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Abstract. We consider one-sided subshifts σ with some potential functions ϕ which
satisfy the Hölder condition everywhere except at a fixed point and its preimages.

We prove that the systems have conformal measures ν and invariant measures µ
absolutely continuous with respect to ν, where µ may be finite or infinite. We show

that the systems (σ, µ) are exact, and µ are weak Gibbs measures and equilibriums

for ϕ. We also discuss uniqueness of equilibriums and phase transition.
These results can be applied to some expanding dynamical systems with an in-

different fixed point.

0. Introduction

The motivation of the paper is to understand statistical properties of physical
measures for almost expanding dynamical systems with Markov partitions. We say
that a piecewise smooth system is almost expanding if it is expanding everywhere
except at a finite number of periodic orbits. Examples of such systems are given in
Section 2, which include piecewise expanding maps on the unit interval, parabolic
rational maps on Julia sets, etc. We only consider the case where the systems
contain one indifferent fixed point p. Systems with more indifferent fixed points or
periodic orbits can be treated similarly.

Since we assume that the systems have Markov partitions, they can be repre-
sented by a one-sided subshift of finite type, and we can work on potentials ϕ. With
the usual metric on symbolic space, the potentials we study do not satisfy Hölder
conditions at the fixed point and its preimages. Therefore, statistical properties of
the systems become different from those with Hölder potentials.

We obtain existence of a conformal measure ν and an invariant measure µ for
such a potential, where µ is a physical measure of the system we are interested
in, and study the properties of the measures. We show that such a system (σ, µ)
is exact, and therefore is ergodic if the symbolic system is topologically mixing.
We prove that µ is a weak Gibbs measure, and obtain conditions under which the
formula P (σ, ϕ) = hµ(σ) + µ(ϕ) holds. We also study uniqueness of equilibriums
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and phase transition. Lastly, we give the rates of convergence, without proof, of
test functions to their equilibriums under the transfer operators.

There are many literatures related to the topic. For non-Hölder potentials, exis-
tence and uniqueness of equilibriums, and rates of convergence to the equilibriums
are studied by Hofbauer, Fisher-Lopes, Maume-Deschamps and others (see e.g.
[Ho], [M], [KMS], [N], [FL]). In those references, potentials are usually assumed
to be piecewise constant, or to be summable. The systems with indifferent fixed
points are sometimes coded by a subshift with countably many states (see e.g. [S1]-
[S4] and their references). Also, some ergodic properties have been studied for the
systems discussed in Section 2. For piecewise expanding maps with an indifferent
fixed point on the unit interval, existence and condition for finiteness of absolutely
continuous invariant measures was proved by Pianigiani ([Pi]) and Thaler ([T]).
When the invariant measure is finite, weak Gibbsianness, thermodynamic formal-
ism, and phase transition have been studied by M. Yuri (see e.g. [Yu1]-[Yu4] and
their references). When it is infinite, ergodic properties were studied by Zweimüller
([Z]). Parabolic rational maps on Julia sets have been studied by Denker-Urbański
(see e.g. [DU2], [DU3]). These results were extended to parabolic Cantor sets by
Urbański (see [U1] and its references). Rates of convergence to equilibriums and
rates of decay of correlations of systems were studied in [Y2], [H1], [S4], [G], and
others (see [H2] for more references).

In this paper, we try to give the simplest conditions on the potential functions
and to obtain most ergodic properties for varieties of almost expanding systems.
Hence, among the systems discussed in Section 2, an ergodic property found in one
kind of system may also hold for others. The conditions we give are weaker since for
most results we do not need Assumption(III′), i.e. we only need the lower bound
of |ϕ(0̄) − ϕ(x)|. Further, the potentials we study are more general. For example,
in one dimensional almost expanding systems, our potentials are not necessary to
have the form−t log f ′(x). We may have bounded density functions and exponential
rates of convergence to the equilibriums. In this case, the behaviors of the systems
are just like those with Hölder potentials. We may also have unbounded density
functions, finite or infinite invariant measure. In this case, the measures of the tail
of the Young’s tower may or may not converge to 0 (see Corollary A.2), and the
rates of convergence to the equilibriums are only polynomial. Moreover, we prove
exactness and study Gibbs property in both cases where µ are finite and infinite.
We prove uniqueness of weak Gibbs state and equilibrium, and give a complete
description for phase transition. Our main approach avoids the first return maps
and goes down to Bowen’s method.

This paper is organised as follows. The assumptions and results are stated in
Section 1. In Section 2 we apply these results to piecewise smooth almost expanding
maps. In Section 3 we prove Theorem A, that mainly deals with existence of
conformal measures and invariant measures. In Section 4 we discuss properties
of the density functions of the invariant measures, which are stated in Corollary
A.1. The measures of the tail of tower are estimated in Section 5, Section 6 is for
exactness and a proof of Theorem B, while Section 7 is for Gibbs properties and a
proof of Theorem C. The last section, deals with equilibriums and uniqueness.
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1. Assumptions, statements of results and notations

Let Σ+ =
∏∞

0 {0, 1, · · · , r∗ − 1} and σ : Σ+ → Σ+ be the left shift.
If A is an r∗× r∗ matrix of 0’s and 1’s, let Σ+

A = {x ∈ Σ+ : Axixi+1 = 1 ∀i ≥ 0}.
It is well known that σΣ+

A = Σ+
A. We assume that σ is topologically mixing. We

also assume A00 = 1, so, 0̄ = 000 · · · is a fixed point of σ.
For convenience we assume that A11 = 1 so that 1 = 111 · · · is another fixed

point. We can check that the results are still true without the assumption.
We say that w is an n-word if w = w0w1 · · ·wn−1 and Awiwi+1 = 1 ∀0 ≤ i < n−1.

The word uw is the word u followed by the word w.
Given an n-word w = w0w1 · · ·wn−1, we define

Rw = {x ∈ Σ+
A : xi = wi, ∀0 ≤ i ≤ n− 1}.

This set is called an n-cylinder, or simply a cylinder.
Let ξ be the partition of Σ+

A into {Rs : s = 0, 1 · · · r∗ − 1}, and

ξn =
n−1∨

i=0

σ−iξ. (1.1)

For any n-word w, we have Rw ∈ ξn. We simply write w ∈ ξn instead.
For k ≥ 0, we denote Ok = R0k , Pk = Ok\Ok+1, and Qk = Σ+

A\Ok+1. In other
words, Ok, Pk and Qk are sets of the points that start with at least, exact, and at
most k zeros, respectively. Also, we denote P ′k = Pk−1 ∪ Pk ∪ Pk+1.

Take κ ∈ (0, 1) and γ > 0. Let K0 be the largest number k such that κk ≥
(k + 1)−(1+γ). Define a metric on Σ+

A inductively by the following rules:
i) d(x, y) = 1 if x0 6= y0.
ii) d(x, y) = κd(σx, σy) if x0 = y0 and x, y ∈ QK0 .
iii) d(x, y) = (k + 1)−(γ+1)d(σkx, σky) if x ∈ Pk, y ∈ P ′k, k > K0.

iv) d(x, y) =
k+l−1∑

i=k

d(x(i), x(i+1)), if x ∈ Pk and y ∈ Pk+l, k ≥ K0, where

x(k) = x, x(k+l) = y, and x(i) ∈ Pi for i = k + 1, · · · , k + l − 1.
With this metric, the left shift σ : Σ+

A → Σ+
A is uniformly expanding with a rate

κ−1 on QK0 . The expanding rate of σ on Pk converges to 1 if k →∞.
By the metric we can see that if x = 0kx̃ ∈ Pk, y = 0kỹ ∈ P ′k such that x̃0 6= ỹ0,

then d(x, y) = max{κk, (k + 1)−(α+1)}. Hence, there exists Cγ ≥ 1 such that

diamOk ≤ Cγk−γ ∀k ≥ 0, (1.2)

where the diameter of a set S is defined by diamS = sup{d(x, y) : x, y ∈ S}.
We assume that the potential function ϕ satisfies the following.

Assumption A.
(I) ϕ is a continuous function on Σ+

A;
(II) ∃ θ ∈ (0, 1], α ∈ [0, θ(1 + γ)) and Cϕ > 0 such that

|ϕ(x)− ϕ(y)| ≤ Cϕ max{Kα−1
0 , kα−1}d(x, y)θ ∀x ∈ Pk, y ∈ P ′k;
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(III) ∃ β > −1, K1 > 0 such that for all k ≥ K1,

ϕ(0̄)− ϕ(x) ≥ β + 1
k + 1

− Cδ

(k + 1)1+δ
∀x ∈ Pk

for some constants δ > 0 and Cδ > 0 independent of k and x.
Sometimes we also assume

(III′) ∃ β′ ≥ β, K ′
1 > 0 such that for all k ≥ K ′

1,

ϕ(0̄)− ϕ(x) ≤ β′ + 1
k + 1

+
Cδ

(k + 1)1+δ
∀x ∈ Pk.

We may assume δ ≤ min{1, γθ} since we can always reduce δ.
We will also assume ϕ(0̄) = 0 since otherwise we can use ϕ(x)− ϕ(0̄) instead.

Remark 1.1. With the standard metric d̃(x, y) = 2−k, where k = min{i : xi 6= yi}
for x = {xi} and y = {yi}, ϕ is not a Hölder function because of Assumption A(III).
However, under the metric we define, ϕ satisfies the Hölder condition.

Remark 1.2. If we denote

vark(ϕ) = max{|ϕ(x)− ϕ(y)| : xi = yi,∀i = 0, · · · , k − 1}, (1.3)

then by Assumption A(III) vark(ϕ) ≥ Ck−1 for some C > 0. So the potential ϕ

does not have summable variations since
∞∑

k=0

vark(ϕ) is not summable.

Let C0(S) denote the set of continuous real functions on the set S. Define the
Perron-Frobenius Operator Lϕ from C0

(
Σ+

A\{0̄}
)

or C0
(
Σ+

A

)
to itself by

Lϕg(x) =
∑

y∈σ−1x

eϕ(y)g(y).

Denote by L∗ϕ the dual operator of Lϕ on M(Σ+
A).

Denote by ϕ̃ the first return map with respect to P0, and by ϕ̃ the corresponding
potential, that is, for any x ∈ P0, σ̃x = σnx and ϕ̃(x) = Snϕ(x) where n = n(x)
is the smallest positive integer such that σnx ∈ P0. The corresponding Perron-
Frobenius Operator L̃ϕ̃ is given by

L̃ϕ̃g(x) =
∑

σ̃y=x

eϕ̃(y)g(y) =
∞∑

j=1

∑

s 6=0

eSjϕ(s0j−1x)g(s0j−1x). (1.4)

Denote Dk = max{k, K0}. For J ≥ 0, we define

GJ = {g ∈ C0
(
Σ+

A\{0̄}
)

: g > 0, g(y) ≤ g(x)eJDα
k d(x,y)θ ∀x ∈ Pk, y ∈ P ′k,∀k ≥ 0}.

Denote by M(Σ+
A) the set of Borel probability measures on Σ+

A.
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Theorem A (Existence of the invariant measures). Suppose ϕ satisfies either
Assumption A(I)-(III) with β > 0, or Assumptions A(I)-(III) and (III ′) with
−1 < β ≤ β′ ≤ 0. Then there is a measure ν ∈ M(Σ+

A), which is positive on
nonempty open sets, a constant λ ≥ eϕ(0̄) = 1, λ > 1 if −1 < β′ ≤ 0, and a
function h ∈ GJϕ

for some Jϕ > 0 such that L∗ϕν = λν, Lϕh = λh.
Moreover, µ(g) = ν(hg) defines a finite or infinite σ-invariant measure µ.
· µ is finite if either h∗(1̄) < 0, or h∗(1̄) = 0 and β > 1;
· µ is infinite if either h∗(1̄) > 0, or h∗(1̄) = 0 and Assumption A(III ′) holds

with 0 < β′ ≤ 1,
where

h∗(x) = h(x)−
∞∑

j=1

∑

s 6=0

eSjϕ(s0j−1x)h(s0j−1x). (1.5)

If µ is finite, then we assume that µ is a probability measure.
By Corollary C.1, we see that log λ is the topological pressure P (σ, ϕ) for the

potential function ϕ. We will prove in Lemma 4.3 that the sign of h∗ is independent
of x, and λ > 1 if and only if h∗ < 0.

Remark 1.3. Let σ̃ be the first return map and ϕ̃(x) the corresponding potential.
If the topological pressure P (σ̃, ϕ̃) can be defined, then one should expect that
P (σ̃, ϕ̃) and h∗ have the opposite sign.

Remark 1.4. Sometimes the measure ν is called an elog λ−ϕ-conformal measure in
the sense that for any Borel set E such that σ|E is injective,

ν(σE) =
∫

E

εlog λ−ϕdν. (1.6)

For any function g defined on Σ+
A or Σ+

A\{0̄}, we denote

ĝ(0x) =
∑

s 6=0

eϕ(sx)g(sx). (1.7)

Corollary A.1 (Properties of the density function).

i) If h∗(1̄) < 0, then lim
x→0̄

h(x) =
ĥ(0̄)
λ− 1

; otherwise lim
x→0̄

h(x) = ∞.

ii) If h∗(1̄) = 0, then for any x 6= 0̄, lim sup
n→∞

β

n
h(0nx) ≤ ĥ(0̄). Suppose As-

sumption A(III ′) also holds; then lim inf
n→∞

β′

n
h(0nx) ≥ ĥ(0̄). So if β = β′,

then the lim sup and lim inf become limit.

iii) If h∗(1̄) > 0, then there exists Bh > 0 such that lim inf
n→∞

1
nβ+1

h(0nx) ≥
Bhh∗(x) for any x ∈ P0. Suppose Assumption A(III ′) also holds; then there

exists B′
h > 0 such that lim sup

n→∞
1

nβ′+1
h(0nx) ≤ B′

hh∗(x) for any x ∈ P0.

Further, if β = β′, then lim
n→∞

1
nβ+1

h(0nx) = B∗
hh∗(x) for some B∗

h > 0.
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Since functions in GJϕ are undefined at 0̄, by Corollary A.1 and Lemma 4.1, we
can define

h(0̄) = ĥ(0̄)(λ− 1)−1 if λ > 1, and h(0) = ∞ otherwise (1.8)

It is well known that the convergence rates of the tail of Young’s tower ([Y1],
[Y2]) determine the rates of convergence of test functions to the equilibrium, and
the rates of decay of correlations.

Corollary A.2 (Convergence rates of the tail).
For any k ≥ 0, there exist Bµ = Bµ,k, B′

µ = B′
µ,k, Cµ = Cµ,k > 0 and C ′µ =

C ′µ,k > 0 such that the limits lim
k→∞

Aµ,k, where A = B,B′, C, C ′ exist, and for all

n ≥ k:
i) if h∗(1̄) < 0, then µPn ≤ Bµ,kλ−nn−(β+1) and µOn ≤ Cµ,kλ−nn−β;
ii) if h∗(1̄) = 0, then µPn ≤ Bµ,kn−β ∀β > 0, µOn ≤ Cµ,kn−(β−1) ∀β > 1;
iii) if h∗(1̄) > 0, then lim

n→∞
µPn > 0 and µO = ∞.

