Sp(z)¥ (), where n(x) is the smallest positive integer such that s"®z € P,
Denote by i the conditional measure of u restricted to Py. Then we define the
Perron-Frobenius Operator 21/7 as in (1.4). Using these facts and Lemma 5.1 we
can get

Libla / b(@)du(a
Py
It means that Ewﬁ is integrable with respect to p and therefore with respect to f.
Hence we can get that

@i = [ Lgiedn) = — [ Lgp@dua). ©7)

Now we calculate hj (7). Take a partition ¢ of P, into
{Rs()n \R80n+1 :s#0,n=0,1,--- }

Clearly, £~ = Vico &% is a partition into single points. So € is a generator and
ha(6) = ha0.6) = Ha(@lo ) = [ 1@o7€ )a (85)
0

where I;(£]6~1€7) is the conditional information of € given =€~ (see [R] or [Ke]).
Since the smallest o-algebra containing £~ is the Borel algebra B over Py, we have

Ii(€le™1¢7) = —log Eu(xg() 67 'B), (8.9)
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where Eﬁ(xg(.)\é_ll’)’) is the conditional expectation of the characteristic function
X&() and f (z) is the element of é that contains x. Note that [11/; is the dual operator

of the operator T defined by Tg(z) = g(6), and ji is a G-invariant measure. So
for any g € L(ji) and any Borel set E C P,, we have

/&_lEgdﬂ: /XE(&x)g(x)dﬂ(x) = /XE(x)EQ;g(x)dla(x)
:/Eﬁz;g(ar)dﬂ(x) = /&_1Eﬁ,¢ Gx)dii(x /_1E Z e g (@)

oYy=0x

Since Ewg 0 & is 6~ 1B-measurable, we know FEj (g6~ 'B)(x Z 61/)(y)
oYy=0ozx
Hence, i
E; (X§($)|J IB)( Z w(y)x~ (y) = ¥ @), (8.10)
cy=ocx

By (8.8)-(8.10),
ha(6) = — | d(a)dia).

Py

By (1.11) and (8.7), we get what we need. O

Lemma 8.7. If h*(1) > 0, then — [ @dp = 0o and — [ hdp < oo.

Proof. By Assumption A(III) we know that —¢ is bounded below by a function of
order n~! over P,. Also by Corollary A.2, uP, decreases to a nonzero constant.
So we have — [ pdu = co.

By Lemma 5.3 iii), —1) is of order k~(#+1) on P,. So it is easy to see that
_fOn Ydp < oo for any n > 0.

Note that 1(x) — —oo as # — s0 for any s # 0. So we need to estimate
fa—lon_l\on Ydp as well. Let Ry = {sz : © € Py,_1}; then o0, 1\ O, =

U U R ;.. By a similar method as in the proof of Lemma 5.1, we have
k=n s#0

/ l)du(e) = / 45D (s2)dpu().
R Py,
So

[ oo v =33 [ et

s#£0 k=n Pr—1

Note that ¢(sz) and h(sx) are bounded. By the definition of ¢ and Corollary
A2 iii),

e?%) h(sx)

iy (—plan) —log h{se) +logh(a) < GGy 4 1og k1)

61/’(“‘)1/1(3@ =
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for some Cy,Co > 0 independent of k. Since 3 > 0, the series > oo k~(1+5) log k140
converges. So we get _fa—lo Ve Ydp < o0o. U

Proof of Theorem D. For the case h*(1) < 0, if p is a probability measure, then
it is an equilibrium by Theorem C and Lemma 7.4. If it is an infinite measure,
then by Theorem A we have h*(1) = 0, and therefore by Corollary A.2 we have
S, i uP; < co. Hence by Lemma 8.6 we have Rohlin’s formula. Since by
Corollary C.1 and Lemma 4.3, P(p) = logA = 0, we get (1.12). On the other
hand, if h*(1) > 0, then by Lemmas 8.6 and 8.7 we know that Rohilin’s formula
and therefore (1.12) do not hold for pu.