Suppose Assumption A (III ′) also holds; then i) and ii) are true if we replace
Bµ,k, Cµ,k and “ ≤” by B′

µ,k, C ′µ,k and “ ≥” respectively, and for case ii) it also
holds that µOn = ∞ ∀0 < β′ ≤ 1.

Moreover, if β = β′, then Bµ,k and B′
µ,k, and Cµ,k and C ′µ,k can be chosen in such

a way that the following limits exist: lim
k→∞

Bµ,k = lim
k→∞

B′
µ,k = lim

n→∞
λnnβ̃νPn for

β̃ > 0, and lim
k→∞

Cµ,k = lim
k→∞

C ′µ,k = lim
n→∞

λnnβ̃−1νOn for β̃ > 1, where β̃ = β + 1

in case i) and β̃ = β in case ii).

Estimates for νPn and νOn are given in Lemma 4.5.

Define ψ(x) = ϕ(x) + log h(x) − log h(σx) − log λ for x ∈ Σ+
A, where we regard

log h(0̄)− log h(σ0̄) = 0 if h(0̄) = ∞.

It is easy to see that ψ(x) = − log
dµ ◦ σ

dµ
(x), while ϕ(x) = − log

dν ◦ σ

dν
(x). So

we can put assumption on ψ instead of ϕ to get statistic properties of the systems
(see [H2]). We only state the results for the case h∗(1̄) = 0, since this is the most
interesting case.

Note that if x ∈ σ−1(σPk), then x has the form s0k−1w, where w = w0w1 · · ·
with w0 6= 0.

Corollary A.3 (Properties of the function ψ).
Consider the case h∗(1̄) = 0.
(I) ψ is continuous on each Rs except at s0̄, s 6= 0.

(II) ∃ Jψ > 0 such that for all n-words w = w0w1 · · ·wn−1,
∣∣Snψ(wx)− Snψ(wy)

∣∣ ≤ Jψ max{Kα
0 , kα}d(x, y)θ ∀x ∈ Pk, y ∈ P ′k,

and if wn−1 6= 0, then
∣∣(Snψ(wx) + log h(x)

)− (
Snψ(wy) + log h(y)

)∣∣ ≤ JψKα
0 d(x, y)θ ∀x, y ∈ Σ+

A.
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(III) ∃ K2 > 0 such that for all k ≥ K2,

ψ(0̄)− ψ(x) ≥ β

k
− Cδ

k1+δ
∀x ∈ Pk

for some Cδ > 0 independent of k and x.
Moreover, if Assumption A (III ′) also holds and λ = 1, then

(III′) ∃ K ′
2 > 0 such that for all k ≥ K ′

2,

ψ(0̄)− ψ(x) ≤ β′

k
+

Cδ

k1+δ
∀x ∈ Pk

for some C ′δ > 0 independent of k and x.

Recall that a σ-invariant measure µ is ergodic if for any measurable set E,
σ−1E = E (mod µ) implies µE = 0 or µ(Σ+

A \ E) = 0. A system (σ, µ) is ex-

act if the tail σ-algebra
∞⋂

n=1

σ−nB is trivial, where B is the σ-algebra for the system

(σ, µ). These definitions work for both probability and infinite measures. (See [A]
for the infinite measure case.) It is well known that exactness implies ergodicity.
Also, if µ is a probability measure, then exactness implies mixing.

Theorem B (Ergodicity and exactness). Under the assumptions of Theorem A,
the system (σ, µ) is exact. Therefore, µ is an ergodic measure.

Recall that a measure ρ is a Gibbs measure, if there exist constants P and C
such that for any x, and n ≥ 0,

C−1 ≤ ρRx0x1···xn−1

exp{−nP + Snϕ(x)} ≤ C.

In our case one cannot expect that the measure µ obtained in Theorem A is a
Gibbs measure, since if we take x = 0̄, then by Corollary A.2, µOn may decrease
polynomially, while exp{−nP + nϕ(0̄)} = e−nP decreases exponentially if P > 0
or equal to 1 if P = 0. However, µ is a week Gibbs measure. A measure ρ is
a weak Gibbs measure, if there exists a constant P and a sequence {Cn} with

lim
n→∞

1
n

log Cn = 0 such that for any x, and n ≥ 0,

C−1
n ≤ ρRx0x1···xn−1

exp{−nP + Snϕ(x)} ≤ Cn. (1.9)

We refer to [Yu2] and [Yu3] and their references for more information about weak
Gibbs measures.

We can extend the definition for σ-finite measures. An invariant measure ρ is
said to be an infinite weak Gibbs measure if ρ(Σ+

A) = ∞, and (1.9) holds for all
x ∈ Σ+

A and n > 0 provided ρRx0x1···xn−1 < ∞.
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Theorem C (Gibbs properties). Under the assumptions of Theorem A, µ is a
weak Gibbs measure or an infinite weak Gibbs measure. Moreover, µ is the unique
invariant measure satisfies the following properties: There is a real number P , and
a function p(x, n) such that for every x,

1
p(x, n)

≤ µRx0x1···xn−1

exp{−nP + Snϕ(x)} ≤ p(x, n), (1.10)

provided µRx0x1···xn−1 < ∞, where p(x, n) satisfies the following:

a) lim
n→∞

1
n

log p(x, n) = 0 for any x 6= 0̄;

b) lim
k→∞

1
k

log sup
x∈Qk∩σ−n+1Q0

p(x, n) = 0.

Remark 1.5. Part b) implies that for each k, we can find uniform bounds for cylin-
ders Rw if Ru ⊂ Qk and the last symbol of w is nonzero. If we think that such
cylinders are “good” cylinders, then for any x ∈ Qk which is not a preimage of 0̄,
Rx0x1···xn−1 is a “good” cylinder for infinitely many n.

Corollary C.1 (The constant P ). The constant P in both (1.9) and (1.10) is equal
to the topological pressure P (σ, ϕ) and log λ, where λ is given in Theorem A.

For entropy of a σ-finite measure ρ, we follow the definition given by Krengel
(see [Kr], also [Z]). For a subset Γ ⊂ Σ+

A, we denote by σΓ the corresponding first
return map, and by ρΓ the conditional measure of ρ, that is, ρΓS = ρS/ρΓ for
S ⊂ Γ. The measure theoretic entropy of ρ is defined by

hρ(σ) = ρ(Γ)hρΓ(σΓ) (1.11)

for any subset Γ of positive finite measure.
Recall that a probability measure ρ is an equilibrium state for a potential η if it

satisfies
P (σ, η) = hρ(σ) +

∫
ηdρ. (1.12)

We also denote P (η) = P (σ, η).

Theorem D (Equilibrium states). Under the assumptions of Theorem A,
· µ satisfies (1.12) with η = ϕ if and only if h∗(1̄) ≤ 0;
· the Dirac measure δ0̄ satisfies (1.12) with η = ϕ if and only if h∗(1̄) ≥ 0.

Further, the only ergodic (probability) equilibrium for ϕ is
· µ if P (ϕ) > 0;
· µ and δ0̄ if P (ϕ) = 0 and µΣ+

A = 1;
· δ0̄ if P (ϕ) = 0 and µΣ+

A = ∞.
Suppose Assumption A (III ′) also holds; then µ is the only possible infinite

ergodic measure ρ with |ρ(ϕ)| < ∞ such that (1.12) holds with η = ϕ.

By Theorem A and Corollary C.1, if µ is an infinite measure, then P (σ, ϕ) = 0.
So Theorem D provides conditions for the Rohlin’s formula hµ(σ) = − ∫

ϕdµ.
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Corollary D.1 (Phase transition). Suppose ϕ ≤ 0 satisfies Assumptions A (I)-
(III) and (III ′) with β = β′. Then there exists t0 > 0 such that

i) for 0 ≤ t < t0, P (tϕ) > 0 and ϕ has the unique equilibrium µtϕ;
ii) for t = t0, P (tϕ) = 0 and ϕ has exactly two equilibriums µtϕ and δ0̄ if

t0(β + 1) > 2, and has the unique equilibrium δ0̄ otherwise;
iii) for t > t0, P (tϕ) = 0 and ϕ has the unique equilibrium δ0̄.

Corollary D.2 (Uniqueness of weak Gibbs measures). Under the assumptions of
Theorem A, if µ is a probability measure, then it is the only σ-invariant weak Gibbs
measure for ϕ.

We define Lψ : C0(Σ+
A) → C0(Σ+

A) by Lψg =
1
λh
Lϕ(hg), or, equivalently

Lψg(x) =
∑

y∈σ−1x

eψ(y)g(y) =
1

λh(x)

∑

y∈σ−1x

eϕ(y)h(y)g(y).

If h∗(1̄) ≤ 0, the convergence rate of a test function to its equilibrium under the
operators Lψ is determined by P (ϕ) and β. We state the results here.

Denote

G =
{
g ∈ C0

(
Σ+

A

)
: ∃C > 0, s.t. |g(y)− g(x)| ≤ CDα

k d(x, y)θ

∀x ∈ Pk, y ∈ P ′k ∀k ≥ 0},
G0 =

{
g ∈ G : g(0̄) 6= µ(g)},

Gδ =
{
g ∈ G : ∃L > 0, s.t. |g(0̄)− µ(g)| ≤ L(n + 1)−δ ∀n ≥ 0}.

Let F(Σ+
A) be the set of all bounded real functions on Σ+

A. Denote

F+
τ =

{
g ∈ F(Σ+

A)) : ∃L > 0, s.t. |g(x)− g(0̄)| ≤ L(n + 1)−τ ∀x ∈ Pn, n ≥ 0
}

,

F−τ =
{
g ∈ F(Σ+

A)) : ∃L′ > 0, s.t. g(x)− g(0̄) ≥ L′(n + 1)−τ ∀x ∈ Pn, n ≥ 0
}

.

Theorem E (Rates of convergence). Suppose ϕ satisfies Assumptions A(I)-(III).
If h∗(1̄) < 0, then there is λ̃ > 0 such that for any g ∈ G, there is A > 0 with

|Ln
ψg(x)− µ(g)| ≤ Aλ̃−n ∀x ∈ Qk, n ≥ 0.

If h∗(1̄) = 0 and β > 1, then for any g ∈ Gτ , τ ∈ [0, 1], there is A > 0 such that

|Ln
ψg(x)− µ(g)| ≤ A

(n + 1)min{β−1+τ,β} ∀x ∈ Qk, n ≥ 0.

Moreover, if Assumption A (III ′) also holds with β′ ≤ β + 1, then for any g ∈ G0,
there is A′ > 0 such that

|Ln
ψg(x)− µ(g)| ≥ A′

(n + 1)β′−1
∀x ∈ Qk, n ≥ 0.
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The above inequalities are also true if we replace |Ln
ψg(x)−µ(g)| by ‖Ln

ψg−µ(g)‖.
If h∗(1̄) = 0 and Assumptions A (III ′) also holds with β = β′ ∈ (0, 1], then for

any g ∈ F+
τ , there is A > 0 such that

|Ln
ψg(x)− g(0̄)| ≤ A(n + 1)max{0,1−β−τ}

(n + 1)1−β
∀x ∈ Σ+

A, n ≥ 0;

and for any g ∈ F−τ , there is A′ > 0 such that

Ln
ψg(x)− g(0̄) ≥ A′(n + 1)max{0,1−β−τ}

(n + 1)1−β
∀x ∈ Qn, n ≥ 1,

where (n+1)1−β or (n+1)1−β−τ in the inequalities should be replaced by log(n+1)
if β = 1 or β + τ = 1, respectively.

We are not going to prove the theorem in this paper. For the case P (ϕ) > 0, we
have λ > 1. By Corollary A.2, µPk and µOn decreases exponentially fast. Then
we can apply results of Young ([Y1]) to get exponential convergence. For the case
P (ϕ) = 0, the results and more details can be seen in [H2] and [HH] for the case
β > 1 and β = β′ ≤ 1 respectively. (See also [Y2], [S4], [G] for the case β > 1.)

From this theorem, we can get corresponding results for rates of decay of corre-
lations when the invariant measure is finite. Further, if the covariance

µ(g · g ◦ σn)− µ(g)2

is summable with n, then the Central Limit Theorem holds. In our case, if β−1+τ >
1, then the Central Limit Theorem holds for any g ∈ Gτ .

2. Almost expanding maps: Applications

Consider a map f : X → X, where X = Rm or C̄, the Riemannian sphere.
Suppose f has an invariant subset Λ, i.e. fΛ = Λ.

Assumption B.
(I) f |Λ : Λ → Λ is topologically mixing.

(II) f |Λ : Λ → Λ has a Markov partition into subsets {Ri}r∗−1
i=0 .

(III) f is piecewise smooth. More precisely, for each i, f |intRi
is a C2 map from

intRi to its image, and it can be C1 extended to Ri.

Here a Markov partition means a finite cover {R0, · · · , Rr∗−1}, Ri = intΛ Ri, of
Λ with intRi ∩ intRj = ∅ ∀i 6= j; and f(Ri) is a union of some Rj .

A fixed point p of f is indifferent if Dfp has an eigenvalue on the unit circle in C.
We say that the map f is expanding on an invariant set Λ with an indifferent fixed
point p if f has an indifferent fixed point p ∈ Λ and f is uniformly expanding away
from p. The latter means that for any open neighbourhood U of p, f is uniformly
expanding on Λ\U .

If f is expanding on an invariant subset Λ, with or without indifferent fixed
points, and has a Markov partition, then there is a map π : Σ+

A → Λ given by

π({xi}) =
∞⋂

j=0

f−iRxj , where {xi} ∈ Σ+
A, such that f ◦ π = π ◦ σ.
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Assume that f has an indifferent fixed point p. Then we can choose a Markov
partition {Ri}r∗−1

i=0 such that p ∈ R0. Hence, π(0̄) = p. Note that the projection
π : Σ+

A → Λ induces a map π∗ : C0(Λ) → C0(Σ+
A) by π∗g = g ◦ π ∀g ∈ C0(Λ).

Assume further that near p, there is a local coordinate system such that

fx = x
(
1 + |x|r) + g(x), (2.1)

where
|g(x)|, |x| ‖Dg(x)‖, |x|2 ‖D2g(x)‖ = O(|x|1+r′) (2.2)

for some r′ > r as x near p.

Lemma 2.1. Suppose f(x) satisfies (2.1) and (2.2). Then there is 0 < δ < 1, and
an integer k0 ≥ k′0 such that for all large k,

1
(k + k0)r

(
1− 1

(k + k0)δ

)
≤ |x|r ≤ 1

(k + k′0)r

(
1 +

1
(k + k′0)δ

)
∀x ∈ Pk. (2.3)

Proof. We may assume that Λ ⊂ I so that we can drop the norm sign | · |.
We claim that if fx ≤ x+x1+γ + t0x

1+r′ for some t0 > 0, then there is 0 < δ < 1

such that for all large n, xr ≤ 1
nr

(
1− 1

nδ

)
implies

(
fx

)r ≤ 1
(n− 1)r

(
1− 1

(n− 1)δ

)
. (2.4)

This implies the first inequality of (2.3). In fact, for any large k we can always find

k0 such that xr ≥ 1
(k + k0)r

(
1− 1

(k + k0)δ

)
∀x ∈ Pk+k0 . Then we use induction.

Denote γn = γ
(
1− n−δ

)−1. By the condition,
(
fx

)γ ≤ xγ
(
1 + xγ + t0 · xγ′)γ ≤ 1

nγn

(
1 +

1
nγn

+
t0

(nγn)γ′/γ

)γ

.

To prove the lemma we only need to show that
1

nγn

(
1 +

1
nγn

+
t0

(nγn)γ′/γ

)γ

≤ 1
(n− 1)γn−1

,

or, equivalently,

n− 1
n

(
1 +

1
nγ

− 1
n1+δγ

+
t0

(nγn)γ′/γ

)γ

≤ γn

γn−1
=

1− (n− 1)−δ

1− n−δ
. (2.5)

Take δ < min{1, γ′/γ − 1}. Then (nγn)−(γ′/γ) is of higher order. It is easy to see
that

lim
n→∞

n1+δ
(n− 1

n

(
1 +

1
nγ

− 1
n1+δγ

)γ − 1
)

= lim
n→∞

n1+δ
(
− γ

n1+δγ
− γ + 1

2n2γ

)
= −1

and

lim
n→∞

n1+δ
(1− (n− 1)−δ

1− n−δ
− 1

)
= lim

n→∞
n · 1− (1− n−1)−δ

1− n−δ
= −δ.

So we know that as n → ∞, the left side in (2.5) is like 1− n−(1+δ) and the right
side is like 1− δn−(1+δ). Since δ < 1, the right side is larger for all large n.

The second inequality in (2.3) can be proved similarly. ¤
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2.1. Maps on the unit interval. Let f be a piecewise smooth expanding map
from the unit interval I onto itself with an indifferent fixed point p = 0. Denote by
f ′ the derivative of f .

Theorem F. Suppose f : I → I is an expanding map with an indifferent fixed point
0 that satisfies Assumptions B(I)-(III) with Λ = I, and near 0 f has the form (2.1)
with r > 0. Then for any potential ϕ such that π∗ϕ satisfies Assumptions A(I)-(III)
with β > 0, or Assumptions A(I)-(III) and (III ′) with −1 < β ≤ β′ ≤ 0, Theorems
A-E and their corollaries hold.

In particular, if we take ϕ(x) = − log f ′(x), then ϕ satisfies Assumptions A(I)-
(III) and (III ′) with α = β = β′ = γ = r−1. In this case, the measure ν obtained
in Theorem A is the Lebesgue measure, the measure µ is an absolutely continuous
invariant measure, and the density function h satisfies h∗(1̄) = 0. Moreover, µ is
finite if 0 < r < 1 and infinite if 1 ≤ r < ∞.

Remark 2.1. If we take γ = r−1, then the map π : Σ+
A → I is Lipschitz. So any

Hölder potential on I satisfies the condition in the theorem.

Remark 2.2. The requirement of conditions (2.1) can be slightly relaxed. For ex-
ample, the same proof can go through if we assume x + ax1+r ≤ fx ≤ x + bx1+r

for some 0 < a ≤ b.
These systems with potential ϕ(x) = − log f ′(x) have been studied extensively.

The part concerning the existence of the absolutely continuous invariant measure
µ is well known (see e.g. [Pi], [T]). It is proved that µ is a weak Gibbs measure (see
e.g. [Yu2], [Yu3]) and an equilibrium (see e.g. [Yu1], [S1]).

The rates of convergence to the equilibriums and rates of decay of correlations
are also well known for the case r ∈ (0, 1) ([Y2], [H1], [S4], [G], also [LiSV], [PY]).

Proof of Theorem F. We only need to show that if ϕ(x) = − log f ′(x), then it
satisfies Assumptions A(I)-(III) and (III ′). Let α = β = β′ = γ = r−1.

Clearly, ϕ is continuous.
By (2.1) and (2.2), there exist t1, t2 > 0 such that

f ′(x) ≥ 1 + (1 + r)xr − t1x
r′ ,

f ′′(x) ≤ r(1 + r)x−1+r + t2x
−1+r′ ≤ Cx−1+r

for some C ≥ r(1 + r).
Let k be a large integer and x ∈ Pk. By the first inequality in (2.3), we have

xr ≥ (k + k0)−1r−1 and therefore

f ′′(x) ≤ C
(
(k + k0)r

)α(1−r) ≤ Crα−1(k + k0)α−1 ≤ Cϕkα−1 (2.8)

for some Cϕ ≥ C(2r)α−1 > 0 if k ≥ k0. Also, note that f ′(x) is bounded below by

1 + (1 + r)
1

(k + k0)r

(
1− 1

(k + k0)δ

)
− t1

( β

k + k0

)βr′(
1− 1

(k + k0)δ

)βr′

.

Since βr′ ≥ 1 + δ, we can find Cδ ≥ C ′δ > 0 such that

f ′(x) ≥ 1 +
1 + r

(k + k0)r
− C ′δ

(k + k0)1+δ
≥ 1 +

β + 1
k

− Cδ

k1+δ
. (2.9)
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Hence, Assumptions A (II) and (III) follow from the definition of ϕ and the fact
that s > log(1 + s) ≥ s− s2/2.

Assumption A (III′) can be obtained similarly. ¤

2.2. Parabolic rational maps. A rational map f : C̄ → C̄ on the Riemannian
sphere C̄ with degree larger than or equal to 2 is parabolic if its Julia set J =
J(f) contains indifferent fixed points or periodic orbits but no critical point. The
equivalent condition is that restricted to J , the map is positive expansive but not
expanding in the spherical metric ([DU2]). The map has Markov partitions of
arbitrarily small diameter ([DU3]).

In the case that an indifferent orbit contains more than one point, we can take
fn to get indifferent fixed points.

We say that a measure µ on J is a measure of full Hausdorff dimension if
dimH(µ) = dimH(J), where dimH(µ) = inf{dimH(Λ0) : Λ0 ⊂ Λ, µ(Λ0) = 1}.
Theorem G. Suppose f : J → J is the restriction to the Julia set of a para-
bolic rational map on the Riemannian sphere with an indifferent fixed point p and
where f is topologically mixing. Then for any potential ϕ such that π∗ϕ satis-
fies Assumptions A(I)-(III) with β > 0, or Assumptions A(I)-(III) and (III ′) with
−1 < β ≤ β′ ≤ 0, Theorems A-E and their corollaries hold.

Further, we suppose that near p, the Taylor expansion of f can be written as
f(z) = z + z1+r+higher order terms, and that t is the Hausdorff dimension of J .
If we take ϕ(x) = −t log |f ′(x)|, then ϕ satisfies Assumptions A(I)-(III) and (III ′)
with α = γ = r−1 and β = β′ = t

(
1+r−1

)−1. In this case, the conformal measure ν
and invariant measure µ are measures of full Hausdorff dimension, and the density
function h satisfies h∗(1̄) = 0. Moreover, µ is finite if 2 < t

(
1 + r−1

)
< ∞, and

infinite if 1 < t
(
1 + r−1

) ≤ 2.

For potentials of the form ϕ(x) = −t log |f ′(x)|, existence of conformal measures
and invariant measures of such maps was proved, and some statistical properties
such as central limit theorems and the wandering rates have been established by
Denker, Urbański and Aaronson (see e.g. [DU2]-[DU4], [ADU] and their references).
We refer to [U2], Section 3, for complete information on what is known before.

For general rational maps f on C̄ and general Hölder potential ϕ, it is known
that if P (f, ϕ) > sup{|ϕ(x)| : x ∈ J}, then all of the main results corresponding to
P (f, ϕ) > 0 = ϕ(0̄) in the above theorem hold (see [DU1], [Pr], [Ha]).

Remark 2.3. The Hausdorff dimension dimH(J) of J is larger than r/(1 + r) (see
e.g. [ADU]). So we always have 1 < dimH(J)

(
1 + r−1

)
.

Remark 2.4. Note that here a conformal measure ν means an elog λ−ϕ-conformal
measure. That is, ν satisfies (1.6). If λ = 1, then ν is the same conformal measure
studied by Denker and Urbeński.

Proof of Theorem G. It is obvious that Assumptions B(I)-(III) are satisfied. So we
only need consider the case ϕ(x) = −t log f ′(x).

Assumption A(I) is clear. Assumption A(II) follows from the definition of ϕ and
the same arguments for (2.8). For Assumption A(III), by the same arguments for
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(2.9) we get that for x ∈ Pk,

−ϕ(x) ≥ t log
(
1 +

1 + r−1

k
− Cδ

k1+δ

)
=

t(1 + r−1)
k

− tCδ

k1+δ
+ O

( 1
k2

)

for some Cδ > 0. Assumption A(III′) can be obtained in a similar way.
By Corollary C.1 and Theorem A, P (ϕ, f) = log λ ≥ ϕ(0) = 0. So by Theo-

rem D,

0 ≤ P (ϕ, f) = hµ(f) +
∫

ϕdµ = hµ(f)− t

∫
log f ′dµ.

That is,

t ≤ hµ(f)∫
log f ′dµ

.

Since µ is ergodic, and f is a conformal map, the right side of the equality is equal
to dimH(µ). So we get t ≤ dimH(µ) and therefore dimH(J) = t ≤ dimH(µ). It
means that µ is a measure of full Hausdorff dimension. Since µ ¿ ν, ν is also a
measure of full Hausdorff dimension. ¤

2.3. Parabolic Cantor sets. Let f : I → R+ be a piecewise smooth expanding
map.

Denote Λ = {x ∈ I : fnx ∈ I ∀n ≥ 0}. Clearly, fΛ = Λ and 0 ∈ Λ. If f(I) = I,
then Λ = I, and it becomes the same case studied in Subsection 2.1. If f(I) ⊃ I,
then Λ is a Cantor set topologically.

Let t be the Hausdorff dimension of Λ.

Theorem H. Suppose f |Λ : Λ → Λ is an expanding map with an indifferent fixed
point 0 that satisfies Assumptions B(I)-(III), and near 0, f has the form (2.1) with
r > 0. Then the same conclusions stated in Theorem G hold, including the case
ϕ(x) = −t log f ′(x), the choice of α, β, β′ and γ, and the conditions for finiteness
of µ.

Parabolic Cantor sets were studied by M. Urbański (see [U1] and its reference).
He obtained the existence of invariant measure and conformal measure of full Haus-
dorff dimension and investigated the equilibrium state and the phase transition of
the systems.

Proof of Theorem H. It is the same as for the proof of Theorem G. ¤

2.4. Maps on higher dimensional spaces. We can generalise the results in
Subsection 2.1 to a higher dimensional case. For a map f from the m-dimensional
cube Im to itself, we denote by detDf(x) the determinant of Df at x.

Theorem I. Suppose f : Im → Im is an expanding map with an indifferent fixed
point 0 that satisfies Assumptions B (I)-(III) with Λ = Im, and near 0, f has
the form (2.1) with r > 0. Then similar results stated in Theorem F hold with
ϕ(x) = − log |detDf(x)| and α = γ = r−1, β = β′ = mr−1. Also, µ is finite if
0 < r < m and infinite if m ≤ r < ∞.
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Some expanding maps with indifferent fixed points in higher dimensional space
are studied by M. Yuri ([Yu1]-[Yu4]), and the maps we discuss here also satisfy her
assumptions, though she did not give these kinds of examples explicitly.

Remark 2.5. In these examples we require that near 0 the map f has about the same
expanding rates along different radial directions. If f has two neutral directions
along which f has different expanding rates, then Proposition 3.1 fails to hold and
therefore Assumption A(II) cannot be true (see examples in [HV]).

Remark 2.6. We can also discuss the case that Λ is a fractal in Im which has the
form {(c, s) : c ∈ Γ, s ∈ S} near the fixed point, where Γ[0,∞) is a parabolic Cantor
set and and S ⊂ Sm−1 is a fractal.

Proof of Theorem I. We only need to verify β = β′ = mr−1. The rest proof is the
same as for Theorem F.

In fact,

|detDf(x)| = (
1+ |x|r)m−1(1+(1+ r)|x|r)+O(|x|r′) = 1+(m+ r)|x|r +O(|x|r′).

If x ∈ Pk, then by (2.3),

−ϕ(x) = log |detDf(x)| = log
[(

1 + (m + r)|x|r) + O(|x|r′)
]

≥ (m + r)
(k + k0)r

− C ′δ
(k + k0)1+δ

≥ mr−1 + 1
k

− Cδ

k1+δ
.

So we have β = mr−1. β′ = mr−1 can be obtained similarly. ¤

3. The operator Lϕ: Proof of Theorem A

Proposition 3.1. There is Jϕ > 0 such that for all J ≥ Jϕ, the following holds:
i) For x, y ∈ Qk,

∣∣ϕ(0x)− ϕ(0y)
∣∣ + JDα

k+1d(0x, 0y)θ ≤ JDα
k d(x, y)θ,

and if s 6= 0, then for x, y ∈ Σ+
A,

∣∣ϕ(sx)− ϕ(sy)
∣∣ + JKα

0 d(sx, sy)θ ≤ JKα
0 d(x, y)θ.

ii) For x, y ∈ Qk, w = w0w1 · · ·wn−1 with wx, wy ∈ Qm,

∣∣Snϕ(wx)− Snϕ(wy)
∣∣ + JDα

md(wx, wy)θ ≤ JDα
k d(x, y)θ,

and if wn−1 6= 0, then for x, y ∈ Σ+
A,

∣∣Snϕ(wx)− Snϕ(wy)
∣∣ + JDα

md(wx, wy)θ ≤ JKα
0 d(x, y)θ.
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Proof. i) First we assume k ≥ K0 and x, y ∈ Qk. It is easy to check by the
definition that d(0x, 0y) ≤ kγ+1(k + 1)−(γ+1)d(x, y). By Assumption A(II),∣∣ϕ(0x)− ϕ(0y)

∣∣ + J(k + 1)αd(0x, 0y)θ

≤Cϕ(k + 1)α−1d(0x, 0y)θ + J(k + 1)αd(0x, 0y)θ

≤J ·
(
Cϕ

kθ(γ+1)−α

J(k + 1)θ(γ+1)−α+1
+

kθ(γ+1)−α

(k + 1)θ(γ+1)−α

)
kαd(x, y)θ.

If Jϕ is large enough and J ≥Jϕ, then the quantity in the parentheses is less than
1.

If k < K0 or s 6= 0, then we take Jϕ > 0 such that
(
CϕKα

0 + JKα
0

)
κθ ≤ JKα

0

whenever J ≥ Jϕ. Therefore we can get the results in a similar way.
ii) It can be obtained from i) by induction. ¤
Recall that ĝ is defined in (1.7).