Consider the case h*(1) > 0. We know by Lemma 4.3 that h*(1) > 0 if and only
if P(p) = 0, and obviously this is true if and only if d; satisfies (1.12).

Now we prove uniqueness. First we consider the case h*(1) < 0.

Suppose p is a probability ergodic measure. Since the topological entropy of o
is finite and ¢ is continuous, we have h,(0) < oo and P(p) < 00. So p(p) < oo.
By Assumption (III) we have p(x) < 0 and |p(x)| > ¢/k for some ¢ > 0 if z € Py.
Hence we have > ;- i 'pP; < co. Then we can apply Lemma 8.3 to get [¢dp =
[ @dp—1logA. Also P()) = P(p) —log A. Hence, P(p) = h,(c) + [ ¢dp if and only
if P(¢)) = h,(0)+ [dp. That is, ¢ and ¢ have the same equilibriums.

By the same arguments used in the proof of Theorem 10 in [W1], p is an equi-
librium of ¢ it and only it £ p = p, where L} is the dual operator of Ly. Note
that by Proposition 6.4, for any continuous function g,

1(g) if A\>1 orx#0;

w9(@) = { g(0) if A\=1 and z = 0.

So if p is an ergodic probability measure and equilibrium, then

p(u(g)) = ulg) ifA>1 or p({0}) = 0;
p(9(0)) =g(0) ifA=1 and p({0})=1.

o(9) = (£3"9)(9) = p(LDg) — {

Hence, if P(¢) > 0, then p = p, and if P(p) = 0, then either p = pu or p = dg.

Now we consider the case h*(1) > 0. If a probability measure p is an equilibrium
for ¢, then by Lemma 4.6 i), there is ¢’ > ¢ satisfying Assumptions (I)-(III) with
¢'(z) > ¢(x) for some z # 0 such that the corresponding h'*(1) > 0. Hence by
Lemma 4.3, we have \' = 1 and therefore P(¢’) = 0. Now it follows that

P(¢') =0=P(p) = hy(o) + /sodp < hp(o) + /sO’dp-

It contradicts the variational principle. So there is no probability equilibrium p
with p(X% \ {0}) > 0.

Lastly, we assume that Assumption (III’) also holds. If p is an infinite measure
such that p(¢) < oo, then the same argument as above gives Y oo i !pP; < oo.
Hence we can use Lemma 8.3 to get p(¢) = p(¢). Then the same arguments as in
the case h*(1) < 0 gives that if p satisfies (1.12), then p = p. O
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Proof of Corollary D.1. Note that if ¢ satisfies Assumptions A(I)-(III), then so is
ty for all t > 0. Since p(z) < 0 for all z and t > 0, P(ty) decreases with t. It is
easy to see that if ¢ is large enough, then P(ty) = 0.

Let tg = min{t : P(tp) = 0}. Clearly ty > 0 since P(0) > 0. So if t < tp, then
P(te) > 0 and by Theorem D, p is the unique equilibrium. We get part i).

For t = to, by Lemma 4.6 i) we know that the corresponding hj, (1) = 0. In
fact, if it is less than 0, then we can find ¢ > o such that hy,(1) < 0, and by
Lemma 4.3, we have Ay, = 0 and therefore P(t¢) = 0, contradicting the choice of
to- So by Theorem D, we know that both p and dg satisfy (1.12). Whether p is an
equilibrium depends whether p is finite. By Theorem A, this depends on whether
to(B+1) —1> 1. So part ii) is true.

For part iii), we know by Lemma 4.6 ii) that hj,(1) > 0. By Theorem D we
know that ¢y is an equilibrium for ¢y, and ji, is an infinite measure and does not
satisfy (1.12). O

Proof of Corollary D.2. By Lemma 6.3, any o-invariant weak Gibbs measure p for
@ is an equilibrium for ¢. Since u, and probably dg, are the only equilibriums for

p, and d5 is not a weak Gibbs measure, we must have p = pu. O
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