Corollary 3.2. Let J ≥ Jϕand x = 0x̄, y = 0ȳ ∈ O2. If g(sȳ) ≤ g(sx̄)eJKα
0 d(sx̄,sȳ)θ

∀s 6= 0, then ĝ(y) ≤ ĝ(x)eJKα
0 d(x,y)θ

.

Proof. It follows from the above proposition and the fact that

ĝ(y)
ĝ(x)

≤ max
s 6=0

{ eϕ(sȳ)g(sȳ)
eϕ(sx̄)g(sx̄)

}
≤ max

s 6=0

{
eϕ(sȳ)−ϕ(sx̄)eJKα

0 d(sx̄,sȳ)θ
}

.

By Proposition 3.1.i), the right side is less than or equal to eJKα
0 d(x,y)θ

. ¤

Proof of Theorem A. By Lemma 3.3 there exist λ∗ ≥ eϕ(0̄) = 1, and ν ∈ M(Σ+
A),

which is positive on nonempty open sets, such that L∗ϕν = λ∗ν.
Fix J ≥ Jϕ and take a constant J∗ > Jϕ large enough, which can be determined

in the proof of Lemma 3.5. Let B = C0
(
Σ+

A\{0̄}
)

but with the norm

‖g‖ = sup
x∈Σ+

A\{0̄}

{
e−J∗k(x)g(x)

}
, (3.1)

where k(x) = k if x ∈ Pk. It is easy to check that B is a Banach space.
Lemma 3.4 below implies that Lϕ : B → B is continuous.
Take

H = {g ∈ GJ : g(1̄) = 1}.
H is not empty since it contains a constant function g(x) = 1. Clearly, H is a

convex set. By Lemma 3.5, H is compact.
Define an operator L̄ : B → B by L̄g = Lϕg/(Lϕg)(1̄). L̄ is continuous because

Lϕ is continuous. By Lemma 3.6, L̄H ⊂ H. By the Schauder-Tychonoff Fixed
Point Theorem (see e.g. [DS]), L̄ has a fixed point h ∈ H. So we have h ∈ GJ ,
∀J ≥ Jϕ, and Lϕh =

(
(Lϕh)(1̄)

)
h. Denote λ = (Lϕh)(1̄).

By Lemma 3.7, λ = λ∗. Hence, we also have L∗ϕν = λν.
To prove that µ is σ-invariant, we can check directly that Lϕ

(
h·(g◦σ)

)
= g·(Lϕh);

then µ(g ◦σ) = ν
(
h · (g ◦σ)

)
= ν

(
λ−1Lϕ

(
h · [g ◦σ]

))
= ν

(
(λ−1Lϕh) · g)

= ν(h · g) =
µ(g). (See e.g. [B] for more details.)

The part λ > 1 if −1 < β′ ≤ 0 is proved in Lemma 4.5.
The last part of the theorem, concerning conditions under which µ is finite or

infinite, follows from Corollary A.2 and the fact that Σ+
A =

⋃∞
i=0 Pi. ¤
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Lemma 3.3. There is a real number λ∗ ≥ eϕ(0̄), and a measure ν ∈M(Σ+
A), which

is positive on nonempty open sets, such that L∗ϕν = λ∗ν.

Proof. The map µ → L∗ϕµ
/
(L∗ϕµ)(1) is a continuous map from M(Σ+

A) to itself.
SinceM(Σ+

A) is compact in weak∗ topology, by the Schauder-Tychonoff Fixed Point
Theorem the map has a fixed point ν. So if we take λ∗ = (L∗ϕµ)(1), then L∗ϕν = λ∗ν.

To prove νU > 0 for any open set U , it is enough to prove that for any word u,
νRu > 0. Since σ is topologically mixing, σnRu = Σ+

A for some n > 0. Hence for
any x ∈ Σ+

A, there is an n-word v such that vx ∈ Ru. We have

Ln
ϕχRu

(x) =
∑

w∈ξn

eSnϕ(wx)χRu
(wx) ≥ eSnϕ(vx)χRu

(vx) ≥ e−n‖ϕ‖ > 0,

where ξn is defined in (1.1). So

νRu =
1

(λ∗)n
(L∗ϕ)nν(χRu) ≥ 1

(λ∗)n
ν(Ln

ϕχRu) ≥ ν(e−n‖ϕ‖)
(λ∗)n

=
1

(λ∗e‖ϕ‖)n
> 0.

Now we prove λ∗ ≥ eϕ(0̄). Suppose λ∗ < eϕ(0̄). Since ϕ is a continuous function,
there is k > 0 such that (λ∗)−1eϕ(x) > 1 ∀x ∈ Ok. Note that if y ∈ Pi+1, then
σy ∈ Pi. We get that for i ≥ k,

νPi+1 = ν
(
(λ∗)−1LϕχPi+1

)
=

∫
1
λ∗

∑
σy=x

eϕ(y)χPi+1(y)dν(x)

=
∫

1
λ∗

eϕ(0x)χPi(x)dν(x) >

∫
χPi(x)dν(x) = νPi. (3.2)

Hence, we have νPi > νPk ∀i > k, contradicting finiteness of ν. ¤

Lemma 3.4. Lϕ is a bounded linear operator.

Proof. Take g(x) = eJ∗k(x), where k(x) = k if x ∈ Pk. Clearly g is the maximal
element in the unit ball with respect to the norm in (3.1). Since Lϕ is a positive
operator, we only need to prove that e−J∗k(x)Lϕg(x) is bounded.

Note that k(0x) = k(x) + 1 and k(sx) = 0 if s 6= 0. So

e−J∗k(x)Lϕg(x) = e−J∗k(x)
(
eϕ(0x)eJ∗k(0x) +

∑

s 6=0

eϕ(sx)eJ∗k(sx)
)
≤ e‖ϕ‖+J∗ +r∗e‖ϕ‖,

where r∗ is the number of different symbols used in Σ+
A. ¤

Lemma 3.5. The set H is compact.

Proof. For any g ∈ H ⊂ GJ , we have

g(y) ≤ g(x)eJDα
k d(x,y)θ ≤ g(x)eJk−θ(1+γ)+α
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if x ∈ Pk, y ∈ P ′k and k > K1. So if x ∈ Pk, then we can choose x(i) ∈ Pk−i,
i = 1, · · · , k, and x(k) = 1̄. Denote x = x(0). By the above inequality we get

g(x) ≤ g(1̄)
k−1∏

i=0

g(x(i))/g(x(i+1)) ≤ e
∑k−1

i=K0
J(k−i)−θ(1+γ)+α ≤ eJ∗k1−θ(1+γ)+α

(3.3)

for some J∗ > 0 independent of g and x(i). Since α ≤ θ(1 + γ), k1−θ(1+γ)+α < k.
So e−J∗k(x)g(x) → 0 as x → 0̄, and the convergence is uniform for all g ∈ H.

Since H ⊂ GJ , it is easy to see that H is uniformly bounded and equicontinuous
outside Ok for any large k. With the above arguments we know that H is uniformly
bounded and equicontinuous.

Clearly, H is closed in B. We get the result. ¤

Lemma 3.6. L̄H ⊂ H.

Proof. Take g ∈ H. We prove L̄g ∈ H.
Take x ∈ Pk, y ∈ P ′k. Then

L̄g(y)
L̄g(x)

=

∑
sy∈Σ+

A

eϕ(sy)g(sy)

∑
sx∈Σ+

A

eϕ(sx)g(sx)
≤ max

sx,sy∈Σ+
A

{ eϕ(sy)g(sy)
eϕ(sx)g(sx)

}
.

Note that
g(sy)
g(sx)

≤ eJKα
0 d(sx,sy)θ

if s 6= 0 and
g(0y)
g(0x)

≤ eJDα
k+1d(0x,0y)θ

. By Propo-

sition 3.1, the right side of the above inequality is bounded by eJDα
k d(x,y)θ

. So
L̄g ∈ GJ .

It is clear that L̄ϕg > 0 and (L̄ϕg)(1̄) = 1. So L̄g ∈ H. ¤

Lemma 3.7. λ = λ∗.

Proof. Define h(n) by

h(n)(x) =
{

h(x) if x ∈ Qn;
0 otherwise.

We have Lϕh(n) = λh(n−1) + ĥχOn
, where ĥ(x) is defined in (1.7). So

ν(h(n)) =(λ∗)−1L∗ϕ(ν)(h(n)) = (λ∗)−1ν(Lϕh(n))

=(λ∗)−1λν(h(n−1)) + (λ∗)−1ν(ĥχOn
).

Since ν(h(n)) = ν(h(n−1)) + ν(hχPn
), we have(

1− (λ∗)−1λ
)
ν(h(n−1)) = −ν(hχPn

) + (λ∗)−1ν(ĥχOn
). (3.4)

Note that ν(ĥχOn
) → 0 as n →∞ since h is bounded on Q0 and νOn → 0. Now

we prove ν(hχPn
) → 0. This implies λ = λ∗, because ν(h(n−1)) increases with n.

Since ν(hχPn
) = µPn and µPn decreases, the sequence {ν(hχPn

)} decreases with
n. So if it does not converge to 0, then it is bounded away from 0. Hence by (3.4),
ν(hχPn

) is roughly proportional to ν(h(n−1)). Since ν(h(n)) = ν(h(n−1))+ν(hχPn
),

it implies that ν(h(n)) and ν(hχPn) increase exponentially fast. So restricted to Pn,
h(x) increases exponentially fast. It contradicts (3.3) which says that functions in
GJ increase subexponentially. ¤
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4. The density function: Proof of Corollary A.1

Lemma 4.1. For x 6= 0̄, lim
n→∞

h(0nx) =
ĥ(0̄)
λ− 1

if λ > 1 and lim
n→∞

h(0nx) = ∞ if

λ = 1.

Proof. Since Lϕh = λh, we have eϕ(0n+1x)h(0n+1x) + ĥ(0n+1x) = λh(0nx), where
ĥ is defined in (1.7). Hence

h(0n+1x) = e−ϕ(0n+1x)
(
λh(0nx)− ĥ(0n+1x)

)
, (4.1)

or
h(0n+1x)
h(0nx)

= e−ϕ(0n+1x)
(
λ− ĥ(0n+1x)

h(0nx)

)
.

Since h ∈ ḠJ , h(0n+1x)/h(0nx) ≤ eJϕd(0n+1x,0nx) → 1 as n → ∞. We also
have e−ϕ(0n+1x) → e−ϕ(0̄) = 1 and ĥ(0n+1x) → ĥ(0̄). The result of the lemma
follows. ¤

Recall that h∗ is defined in the statement of Theorem A.

Lemma 4.2. Let x 6= 0̄.

h(x) = λ−neSnϕ(0nx)h(0nx) +
n∑

j=1

∑

s 6=0

λ−jeSjϕ(s0j−1x)h(s0j−1x), (4.2)

and if λ = 1, then h∗(x) = limn→∞ eSnϕ(0nx)h(0nx).

Proof. Note that for any x, h(x) = λ−1eϕ(0x)h(0x) +
∑

s 6=0 λ−1eϕ(sx)h(sx). The
equality holds by induction.

Let λ = 1. The sum in (4.2) increases with n. So we know that eSnϕ(0nx)h(0nx)
decreases with n and therefore has a limit as n →∞. Then we use (1.5). ¤

Lemma 4.3. i) λ > 1 if and only if h∗(x) < 0 for any x 6= 0̄.

ii) If λ = 1, then either h∗(x) = 0 for all x 6= 0̄, or h∗(x) > 0 for all x 6= 0̄.

Proof. i) “⇒” If λ > 1, then lim
n→∞

λ−neSnϕ(0nx)h(0nx) = 0 because h(0nx) increases

at most subexponentially, and eSnϕ(0nx) decreases by Assumption A(III). So by
(4.2), for any x 6= 0̄, h∗(x) < 0.

ii) Let λ = 1. By Proposition 3.1 and the fact h ∈ GJ , for any x ∈ Pk, y ∈ P ′k,
eSnϕ(0ny)h(0ny)/eSnϕ(0nx)h(0nx) ≤ eJKα

0 d(x,y)θ ≤ eJKα
0 . So we know that the limit

lim
n→∞

eSnϕ(0nx)h(0nx) is either 0 or bounded away from 0 on any Pk, and therefore

on any Qk. Since h∗(x) is equal to the limit, the result follows.
i) “⇐” If h∗(x) < 0 for some x 6= 0̄, then by part ii), λ 6= 1. So λ > 1. ¤



20 HUYI HU

Lemma 4.4. For any k > 0, there is Bϕ = Bϕ,k > 0 with lim
k→∞

Bϕ,k = 1 such that

for all n > 0, x ∈ Pk, eSnϕ(0nx) ≤ Bϕ

( k

k + n

)β+1

.

Suppose Assumption A (III ′) also holds. Then for any k > 0, there is B′
ϕ =

B′
ϕ,k > 0 with lim

k→∞
B′

ϕ,k = 1 such that for all n > 0, x ∈ Pk, eSnϕ(0nx) ≥

B′
ϕ

( k

k + n

)β′+1

.

Moreover, if β = β′, then the limit B∗
ϕ = lim

n→∞
nβ+1eSnϕ(0nx) exists.

Proof. By Assumption A (III), there exists A′ϕ, Aϕ > 0 such that for all k > 0, if
x ∈ Pk, then

eϕ(x) ≤ 1− β

k + 1
+

A′ϕ
(k + 1)1+δ

≤
(
1− 1

k + 1

)β+1(
1 +

Aϕ

(k + 1)1+δ

)
.

Taking product, we get

eSnϕ(0nx) ≤
( k

k + n

)β+1 k+n−1∏

i=k

(
1+

Aϕ

(i + 1)1+δ

)
≤

( k

k + n

)β+1 ∞∏

i=k

(
1+

Aϕ

(i + 1)1+δ

)
.

We let Bϕ,k be the product, which is convergent. Clearly, lim
k→∞

Bϕ,k = 1.

The results corresponding to Assumption A (III′) can be obtained in a similar
way.

Let β = β′. We know that the sequence {nβ+1eSnϕ(0nx)} is bounded. Note that
eSnϕ(0nx) = eSn−kϕ(0nx)eSkϕ(0kx) is bounded between B′

ϕ,k(k/n)β+1eSkϕ(0kx) and

Bϕ,k(k/n)β+1eSkϕ(0kx). We have

B′
ϕ,kkβ+1eSkϕ(0kx) ≤ nβ+1eSnϕ(0nx) ≤ Bϕ,kkβ+1eSkϕ(0kx)

for any n ≥ k. Also, lim
k→∞

B′
ϕ,k = lim

k→∞
Bϕ,k = 1. So {nβ+1eSnϕ(0nx)} is a Cauchy

sequence, and therefore is convergent. ¤

Lemma 4.5. For any k ≥ 0, there exist Bν = Bν,k > 0 and Cν = Cν,k > 0 such
that the limits lim

k→∞
Bν,k and lim

k→∞
Cν,k exist, and for all n ≥ k,

νPn ≤ λ−nBνn−(β+1), νOn ≤ λ−nCνn−β .

Suppose Assumption A (III ′) also holds. Then the above inequalities hold if we
replace β, Bν , Cν and “ ≤” by β′, B′

ν , C ′ν and “ ≥”, respectively. Hence, if β′ ≤ 0,
then λ > 1.

Moreover, if β = β′, then Bν,k and B′
ν,k can be chosen in such a way that

lim
k→∞

Bν,k = lim
k→∞

B′
ν,k = lim

n→∞
λnnβ+1νPn = B∗

ν . (4.3)
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Proof. By a similar method for (3.2), then by Proposition 3.1 and Lemma 4.4, for
all large k, we have

νPn =
1

λn−k

∫

Pk

eSn−kϕ(0n−kx)dν(x) ≤ Bϕ,k
1

λn−k

(k

n

)β+1

νPk. (4.4)

So λnn−(β+1)νPn is bounded. We can take Bν,k = Bϕ,k max
n≥k

{λnn−(β+1)νPn}; then

we get the upper bound estimates for νPn.
The estimate for νOn follows from the fact that On =

⋃
i≥n Pi.

If Assumption A (III′) also holds, the lower bound estimates can be made simi-
larly. So if β′ ∈ (−1, 0], then λ > 1 since ν is a probability measure.

Let β = β′. The sequence {λnn−(β+1)νPn} is bounded. By (4.4) we have

B′
ν,kλkk−(β+1)νPk ≤ λnn−(β+1)νPn ≤ Bν,kλkk−(β+1)νPk

for any n ≥ k. Also, lim
k→∞

B′
ϕ,k = lim

k→∞
Bϕ,k = 1. So {λnn−(β+1)νPn} is a Cauchy

sequence, and therefore the limits in (4.3) exist. ¤

The next lemma is for the proof of uniqueness of equilibriums in Theorem D and
phase transition in Corollary D.1.

Lemma 4.6. i) If h∗(1̄) > 0, then there exists a continuous function ϕ+ > ϕ on
Σ+

A\{0̄} such that for any ϕ+ ≥ ϕ′ ≥ ϕ satisfying Assumptions (I)-(III), h′∗(1̄) > 0,
where h′ is the density function given in Theorem A for ϕ′.

If Assumption A(III ′) also holds with β′ = β, then ϕ+ can be taken in such a
way that ϕ+(x)− ϕ(x) > a/k for some a > 0 as x ∈ Pk and for all large k.

ii) If there exists ϕ′ ≥ ϕ with ϕ′ 6= ϕ that satisfies Assumptions (I)-(III) such
that h′∗(1̄) ≥ 0, then h∗(1̄) ≥ 0.

Proof. i) From the proof of Lemma 4.3 we know that if h∗(1̄) > 0, then h∗(x) ≥
c > 0 for some c as x ∈ P0. By the definition of h∗ given in (1.5) and L̃ϕ̃ given
in (1.4) we know that h∗(1̄) > 0 implies h(x) > L̃ϕ̃h(x) + c for any x ∈ P0. So by
continuity we can find ϕ+ > ϕ such that for any ϕ+ ≥ ϕ′ ≥ ϕ, h(x) > L̃ϕ̃′h(x).

Take ϕ that satisfies Assumptions (I)-(III), and ϕ+ ≥ ϕ′ ≥ ϕ. Note that L̃ϕ̃′

maps the set of continuous functions on P0 to itself. So by the similar method as
in the proof of Lemma 3.3, we get that there is a conformal measure ν′ on P0 and
a constant λ′ such that L̃∗ϕ̃′ν′ = λ′ν′. Hence,

λ′ν′(h) =
(L̃∗ϕ̃′ν′

)
(h) = ν′(L̃ϕ̃′h) < ν′(h).

That is, λ′ < 1.
Let h′ be the density function obtained in Theorem A for ϕ′. We claim h′∗(1̄) >

1. In fact, if not, then by Lemma 4.3 we have h′(x) ≤ L̃ϕ̃′h
′(x) for all x ∈ P0. Then

the same argument gives λ′ν′(h′) ≥ ν′(h). It implies λ′ ≥ 1, a contradiction.
Now we assume that Assumption A(III′) also holds and β = β′. By Lemma

4.3, h′∗(1̄) > 1 implies λ = 1, and then by Lemma 4.5 we have β = β′ > 0. Take
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ϕ+
1 ≥ ϕ such that ϕ+

1 > ϕ on QK1 , where K1 is given in Assumption (III), and
such that

∞∑

j=1

∑

s 6=0

eSjϕ+
1 (s0j−1x)h(s0j−1x)−

∞∑

j=1

∑

s 6=0

eSjϕ(s0j−1x)h(s0j−1x) ≤ c/2.

This is possible; for example, we can let ϕ+
1 = ϕ on OK1+1. By Lemma 4.4 we

know that there exists B > 0 such that eSjϕ+
1 (s0j−1x) ≤ Bj−(1+β) for all j > 0

and x ∈ P0. So if we take ϕa(x) = ϕ+
1 (x) + a/k for all x ∈ Pk and k ≥ K1, and

ϕa(x) = ϕ+
1 (x) for all x ∈ QK1 , then

∞∑

j=K1

∑

s 6=0

eSjϕa(s0j−1x)h(s0j−1x) →
∞∑

j=K1

∑

s 6=0

eSjϕ+
1 (s0j−1x)h(s0j−1x),

as a → 0. Hence we can take a > 0 small enough such that the difference is less
than c/2. Therefore ϕ+ = ϕa is the function we need.

ii) It can be proved in a similar way. ¤
The next two lemmas are for the case h∗(1̄) = 0.

Lemma 4.7. Suppose h∗(1̄) = 0. Then there exists H > 0 such that for all k > 0,
h(x) ≤ Hk if x ∈ Pk.

Proof. Since h∗(1̄) = 0, we have that for any x 6= 0̄,

h(x) =
∞∑

j=1

∑

s 6=0

eSjϕ(s0j−1x)h(s0j−1x).

Since h is bounded on P0, we denote by H0 the upper bound. Also, eSjϕ(s0j−1x) =
eϕ(s0j−1x)eSj−1ϕ(0j−1x). So if x ∈ Pk, then by Lemma 4.4, we get

h(x) ≤ r∗e‖ϕ‖H0

∞∑

j=1

eSj−1ϕ(0j−1x) ≤ r∗e‖ϕ‖H0Bϕ

∞∑

j=1

( k

k + j − 1

)β+1

≤ Hk

for some H > 0. ¤
Lemma 4.8. Suppose h∗(1̄) = 0. Then there is Ch > 0 such that for all x ∈ P0,
for all large n,

β

n
h(0nx) ≤ ĥ(0̄)

(
1 +

Ch

nδ

)
. (4.5)

If ϕ also satisfies Assumption A(III ′) and h∗(1̄) = 0, then there is C ′h > 0 such
that for all x ∈ P0, for all large n,

β′

n
h(0nx) ≥ ĥ(0̄)

(
1− C ′h

nδ

)
. (4.6)

Proof. We only prove (4.5). The inequality (4.6) can be proved similarly.
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By Lemma 4.3, we have λ = 1 and therefore by Theorem A, β > 0.
Recall that we assume δ ≤ min{1, γθ} after Assumption A(III′) is stated.
Take Ch > 0 such that for all large n,

βn− 2− β

2(n + 1)2
· Ch

(n + 1)δ
− (1 + β)2

(n + 1)2
− n + β + 2

(n + 1)2
· 2βJ0Cγ

nγθ
− Cδ(n + εn− β)

(n + 1)2+δ
> 0,

where J0 = JϕKα
0 .

First we claim that if there is x ∈ P0 such that for ε ≥ Chn−δ,

β

n
h(0nx) ≥ ĥ(0̄)

(
1 + ε

)
(4.7)

holds for some large n, then

β

n + 1
h(0n+1x) ≥ ĥ(0̄)

(
1 + ε +

β

2(n + 1)
ε
)
. (4.8)

Now we prove the claim. By Lemma 3.3 and Assumption A(III),

eϕ(0̄)−ϕ(0n+1x) ≥ 1 +
β + 1
n + 1

− Cδ

(n + 1)1+δ
. (4.9)

Note that h ∈ GJϕ
. By Corollary 3.2 and (1.2), if n is large enough, then

ĥ(0n+1x) ≤ ĥ(0̄)eJ0d(0nx,0̄)θ ≤ ĥ(0̄)eJ0Cγn−γθ ≤ ĥ(0̄)(1 + 2J0Cγn−γθ). (4.10)

So by (4.7) and (4.10), if n is large enough, then

1

ĥ(0̄)

(
λh(0nx)− ĥ(0n+1x)

)
≥n

β

(
1 + ε

)− (
1 +

2J0Cγ

nγθ

)

=
n− β

β
+

n

β
ε− 2J0Cγ

nγθ
≥ n− 2β

β
. (4.11)

By (4.1) and then by (4.9) and (4.11), we have

β

n + 1
h(0n+1x)

ĥ(0̄)
≥ β

n + 1
· e−ϕ(0n+1x) · 1

ĥ(0̄)

(
h(0nx)− ĥ(0n+1x)

)

≥ β

n + 1
· n + β + 2

n + 1
·
[n− β

β
+

n

β
ε− 2J0Cγ

nγθ

]
− β

n + 1
· Cδ

(n + 1)1+δ
· n + εn− 2β

β

=
(n + β + 2)(n− β)

(n + 1)2
+

(n + β + 2)n
(n + 1)2

ε− n + β + 2
(n + 1)2

· 2βJ0Cγ

nγθ
− Cδ(n + εn− 2β)

(n + 1)2+δ
.

Note that
(n + β + 2)(n− β)

(n + 1)2
= 1− (1 + β)2

(n + 1)2
,

(n + β + 2)n
(n + 1)2

ε = ε +
β

2(n + 1)
ε +

βn− 2− β

2(n + 1)2
ε.
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Also note that ε ≥ Chn−δ. By the choice of Ch, we get (4.8). The claim is true.
Using this claim we can get the result of the lemma. Otherwise we have an

ε > Chn−δ
0 such that (4.7) holds for some large n0. Then using the claim repeatedly,

we get

β

n0 + k
h(0n0+kx) ≥ ĥ(0̄)

(
1 + ε + ε

n0+k−1∑

i=n0

β

2(i + 1)

)
∀k ≥ 0.

Since the summation goes to infinity as k → ∞, it contradicts the fact given by
Lemma 4.7 that h(0nx) ≤ Hn for all n > 0. ¤

Proof of Corollary A.1. The results for the case h∗(1̄) < 0 and h∗(1̄) = 0 are given
in Lemma 4.1 and Lemma 4.8, respectively.

For the case h∗(1̄) > 0, by Lemma 4.2, lim
n→∞

eSnϕ(0nx)h(0nx) = h∗(x), and by

Lemma 4.4, n−(β+1)e−Snϕ(0nx) ≥ B−1
ϕ,0. So the first part of the case follows. The

rest can be proved similarly.

5. The function ψ and measure µ: Proof of Corollaries A.2 and A.3

Lemma 5.1. Let w be an n-word, n > 0. Then for any integrable function g,

∫
eSnψ(wx)g(wx)dµ(x) =

∫

Rw

g(x)dµ(x).

Hence, if we take g = χRwu
for any word u, then

∫

Ru

eSnψ(wx)dµ(x) = µRwu.

Proof. Define g∗(x) = g(x) if x ∈ Rw and g∗(x) = 0 otherwise. Then we have
eSnψ(wx)g(wx) = Ln

ψg∗(x) for any x. So we get

∫
eSnψ(wx)g(wx)dµ(x) = µ(Ln

ψg∗) = µ(g∗) =
∫

Rw

g(x)dµ(x).

By using χRwu(wx) = χRu(x), we can get the second part of the lemma. ¤

Lemma 5.2. eψ(0x) =
eϕ(0x)h(0x)

λh(x)
= 1− 1

λh(x)
ĥ(0x). In particular, eψ(0̄) =

1
λ
.

Proof. Since Lψh(x) = λh(x), we have eϕ(0x)h(0x) + ĥ(0x) = λh(x). So by the
definition of ψ,

eψ(0x) =
eϕ(0x)h(0x)

λh(x)
= 1− 1

λh(x)
ĥ(0x). (5.1)

For the case x = 0̄, the result follows from the definition of ψ and (1.8). ¤
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Lemma 5.3. There exists Bδ > 0 such that for all large n, the following hold:

i) if h∗(1̄) < 0, then eψ(0x) ≤ 1
λ
·
(
1 +

Bδ

(n + 1)min{1,α−θ(1+γ)}

)
∀x ∈ Pn;

ii) if h∗(1̄) = 0, then eψ(0x) ≤ 1− β

n
+

Bδ

n1+δ
∀x ∈ Pn;

iii) if h∗(1̄) > 0, then eψ(0x) ≥ 1− Bδ

n1+β
∀x ∈ Pn.

Suppose Assumption A (III ′) also holds. Then there exists B′
δ > 0 such that for

all large n, the above inequalities hold if we interchange “ ≤” and “ ≥”, and then
replace Bψ and β by −B′

ψ and β′ in i) and ii), and by B′
ψ and β′ in iii).

Proof. i) Note that by Assumption A (III), ϕ(0x) ≤ −β + 1
n + 2

+
Cδ

(n + 2)1+δ
. Also

since h ∈ GJϕ
, h(0x)/h(x) ≤ eJϕnαd(x,0x)θ ≤ eJϕ(n+1)α−θ(1+γ)

. So if h∗(1̄) < 0, the
result can be obtained from the first equality of (5.1).

ii) By Lemma 4.8 and a similar method for (4.10), we have that for all large n,

1
λh(x)

· ĥ(0x) ≥ β

nĥ(0̄)

(
1 +

Ch

nδ

)−1

· ĥ(0̄)
(
1− 2CγJϕKα

0

nγθ

)
≥ β

n
− Bδ

n1+δ

for some large Bδ. Now the result follows from the second equality of (5.1).
iii) Since h∗(1̄) > 0, by Lemma 4.2, h(x) is of the same order as e−Snϕ(x). By

Lemma 4.3, if x = 0ny ∈ Pn, y ∈ P0, then e−Snϕ(x) ≥ B−1
ϕ (n + 1)β+1. Now we use

the second equality of (5.1).
The other direction of the inequalities can be estimated in a similar way. ¤

Lemma 5.4. For any k > 0, there is Cψ = Cψ,k > 0 and C ′ψ = C ′ψ,k > 0 with
lim

k→∞
Cψ,k = lim

k→∞
C ′ψ,k = 1 such that for all n > 0, x ∈ Pk, the following holds:

i) if h∗(1̄) < 0, then eSnψ(0nx) ≤ Cψλ−n
( k

k + n

)β+1

;

ii) if h∗(1̄) = 0, then eSnψ(0nx) ≤ Cψ

( k

k + n

)β

;

iii) if h∗(1̄) > 0, then C ′ψh∗(x) ≤ eSnψ(0nx) ≤ Cψh∗(x).

Suppose Assumption A (III ′) also holds. Then i) and ii) are true if we replace
“ ≤”, β and Cψ by “ ≥”, β′ and C ′ψ, respectively.

Proof. i) Use Lemma 4.4 and the fact that both h(0nx), h(x) → λ−1 as k →∞.
ii) It can be proved by using Lemma 5.3 and the same methods as for the proof

of Lemma 4.4.
iii) Since x ∈ Pk, we know that x = 0ky for some y ∈ P0. By the definition of ψ,

we have

eSnψ(0nx) = eSnϕ(0nx) h(0nx)
h(x)

=
eSn+kϕ(0n+ky)h(0n+ky)

eSkϕ(0ky)h(0ky)
.

Then we take Cψ,k = max
y∈P0

sup
n≥0

{eSn+kϕ(0n+ky)h(0n+ky)
eSkϕ(0ky)h(0ky)

}
and C ′ψ,k = C−1

ψ,k. By

Lemma 4.2, Cψ,k, C ′ψ,k → 1 as k →∞.
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The other direction of the inequalities for i) and ii) can be obtained similarly. ¤
Proof of Corollary A.2. Note that by the definition of µ, µPk = ν(hχPk

) ≤
νPk max{h(x) : x ∈ Pk}. Also note that On =

⋃
i≥n Pi. Hence, part i) follows from

Corollary A.1 and Lemma 4.5 with Bµ,k = Bν,k max{h(x) : x ∈ Pk}, and part ii)
follows from Lemma 4.8 and 4.5 with Bµ,k = Bν,kβ−1ĥ(0̄)(1 + Chn−δ).

By Lemma 5.1, µPn+k =
∫

Pk
eSnψ(0nx)dµ(x). So we use part iii) of Lemma 5.4

to get µPn+k ≥ C ′ψµPk min{h∗(x) : x ∈ Pk} > 0. It means that {µPn} are bounded
away from 0. Since this is a decreasing sequence, we get part iii).

If Assumption A (III′) also holds, the lower bounds can be estimated similarly.
If β′ = β, the existence of limits follows from (4.3) and the choice of these

constants. ¤
Proof of Corollary A.3. (I). It follows from continuity of ϕ on Σ+

A and h on Σ+
A\{0̄}.

(II). Take an n-word w = w0w1 · · ·wn−1, and suppose wx, wy ∈ Pm. We have

Snψ(wy)− Snψ(wx) = Snϕ(wy)− Snϕ(wx) + log
h(wy)
h(wx)

+ log
h(x)
h(y)

.

Since h ∈ HJϕ
, log

h(wy)
h(wx)

≤ JϕDα
md(wx, wy)θ and log

h(x)
h(y)

≤ JϕDα
k d(x, y)θ. By

Proposition 3.1 ii), we get the first part of (II) with Jψ = 2Jϕ.
For the second part, we write

(
Snψ(wy) + log h(y)

)−(
Snψ(wx) + log h(x)

)

=Snϕ(wy)− Snϕ(wx) + log h(wy)− log h(wx)

and then use the second part of Proposition 3.1 ii).
(III) & (III′). The results follow from Lemma 5.3. ¤

6. Exactness: Proof of Theorem B

Recall that Lψ is defined in Section 1, after Corollary D.2 is stated.

Lemma 6.1. i) Lψc = c for any constant function c.
ii) µ(Lψg) = µ(g) for any integrable function g.
iii) µ(|Lψg|) ≤ µ(|g|) for any function g in L1(Σ+

A, µ). Further, if g is contin-
uous, and there exists x ∈ Σ+

A, and n-words u and v such that g(ux) > 0
and g(vx) < 0, then µ(|Ln

ψg|) < µ(|g|).

Proof. i) Since Lϕh = λh, we get Lψc =
1
λh
Lϕ(ch) =

c

λh
Lϕh = c.

ii) This is because µ(Lψg) = ν
(
h · 1

λh
Lϕ(hg)

)
= ν

( 1
λ
Lϕ(hg)

)
= ν

(
hg

)
= µ(g).

iii) It is easy to check by using part i) that for any x, |Lψg(x)| ≤ Lψ|g(x)|.
Hence, by part ii), µ(|Lψg|) ≤ µ(Lψ|g|) = µ(|g|).

For the second part, we have
∣∣Ll

ψg(x)
∣∣ =

∣∣∣
∑

w∈ξl

eψ(wx)g(wx)
∣∣∣ <

∑

w∈ξl

eψ(wx)
∣∣g(wx)

∣∣ =
(Ll

ψ|g|
)
(x)
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for x given in the lemma. So we have µ(|Ll
ψg|) < µ(Ll

ψ|g|) = µ(|g|). ¤

For any x, we denote

ḡ(0x) =

∑
s 6=0

eψ(sx)g(sx)
∑
s 6=0

eψ(sx)
=

∑
s 6=0

eϕ(sx)h(sx̃)g(sx)
∑
s 6=0

eϕ(sx)h(sx)
. (6.1)

That is, ḡ(0x) is the average of g(sx), s 6= 0, with weights eϕ(sx). Since
∑
s 6=0

eψ(sx) =

1− eψ(0x), we have

Lψg(x) = eψ(0x)g(0x) + (1− eψ(0x))ḡ(0x). (6.2)

Lemma 6.2. For any x ∈ Σ+
A,

Ln
ψg(x) = g(0nx)eSnψ(0nx) +

n∑

j=1

(Ln−j
ψ g)(0jx)

(
1− eψ(0jx)

)
eSj−1ψ(0j−1x).

Proof. It can be obtained by (6.2) and induction. ¤

Lemma 6.3. For any continuous function g on Σ+
A with µ(|g|) < ∞ and µ(g) = 0,

lim
n→∞

Ln
ψg(x) = 0 ∀x ∈ Σ+

A \ {0̄},

and the convergence is in L1(µ) and uniform on Qk for any k ≥ 0. Also,

lim
n→∞

Ln
ψg(0̄) =

{
0 if λ > 1;
g(0̄) if λ = 1.

Proof. Let x ∈ Pi, y ∈ P ′i . By Corollary A.3(II), for any n ≥ 0 we have
∣∣Ln

ψg(x)− Ln
ψg(y)

∣∣
≤

∑

w∈ξn

eSnψ(wx)
∣∣g(wx)− g(wy)

∣∣ +
∑

w∈ξn

g(wy)eSnψ(wy)
∣∣eSnψ(wx)−Snψ(wy) − 1

∣∣

≤varn(g)
∑

w∈ξn

eSnψ(wx) + (eJψDα
i d(x,y)θ − 1)

∑

w∈ξn

g(wy)eSnψ(wy)

≤varn(g) + (eJψDα
i d(x,y)θ − 1)|Ln

ψg(y)|,

where varn(g) is defined in (1.3). Note that eJψDα
i d(x,y)θ−1 → 0 as d(x, y) → 0, and

the convergence is uniform for all x, y ∈ Qk whenever k > 0 is fixed. Since Lψg(x)
is the average value of the g(sx) with weight eψ(sx), {Ln

ψg : n ≥ 0} is uniformly
bounded. The above arguments says that restricted to Qk, {Ln

ψg : n ≥ 0} is
equicontinuous. So the closure of {Ln

ψg : n ≥ 0} is compact. Therefore, there is
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a subsequence {ni} and a continuous function g(k) on Qk such that Lni

ψ g → g(k).
Since Qk ⊂ Qk+1 and

⋃
k≥0 Qk = Σ+

A\{0̄}, by applying the diagonalization method,
we know that there is a subsequence {ni} and a continuous function g∗ on Σ+

A \{0̄}
such that Lni

ψ g(x) → g∗(x) for all x ∈ Σ+
A \ {0̄}.

Now we prove that g∗ = 0 on Σ+
A \ {0̄}. It is enough to show µ(|g∗|) = 0. By

Lemma 6.1,
{
µ(|Ln

ψg|)} is decreasing. So c = lim
n→∞

µ(|Ln
ψg|) exists. By taking

subsequences, we obtain that c = µ(|Lj
ψg∗|) for all limit points g∗ of

{Ln
ψg

}
and

for all j ≥ 0. If c 6= 0, then by continuity of g∗, we can find x ∈ Σ+
A\{0̄}, and

l-words u and v such that g∗(ux) > 0 and g∗(vx) < 0. By Lemma 6.1, we have
µ(|Ll

ψg∗|) < µ(|g∗|), a contradiction. So we get c = 0. Hence, Lni

ψ g(x) → 0 in
L1(µ). Since this is true for any subsequence, we get Ln

ψg(x) → 0 in L1(µ). The
arguments in the previous paragraph imply that the convergence is uniform on Qk

for any k.
For the case x = 0̄ and λ > 1, we first note that as j → ∞, Lj

ψg(s0̄) → 0 for

any s 6= 0 by the above argumentsand therefore (Lj
ψg)(0̄) → 0 by (6.1). Also, by

Lemma 5.2, eψ(0̄) = λ−1 < 0 and therefore eSnψ(0n0̄) = λ−n → 0 as n →∞. So by
Lemma 6.2, Ln

ψg(0̄) → 0 as n →∞.
It remains to show that lim

n→∞
(Ln

ψg
)
(0̄) = g(0̄) if λ = 1. In fact, λ = 1 implies that

eψ(0̄) = 1 by Lemma 5.2, and hence eψ(s0̄) = 0 for any s 6= 0. So
(Lψg

)
(0̄) = g(0̄).

We get the result. ¤

Proposition 6.4. (a) If µ is a probability measure, then for any continuous func-
tion g on Σ+

A,

lim
n→∞

Ln
ψg(x) =

{
µ(g) if λ > 1 or x 6= 0̄;
g(0̄) if λ = 1 and x = 0̄.

(b) If µ is an infinite measure, then for any continuous function g on Σ+
A with

with µ(|g|) < ∞ and µ(g) = 0,

lim
n→∞

Ln
ψg(x) = 0 ∀x ∈ Σ+

A.

The convergence in both cases is in L1(µ) and uniform on Qk for any k ≥ 0.

Proof. Note that Ln
ψ

(
g(x) − µ(g)

)
= Ln

ψg(x) − µ(g). So part (a) can be obtained
from Lemma 6.3 by applying the function g − µ(g).

For part (b), by Lemma 6.3 we only need to show that g(0̄) = 0. In fact, if
g(0̄) > 0, then by continuity g(x) > g(0̄)/2 onOk for some k > 0. Since µ(Ok) = ∞,
we have µ(gχOk

) = ∞. It implies that g is not integrable, a contradiction. ¤

Proof of Theorem B. By a theorem of Lin ([Li]; see also [A], Theorem 1.3.3), for a
nonsingular system (σ, µ), it is exact if and only if ‖Ln

ψg‖1 → 0 for any g ∈ L1(µ)
with µ(g) = 0, where ‖ · ‖1 denotes the L1 norm.

Take g ∈ L1(µ) with µ(g) = 0. We need show that for any ε > 0, there is N > 0
such that for any n > N , ‖Ln

ψg‖1 ≤ ε.
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Since g ∈ L1(µ), we can take k > 0 such that µ(|gχOk+1 |) ≤ ε/6. Then take
a function g′ε such that g′ε|Ok+1 = 0, g′ε|Qk

continuous, and µ(|g′ε − gχQk
|) ≤ ε/6.

By triangle inequality we have µ(|g′ε − g|) ≤ µ(|g′ε − gχQk
|) + µ(|gχOk+1 |) ≤ ε/3.

So we can take a continuous function gε such that gε(0̄) = 0, µ(|gε − g′ε|) ≤ ε/3
and µ(gε) = 0. Now we have µ(|g − gε|) ≤ 2ε/3. By Lemma 6.1, for any n > 0,
µ(|Ln

ψg − Ln
ψgε|) ≤ µ(Ln

ψ|g − gε|) ≤ 2ε/3.
By Proposition 6.4, Ln

ψgε → 0 in L1(µ) as n → ∞. So there exists N > 0 such
that for all n > N , µ(|Ln

ψgε|) ≤ ε/3. Hence we get

µ(|Ln
ψg|) ≤ µ(|Ln

ψg − Ln
ψgε|) + µ(|Ln

ψgε|) ≤ ε.

This is what we need. ¤

7. Gibbs properties: Proof of Theorem C

Lemma 7.1. There is an increasing sequence of positive numbers {C̄n} such that

lim
n→∞

1
n

log C̄n = 0 and eSnϕ(0nx) ≥ C̄−1
n for any x ∈ Σ+

A.

Proof. Recall that vari(ϕ) is defined in (1.3). Take C̄n = e
∑n−1

i=0 vari(ϕ). Since ϕ is

continuous, lim
n→∞

varn(ϕ) → 0. Hence lim
n→∞

1
n

log C̄n = lim
n→∞

1
n

n−1∑

i=0

vari(ϕ) → 0.

Since 0ix ∈ Oi and ϕ(0̄) = 0, ϕ(0ix) ≥ −vari(ϕ). So we get

eSnϕ(0nx) ≥ e−
∑n−1

i=0 vari(ϕ) = C̄−1
n

for any x ∈ Σ+
A. ¤

Lemma 7.2. There is a sequence of positive numbers {Cn} with lim
n→∞

1
n

log Cn = 0
such that for any x ∈ Pk, n-word w with µRw < ∞,

C−1
n ≤ µRw

exp{−n log λ + Snϕ(wx)} ≤ Cn.

Proof. By Lemma 5.1 and the definition of ψ, for any n-word w = uv, where u is
an n0-word, n0 ≤ n, we have

µRw =
∫

Rv

eSn0ψ(wz)dµ(z) =
1

λn0

∫

Rv

eSn0ϕ(wz)h(wz)dν(z). (7.1)

First, we consider the case w = 0n. If µOn < ∞, then by Corollary A.2 and
Lemma 4.3, µOn ≤ λ−nCµ,0n

−β ≤ λ−nCµ,0 if h∗(1̄) < 0, i.e. λ > 1, and µOn ≤ 1
if h∗(1̄) = 0, i.e. λ = 1. We may assume Cµ,0 ≥ 1 and then get

µRw = µOn ≤ λ−nCµ,0 ≤ λ−nCµ,0C̄neSnϕ(0nx). (7.2)
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On the other hand, by Lemma 4.4, eSnϕ(0nx) ≤ Bϕ for any x. So applying (7.1)
with n0 = n and Lemma 7.1, we get

µRw = µOn ≥ λ−nC̄−1
n h− ≥ λ−nC̄−1

n h−B−1
ϕ eSnϕ(0nx),

where h− = min{h(x) : x ∈ Σ+
A}. By Lemma 4.1, h− > 0. So we can take

Cn = C̄n max{Cµ,0, h
−1
− Bϕ}. (7.3)

For the case w 6= 0n, we may assume w = u0n1 , where u is an n0-word whose
last symbol is not equal to 0, and n = n0 + n1. By Proposition 3.1 and (1.2), for
any z,

eSn0ϕ(wz)h(wz) ≤ eJϕKα
0 d(0n1x,0n1z)θ

eSn0ϕ(wx)h(wx) ≤ eJϕCγKα
0 eSn0ϕ(wx)h(wx).

Hence, using (7.1) with v = 0n1 , we get

µRw ≤ λ−n0eJϕCγKα
0 eSn0ϕ(wx)h(wx)νOn1 .

Similarly to (7.2) we get νOn1 ≤ λ−n1Cν,0C̄neSn1ϕ(0n1x). Note that

Snϕ(wx) = Sn0ϕ(wx)Sn1ϕ(0n1x).

By (3.3), h(wx) ≤ eJ∗n
1−θ(1+γ)+α
0 ≤ eJ∗n1−θ(1+γ)+α

. So we have

µRw ≤ λ−neJϕCγKα
0 Cν,0e

J∗n1−θ(1+γ)+α

C̄neSnϕ(wx). (7.4)

Similarly, we have

µRw ≥ λ−n0e−JϕCγKα
0 eSn0ϕ(wx)h(wx)νOn1

and νOn1 ≥ λ−n1C̄−1
n B−1

ϕ eSnϕ(0nx). So

µRw ≥ λ−ne−JϕCγKα
0 C̄−1

n h−B−1
ϕ eSnϕ(wx). (7.5)

By (7.4) and (7.5), in this case we can take

Cn = C̄neJϕCγKα
0 max{Cν,0e

J∗n1−θ(1+γ)+α

, h−1
− Bϕ}. (7.6)

Now we take Cn as the larger one in (7.3) and (7.6). Clearly {Cn} is subexpo-
nential and the inequalities of the lemma are satisfied. ¤
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Lemma 7.3. There exists a constant Aϕ > 0 such that for any n-word w =
w0w1 · · ·wn−1 with wn−1 6= 0,

A−1
ϕ h(wx) ≤ µRw

exp{−n log λ + Snϕ(wx)} ≤ Aϕh(wx).

Proof. We may assume that d(x, z)θ ≤ Cγ for any x, z ∈ Σ+
A. Since h ∈ GJϕ

, by
Proposition 3.1 ii), we have e−JϕCγKα

0 ≤ eSnϕ(wz)h(wz)/eSnϕ(wx)h(wx) ≤ eJϕCγKα
0 .

So by (7.1)

µRw ≤ 1
λn

∫
eJϕCγKα

0 eSnϕ(wx)h(wx)dν(z) ≤ 1
λn

eJϕCγKα
0 eSnϕ(wx)h(wx).

On the other hand, if wx ∈ Σ+
A, then

µRw ≥ 1
λn

∫
e−JϕCγKα

0 eSnϕ(wx)h(wx)dν(z) ≥ 1
λn

e−JϕCγKα
0 eSnϕ(wx)h(wx).

So we can take Aϕ ≥ eJϕCγKα
0 . ¤

Note that by [W2] Theorem 9.6, the topological pressure of σ for ϕ is given by

P (σ, ϕ) = lim sup
n→∞

1
n

log
∑

w∈ξn

inf
wx∈Rw

eSnϕ(wx). (7.7)

Lemma 7.4. A probability invariant measure µ is an equilibrium state for a con-
tinuous function ϕ whenever it is a weak Gibbs measure for ϕ, and the constant P
in the definition of weak Gibbs measure is equal to the topological pressure P (σ, ϕ)
for ϕ.

Proof. Since µ is a weak Gibbs measure, by (1.9) we have

C−1
n enP µRx0x1···xn−1 ≤ eSnϕ(x) ≤ CnenP µRx0x1···xn−1 . (7.8)

Hence,

P − 1
n

log Cn ≤ 1
n

Snϕ(x)− 1
n

log µ(Rx0x1···xn−1) ≤ P +
1
n

log Cn.

Note that Rx0x1···xn−1 is the element of ξn containing x. Let n → ∞, by the
Birkhoff Ergodic Theorem, the Shannon-McMillan-Breiman Theorem, and the fact
(1/n) log Cn → 0, we have

P =
∫

ϕdµ + hµ(σ).

We show that P is equal to the topological pressure of ϕ. We replace x by wx
in (7.8), where w is an n word, and then use the fact

∑
w∈ξn

µ(Rw) = 1 to get

C−1
n enP ≤

∑

Rw∈ξn

inf
wx∈Rw

eSnϕ(wx) ≤ CnenP .

By (7.7),

P (σ, ϕ) = lim sup
n→∞

1
n

log
∑

w∈ξn

inf
wx∈Rw

eSnϕ(wx) = P. ¤

The result in the lemma is also obtained by M. Yuri (see e.g. [Yu1]) in a slightly
different setting.
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Lemma 7.5. Any probability or σ-finite measure µ′ that satisfies (1.10) with a
function p′(x, n) satisfying a) and b) in Theorem C coincides with µ up to a constant
coefficient.

Proof. Assume µ′ satisfies (1.10) with constant P ′ and function p′(x, n).
Similar arguments as in the proof for Lemma 7.4 show that P ′ = P (σ, ϕ) = P .
Fix k > 0. Denote Bk = supx∈Qk∩σ−n+1Q0

p(x, n). Let w = w0 · · ·wn−1 be an
n-word, n ≥ k, with Rw ⊂ Qk.

If wn−1 6= 0, then by part b), p′(wx, n) ≤ B′
k for some B′

k > 0. So by (1.10),

µ′Rw ≤ B′
ke−nP+Snϕ(wx) ≤ B′

kBkµRw. (7.9)

If wn−1 = 0, then we can always find a sequence of words {u(i)}∞i=1 whose last

symbols are nonzero such that Rw = {w0̄} ∪
∞⋃

i=1

Rwu(i) . Since µ is an invariant

measure, µ{w0̄} = 0 for any w 6= 0̄ because 0̄ ∈ σ−n0̄. By (7.9) we know that

µ′Rw =
∞∑

i=1

µ′Rwu(i) ≤ B′
kBk

∞∑

i=1

µRwu(i) = B′
kBkµRw.

Since this is true for all cylinders in Qk, by taking a limit we know that µ′(E) ≤
B′

kB−1
k µ(E) for all Borel set E ⊂ Qk. It implies that µ′ is absolutely continuous

with respect to µ on Qk and therefore on Σ+
A. By the Radon-Nykodym Theorem

we know that dµ′/dµ exists. Since both µ′ and µ are σ-invariant, dµ′/dµ is a σ-
invariant function. Since µ is ergodic, dµ′/dµ is equal to a constant c µ-almost
everywhere. Clearly, c > 0. So we get µ′ = cµ. ¤

Proof of Theorem C. By Lemma 7.2 with wx replaced by x, µ satisfies (1.9) and
therefore is a weak Gibbs measure.

Take p(x, n) = min
{
Cn, Aϕ max{h(x), h(x)−1}} if xn−1 6= 0̄ and p(x, n) = Cn

otherwise. Clearly (1.10) holds by Lemma 7.2 and 7.3. Also by Lemma 7.2, p(x, n)
satisfies a). Since h(x) is bounded on Qk for each k, p(x, n) also satisfies b).

The uniqueness follows from Lemma 7.5. ¤

Proof of Corollary C.1. By Lemma 7.2 and 7.3, we know that P in (1.9) and (1.10)
is equal to log λ. By Lemma 7.4, it is equal to P (σ, ϕ). ¤

8. Equilibriums: Proof of Theorem D

Since by Theorem C and Lemma 7.4 we know that µ is an equilibrium for ϕ if
µ is a probability measure, the main work in this section is to deal with the case
that µ is an infinite measure, in particular, the case h∗(1̄) = 0.

Lemma 8.1. Let {an} be a decreasing sequence of positive numbers with

∞∑
n=1

an

n
< ∞. (8.1)
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Then an log n → 0 as n →∞.

Proof. First we know that there is a subsequence ni such that

ani
log(ni + 1) → 0 as i →∞, (8.2)

because if otherwise, there would be M > 0 and ε > 0 such that an > ε/ log(n + 1)
for all n ≥ M , and therefore the series in (8.1) would diverge.

Denote

Sn =
n∑

i=1

ai log
(
1 +

1
i

)
, Tn =

n∑

i=2

(ai−1 − ai) log i.

Since log(1 + t) < t for any t > 0, by (8.1) S = lim
n→∞

Sn exists. Note that

Sn =
n∑

i=1

ai

(
log(i+1)−log i

)
= an log(n+1)+

n∑

i=2

(ai−1−ai) log i = an log(n+1)+Tn.

So Tn is bounded and therefore T = lim
n→∞

Tn exists. By (8.2) we have S = T . Hence

an log(n + 1) → 0. This implies the result. ¤

Lemma 8.2. If h∗(1̄) ≤ 0, then for any σ-invariant measure ρ with
∞∑

i=1

i−1ρPi <

∞, for any n > 0, ∫

σ−1On\On+1

log h(σx)dρ(x) < ∞.

Suppose Assumption A (III ′) also holds; then the condition h∗(1̄) ≤ 0 can be
removed.

Proof. Since h∗(1̄) ≤ 0, by Corollary A.1, h(σx) ≤ Cn for some C > 0 if x ∈ Pn.
So∫

σ−1Pi\Pi+1

log h(σx)dρ(x) ≤ log(Ci)ρ(σ−1Pi \ Pi+1) = log(Ci)
(
ρPi − ρPi+1

)
,

and therefore for any k ≥ n,
k∑

i=n

∫

σ−1Pi\Pi+1

log h(σx)dρ(x) ≤
k∑

i=n

log(Ci)
(
ρPi − ρPi+1

)

=ρPn log(Cn) +
k∑

i=n

ρPi+1

[
log(C(i + 1))− log(Ci)

]− ρPk+1 log(C(k + 1))

≤ρPn log(Cn) +
k∑

i=n

i−1ρPi+1 − ρPk+1 log(C(k + 1)).

Since
∞∑

i=n

i−1ρPi+1 is convergent and ρPk+1 log(C(k + 1)) ≥ 0 for all k ≥ n, the

sum in the left side of the inequality is bounded. Note that σ−1On \ On+1 is the
pairwise disjoint union of the sets σ−1Pi \ Pi+1, i ≥ n; we get the result.

If Assumption A (III′) also holds, then by Corollary A.1, we have h(x) ≤ Cnβ′+1

and log h(x) ≤ (β + 1) log C ′n for some C,C ′ > 0 if x ∈ Pn. Then the same
arguments can be applied. ¤
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Lemma 8.3. If h∗(1̄) ≤ 0, then for any σ-invariant measure ρ with
∞∑

i=1

i−1ρPi <

∞, ∫ (
log h(x)− log h(σx)

)
dρ(x) = 0.

Suppose Assumption A (III ′) also holds; then the condition h∗(1̄) ≤ 0 can be
removed.

Proof. It is obvious if ρ(log h) < ∞ because ρ is an invariant measure. This is the
case if h∗(1̄) < 0. So we assume h∗(1̄) = 0.

Since σ−1Qn−1 = Qn \ σ−1On = Pn ∪ (Qn−1 \ σ−1On) and ρ is an invariant
measure, we have

∫

Pn

log h(σx)dρ(x) +
∫

Qn−1\σ−1On

log h(σx)dρ(x) =
∫

Qn−1

log h(x)dρ(x).

Note that Qn−1 can be partitioned into {Qn−1 \ σ−1On, σ−1On \ On+1}. So

∫

Qn−1

log
h(x)
h(σx)

dρ(x) =
∫

Qn−1

log h(x)dρ(x)−
∫

Qn−1

log h(σx)dρ(x)

=
∫

Pn

log h(σx)dρ(x)−
∫

σ−1On\On+1

log h(σx)dρ(x).

Since Σ+
A can be partitioned into {Qn−1,On}, we only need to prove

∫

On

log
h(x)
h(σx)

dρ(x) =
∫

σ−1On\On+1

log h(σx)dρ(x)−
∫

Pn

log h(σx)dρ(x). (8.3)

Since σ−1Pi = Pi+1 ∪ (σ−1Pi \ Pi+1),

∫

Pi+1

log h(σx)dρ(x) +
∫

σ−1Pi\Pi+1

log h(σx)dρ(x) =
∫

Pi

log h(x)dρ(x).

Therefore if we denote On,k =
n+k⋃

i=n

Pi for k > n, then

∫

On,k

log
h(x)
h(σx)

dρ(x) =
∫

Pn+k

log h(x)dρ(x)

+
n+k−1∑

i=n

[∫

Pi

log h(x)dρ(x)−
∫

Pi+1

log h(σx)dρ(x)
]
−

∫

Pn

log h(σx)dρ(x)

=
∫

Pn+k

log h(x)dρ(x) +
n+k−1∑

i=n

∫

σ−1Pi\Pi+1

log h(σx)dρ(x)−
∫

Pn

log h(σx)dρ(x).
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Let k → ∞; we get that this equality implies (8.3). To see this, we first note that
by Lemma 8.2 the integral

∞∑

i=n

∫

σ−1Pi\Pi+1

log h(σx)dρ(x) =
∫

σ−1On\On+1

log h(σx)dρ(x)

converges. Also, by Corollary A.1, we know that there is C > 0 such that for x ∈ Pi,
either h(σx) ≤ Ci if h∗(1̄) = 0, or h(σx) ≤ Ciβ

′+1 if Assumption (III′) holds.
Using Lemma 8.1 with ai = ρPi we have that if k →∞, then

∫
Pn+k

log h(x)dρ(x) ≤
ρPn+k log C(n + k)max{1,β′+1} → 0. This completes the proof of the lemma. ¤

Lemma 8.4. For any sequence {an} with an ≥ β + 1
n + 1

− Cδ

(n + 1)1+δ
and an → 0,

where δ, Cδ and β are given in Assumption A (III) with β > 0,

∞∑

k=n

akke−
∑k

i=n ai < ∞ ∀n > 0. (8.4)

Proof. By adding the first n−1 terms and multiplying by e−
∑n−1

i=1 ai , we know that
if the result is true for some n > 0, then it is true for n = 1 and therefore for any
n > 0.

Let bn =
β + 1
n + 1

− Cδ

(n + 1)1+δ
.

By the same arguments as in the proof of Lemma 4.4, we know that there exist
B(n) ≥ B′(n) > 0 with lim

n→∞
B(n) = lim

n→∞
B′(n) = 1 such that for all k ≥ n,

B′(n)
( n

k + 1

)β+1

≤ e−
∑k

i=n bi ≤ B(n)
( n

k + 1

)β+1

.

Hence, we have

∞∑

k=n

bkke−
∑k

i=n bi ≤
∞∑

k=n

β + 1
k + 1

k ·B(n)
( n

k + 1

)β+1

< ∞. (8.5)

Take ε > 0 small such that
β + 1− ε

β
> 1. Then take N > 0 such that for any n ≥

N , bn ≥ β + 1− ε

n
and B′(n)

β + 1− ε

β

( n

n + 1

)β

> 1. Note that
∞∑

k=n

1
(k + 1)β+1

>

∫ ∞

n+1

1
tβ+1

dt =
1

β(n + 1)β
. We have that for any n ≥ N ,

∞∑

k=n

bkke−
∑k

i=n bi ≥
∞∑

k=n

β + 1− ε

k
k ·B′(n)

( n

k + 1

)β+1

≥(β + 1− ε)B′(n)
nβ+1

β(n + 1)β
≥ β + 1− ε

β
B′(n)

nβ

(n + 1)β
· n > n. (8.6)
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Let

c
(j)
k =

{
ak if k < j;
bk if k ≥ j.

Then let

S(j) =
∞∑

k=n

c
(j)
k ke−

∑k
i=n c

(j)
k .

S(n) is the left side of (8.5) and S(∞) is the left side of (8.4). So by (8.5) we only
need to prove that S(j) decreases with j.

Let Tj(t) be the function obtained from S(j) by replacing c
(j)
j by t. So we have

Tj(bj) = S(j) and Tj(aj) = S(j + 1). Since aj ≥ bj , we only need to prove that for
any t ≥ bk, T ′j(t) < 0. In fact,

T ′j(t) = je−t−∑j−1
i=n c

(j)
i − tje−t−∑j−1

i=n c
(j)
i −

∞∑

k=j+1

c
(j)
k ke−(t−c

(j)
j )−∑k

i=n c
(j)
i .

Hence by definition of c
(j)
k and (8.6), we get

et+
∑j−1

i=n aiT ′j(t) = j − tj −
∞∑

k=j+1

bkke−
∑k

i=j+1 bi < j − tj − (j + 1) < 0.

It implies T ′j(t) < 0. ¤

Lemma 8.5. If h∗(1̄) ≤ 0, then µ(|ϕ|) < ∞.

Proof. If µ is finite, then the result is trivial. So we only need to consider the case
that µ is infinite. In this case, h∗(1̄) = 0 and λ = 1.

By Assumption A(III), ϕ ≤ 0 on OK1 . Since µQn ≤ ∞ for any n ≥ K1 and ϕ is
continuous, µ(|ϕ|) < ∞ if and only if µ(−ϕχOn

) < ∞.
Denote ai = max{|ϕ(y)| : y ∈ Pi}.
The same arguments as for the proof of Proposition 3.1 give that for any k ≥ n,

∣∣−
k∑

i=n

ai − Sk−n+1ϕ(0k−n+1x)
∣∣ ≤ Jϕ(diamPn)θ ≤ CγJϕKα

0 ∀x ∈ Pn.

Since h∗(1̄) = 0, by Corollary A.1, we can take n large enough such that h(x) ≤
2kĥ(0̄)/β for any x ∈ Pk and k ≥ n. Hence by (4.5) and the definition of ψ, we get

µPk =
∫

Pn

eSk−n+1ϕ(0k−n+1x) h(0k−n+1x)
h(x)

dµ(x)

≤e−
∑k

i=n ai+CγJϕKα
0 · 2kĥ(0̄)

β min{h(x) : x ∈ Pn} · µPn ≤ Cke−
∑k

i=n aiµPn,

for some C independent of k. So we have
∫

On

(−ϕ)dµ =
∞∑

k=n

∫

Pk

(−ϕ)dµ ≤ C µPn

∞∑

k=n

akke−
∑k

i=n ai .

By Lemma 8.4, the series on the right side converges if n is large enough. This is
what we need. ¤

Recall that the definition of entropy for an infinite measure is given in (1.11).
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Lemma 8.6 (Rohilin’s formula). If µ is an infinite measure, then

hµ(σ) = −
∫

ψdµ < ∞.

Moreover, if h∗(1̄) = 0, then

hµ(σ) = −
∫

ϕdµ.

Proof. Note that β ≤ 0 implies λ > 1 by Theorem A, and therefore h∗(1̄) < 0 by
Lemma 4.3. So we have that h∗(1̄) = 0 implies β > 0 and λ = 1. By Corollary A.2,

µPi is of the order i−β , and therefore
∞∑

i=1

i−1µPi < ∞. Hence we can use Lemma 8.3,

the definition of ψ, and the fact that λ = 1 to get
∫

ϕdµ =
∫

ψdµ. By Lemma 8.5,
the integrals are finite. So we only need to prove the first equality.

The other possibility for µ being an infinite measure is h∗(1̄) > 1. In this case
the integrals are finite as well because by Lemma 5.3, |ψ| = −ψ is at most of the
order i−(β+1) with β > 0 on Pi.

Now we prove hµ(σ) = − ∫
ψdµ.

Take Γ = P0 in (1.11). Denote by σ̃ and ψ̃ the first return map of σ with
respect to P0 and the corresponding potential, respectively, that is, σ̃x = σn(x)x and
ψ̃(x) = Sn(x)ψ(x), where n(x) is the smallest positive integer such that sn(x)x ∈ P0.
Denote by µ̃ the conditional measure of µ restricted to P0. Then we define the
Perron-Frobenius Operator L̃ψ̃ as in (1.4). Using these facts and Lemma 5.1 we
can get ∫

P0

L̃ψ̃ψ̃(x)dµ(x) =
∫

Σ+
A

ψ(x)dµ(x).

It means that L̃ψ̃ψ̃ is integrable with respect to µ and therefore with respect to µ̃.
Hence we can get that

∫

P0

ψ̃(x)dµ̃(x) =
∫

P0

L̃ψ̃ψ̃(x)dµ̃(x) =
1

µP0

∫

P0

L̃ψ̃ψ̃(x)dµ(x). (8.7)

Now we calculate hµ̃(σ̃). Take a partition ξ̃ of P0 into

{Rs0n \ Rs0n+1 : s 6= 0, n = 0, 1, · · · }.

Clearly, ξ̃− =
∨∞

i=0 σ̃−iξ̃ is a partition into single points. So ξ̃ is a generator and

hµ̃(σ̃) = hµ̃(σ̃, ξ̃) = Hµ̃(ξ̃|σ̃−1ξ̃−) =
∫

P0

Iµ̃(ξ̃|σ̃−1ξ̃−)dµ̃, (8.8)

where Iµ̃(ξ̃|σ̃−1ξ̃−) is the conditional information of ξ̃ given σ̃−1ξ̃− (see [R] or [Ke]).
Since the smallest σ-algebra containing ξ̃− is the Borel algebra B over P0, we have

Iµ̃(ξ̃|σ̃−1ξ̃−) = − log Eµ̃(χξ̃(·)|σ̃−1B), (8.9)
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where Eµ̃(χξ̃(·)|σ̃−1B) is the conditional expectation of the characteristic function
χξ̃(·) and ξ̃(x) is the element of ξ̃ that contains x. Note that L̃ψ̃ is the dual operator
of the operator T̃ defined by T̃ g(x) = g(σ̃x), and µ̃ is a σ̃-invariant measure. So
for any g ∈ L1(µ̃) and any Borel set E ⊂ P0, we have

∫

σ̃−1E

gdµ̃ =
∫

χE(σ̃x)g(x)dµ̃(x) =
∫

χE(x)L̃ψ̃g(x)dµ̃(x)

=
∫

E

L̃ψ̃g(x)dµ̃(x) =
∫

σ̃−1E

L̃ψ̃g(σ̃x)dµ̃(x) =
∫

σ̃−1E

∑

σ̃y=σ̃x

eψ̃(y)g(y)dµ̃(x).

Since L̃ψ̃g ◦ σ̃ is σ̃−1B-measurable, we know Eµ̃(g|σ̃−1B)(x) =
∑

σ̃y=σ̃x

eψ̃(y)g(y).

Hence,
Eµ̃(χξ̃(x)|σ̃−1B)(x) =

∑

σ̃y=σ̃x

eψ̃(y)χξ̃(x)(y) = eψ̃(x). (8.10)

By (8.8)-(8.10),

hµ̃(σ̃) = −
∫

P0

ψ̃(x)dµ̃(x).

By (1.11) and (8.7), we get what we need. ¤

Lemma 8.7. If h∗(1̄) > 0, then − ∫
ϕdµ = ∞ and − ∫

ψdµ < ∞.

Proof. By Assumption A(III) we know that −ϕ is bounded below by a function of
order n−1 over Pn. Also by Corollary A.2, µPn decreases to a nonzero constant.
So we have − ∫

ϕdµ = ∞.
By Lemma 5.3 iii), −ψ is of order k−(β+1) on Pk. So it is easy to see that

− ∫
On

ψdµ < ∞ for any n > 0.
Note that ψ(x) → −∞ as x → s0̄ for any s 6= 0. So we need to estimate∫

σ−1On−1\On
ψdµ as well. Let Rs,k = {sx : x ∈ Pk−1}; then σ−1On−1 \ On =

∞⋃

k=n

⋃

s 6=0

Rs,k. By a similar method as in the proof of Lemma 5.1, we have

∫

Rs,k

ψ(x)dµ(x) =
∫

Pk−1

eψ(sx)ψ(sx)dµ(x).

So ∫

σ−1On−1\On

ψ(x)dµ(x) =
∑

s 6=0

∞∑

k=n

∫

Pk−1

eψ(sx)ψ(sx)dµ(x).

Note that ϕ(sx) and h(sx) are bounded. By the definition of ψ and Corollary
A.2 iii),

−eψ(sx)ψ(sx) =
eϕ(sx)h(sx)

h(x)
(−ϕ(sx)− log h(sx)+ log h(x)) ≤ C1

k1+β
(C2 +log k1+β)
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for some C1,C2 > 0 independent of k. Since β > 0, the series
∑∞

k=n k−(1+β) log k1+β

converges. So we get − ∫
σ−1On−1\On

ψdµ < ∞. ¤

Proof of Theorem D. For the case h∗(1̄) ≤ 0, if µ is a probability measure, then
it is an equilibrium by Theorem C and Lemma 7.4. If it is an infinite measure,
then by Theorem A we have h∗(1̄) = 0, and therefore by Corollary A.2 we have∑∞

i=1 i−1µPi < ∞. Hence by Lemma 8.6 we have Rohlin’s formula. Since by
Corollary C.1 and Lemma 4.3, P (ϕ) = log λ = 0, we get (1.12). On the other
hand, if h∗(1̄) > 0, then by Lemmas 8.6 and 8.7 we know that Rohilin’s formula
and therefore (1.12) do not hold for µ.

Consider the case h∗(1̄) ≥ 0. We know by Lemma 4.3 that h∗(1̄) ≥ 0 if and only
if P (ϕ) = 0, and obviously this is true if and only if δ0̄ satisfies (1.12).

Now we prove uniqueness. First we consider the case h∗(1̄) ≤ 0.
Suppose ρ is a probability ergodic measure. Since the topological entropy of σ

is finite and ϕ is continuous, we have hρ(σ) < ∞ and P (ϕ) < ∞. So ρ(ϕ) < ∞.
By Assumption (III) we have ϕ(x) < 0 and |ϕ(x)| > c/k for some c > 0 if x ∈ Pk.
Hence we have

∑∞
i=1 i−1ρPi < ∞. Then we can apply Lemma 8.3 to get

∫
ψdρ =∫

ϕdρ− log λ. Also P (ψ) = P (ϕ)− log λ. Hence, P (ϕ) = hρ(σ)+
∫

ϕdρ if and only
if P (ψ) = hρ(σ) +

∫
ψdρ. That is, ψ and ϕ have the same equilibriums.

By the same arguments used in the proof of Theorem 10 in [W1], ρ is an equi-
librium of ψ if and only if L∗ψρ = ρ, where L∗ψ is the dual operator of Lψ. Note
that by Proposition 6.4, for any continuous function g,

Ln
ψg(x) →

{
µ(g) if λ > 1 or x 6= 0̄;
g(0̄) if λ = 1 and x = 0̄.

So if ρ is an ergodic probability measure and equilibrium, then

ρ(g) =
(L∗ψnρ

)
(g) = ρ

(Ln
ψg

) →
{

ρ(µ(g)) = µ(g) if λ > 1 or ρ({0̄}) = 0;
ρ(g(0̄)) = g(0̄) if λ = 1 and ρ({0̄}) = 1.

Hence, if P (ϕ) > 0, then ρ = µ, and if P (ϕ) = 0, then either ρ = µ or ρ = δ0̄.
Now we consider the case h∗(1̄) > 0. If a probability measure ρ is an equilibrium

for ϕ, then by Lemma 4.6 i), there is ϕ′ ≥ ϕ satisfying Assumptions (I)-(III) with
ϕ′(x) > ϕ(x) for some x 6= 0̄ such that the corresponding h′∗(1̄) > 0. Hence by
Lemma 4.3, we have λ′ = 1 and therefore P (ϕ′) = 0. Now it follows that

P (ϕ′) = 0 = P (ϕ) = hρ(σ) +
∫

ϕdρ < hρ(σ) +
∫

ϕ′dρ.

It contradicts the variational principle. So there is no probability equilibrium ρ
with ρ(Σ+

A \ {0̄}) > 0.
Lastly, we assume that Assumption (III′) also holds. If ρ is an infinite measure

such that ρ(ϕ) < ∞, then the same argument as above gives
∑∞

i=1 i−1ρPi < ∞.
Hence we can use Lemma 8.3 to get ρ(ϕ) = ρ(ψ). Then the same arguments as in
the case h∗(1̄) ≤ 0 gives that if ρ satisfies (1.12), then ρ = µ. ¤
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Proof of Corollary D.1. Note that if ϕ satisfies Assumptions A(I)-(III), then so is
tϕ for all t > 0. Since ϕ(x) ≤ 0 for all x and t > 0, P (tϕ) decreases with t. It is
easy to see that if t is large enough, then P (tϕ) = 0.

Let t0 = min{t : P (tϕ) = 0}. Clearly t0 > 0 since P (0) > 0. So if t < t0, then
P (tϕ) > 0 and by Theorem D, µ is the unique equilibrium. We get part i).

For t = t0, by Lemma 4.6 i) we know that the corresponding h∗t0ϕ(1̄) = 0. In
fact, if it is less than 0, then we can find t > t0 such that h∗tϕ(1̄) < 0, and by
Lemma 4.3, we have λtϕ = 0 and therefore P (tϕ) = 0, contradicting the choice of
t0. So by Theorem D, we know that both µ and δ0̄ satisfy (1.12). Whether µ is an
equilibrium depends whether µ is finite. By Theorem A, this depends on whether
t0(β + 1)− 1 > 1. So part ii) is true.

For part iii), we know by Lemma 4.6 ii) that h∗tϕ(1̄) > 0. By Theorem D we
know that δ0̄ is an equilibrium for tϕ, and µtϕ is an infinite measure and does not
satisfy (1.12). ¤

Proof of Corollary D.2. By Lemma 6.3, any σ-invariant weak Gibbs measure ρ for
ϕ is an equilibrium for ϕ. Since µ, and probably δ0̄, are the only equilibriums for
ϕ, and δ0̄ is not a weak Gibbs measure, we must have ρ = µ. ¤
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