4. Circle Homeomorphisms

4.1. Rotation numbers. Let $f : \mathbb{S}^1 \rightarrow \mathbb{S}^1$ be an orientation preserving homeomorphism. Let $\pi : \mathbb{R} \rightarrow \mathbb{S}^1$ be the map $\pi(t) = \exp(2\pi it)$.

Lemma 4.1. There is a continuous map $F : \mathbb{R} \rightarrow \mathbb{R}$ such that

(i) $\pi F = f \pi$;

(ii) F is monotone increasing;

(iii) $F - \text{id}$ is periodic with period 1.

Moreover, any two such maps differ by an integer translation.

Proof. Define $F(0)$ to be any number in the set $\pi^{-1} f(\pi(0))$. Let U and V be neighborhoods of 0 and $F(0)$ respectively that have length less than 1. Note that $\pi|_V : V \rightarrow \pi(V)$ is a homeomorphism. For any $t \in U$, define $F(t) = (\pi|_V)^{-1} \circ f(\pi(t))$ whenever it is defined. Then F is extended to a neighborhoods $U' \subseteq U$. Using the same way we can extend the definition of F to \mathbb{R}. It is easy to check (i)-(iii).

Suppose $G : \mathbb{R} \rightarrow \mathbb{R}$ is also a such map. Then by (i) we have that for any $t \in \mathbb{R}$, $\pi(G(t)) = f(\pi(t)) = \pi(F(t))$. That is, there exists an integer $n = n_t$ such that $G(t) = F(t) + n_t$. Since both F and G are continuous, and n_t must be a integer, it must be independent of t.

Note that (i) implies that F is a homeomorphism. We call such an F a **lift** of f.

4-1
Proposition 4.2. Given F as above, the limit

$$\tau(F) := \lim_{n \to \infty} \frac{F^n(x)}{n}$$

exists for each $x \in \mathbb{R}$, and and is independent of x.

Proof. (1) Independence of x:

Since $F(x + 1) = F(x) + 1$ for all x, it follows that $F^n(x + 1) = F^n(x) + 1$ for all x and n. Now, suppose that $x \leq y \leq x + 1 \leq y + 1$. Since F^n is monotone increasing, using $F^n(x + 1) = F^n(x) + 1$, we have

$$\frac{F^n(x)}{n} \leq \frac{F^n(y)}{n} \leq \frac{F^n(x + 1)}{n} \leq \frac{F^n(y + 1)}{n}.$$

This implies that if the limit $\lim_{n \to \infty} \frac{F^n(x)}{n}$ exists, then so does $\lim_{n \to \infty} \frac{F^n(y)}{n}$, and they are equal.

(2) Existence if f has a periodic point:

Let x be a periodic point of period m, and let $y \in \mathbb{R}$ be such that $\pi(y) = x$. Then there is an integer p such that $F^m(y) = y + p$. Then, $F^{nm}(y) = y + np$. So

$$\lim_{n \to \infty} \frac{F^{nm}(x)}{nm} = \lim_{n \to \infty} \frac{y + np}{nm} = \frac{p}{m}$$

Now, for any integer k, let $k = rm + q$ with $0 \leq q < m$. Then,

$$\frac{F^k(y)}{k} = \frac{F^k(y) - F^{rm}(y) + F^{rm}(y)}{k}$$
and
\[
\left| \frac{F^k(y) - F^{rm}(y)}{k} \right| \leq \frac{M}{k}
\]
where \(M = \max_{0 \leq q < m} |F^q(y) - y| \). Thus,
\[
\lim_{k \to \infty} \frac{F^k(x)}{k} = \lim_{k \to \infty} \frac{F^{rm}(x)}{k} = \lim_{r \to \infty} \frac{F^{rm}(y)}{rm} = \frac{p}{m}.
\]
Thus, the limit exists if \(f \) has a periodic point.

(3) Existence if \(f \) has no periodic points:
This implies that \(F^m(x) - x \) is not an integer for any \(m > 0 \) and any \(x \in \mathbb{R} \). Let \(p_m \) be an integer such that
\[
(4.1) \quad p_m < F^m(0) < p_m + 1
\]
Therefore, for all \(x \in \mathbb{R} \), \(p_m < F^m(x) - x < p_m + 1 \), since if otherwise, then by the Intermediate Value Theorem, we have \(F^m(y) - y = p_m \) or \(F^m(y) - y = p_m + 1 \) for some \(y \), which is a contradiction. Hence, for \(1 \leq i \leq n \), \(p_m < F^{im}(0) - F^{(i-1)m}(0) < p_m + 1 \). Adding together these inequalities for \(i = 1, \ldots, n \), the middle terms telescope, and we get
\[
(4.2) \quad np_m < F^{nm}(0) < n(p_m + 1)
\]
Dividing (4.1) by \(m \) and (4.1) by \(mn \), we get that \(\frac{F^{nm}(0)}{mn} \) and \(\frac{F^{m}(0)}{m} \) are both in the interval \(\left(\frac{p_m}{m}, \frac{p_m + 1}{m} \right) \). So
\[
\left| \frac{F^{nm}(0)}{mn} - \frac{F^{m}(0)}{m} \right| \leq \frac{1}{m}.
\]
Interchanging the roles of m and n, we get

$$\left| \frac{F^{nm}(0)}{mn} - \frac{F^n(0)}{n} \right| \leq \frac{1}{n},$$

and, hence,

$$\left| \frac{F^m(0)}{m} - \frac{F^n(0)}{n} \right| \leq \frac{1}{m} + \frac{1}{n}.$$

Hence, the sequence $\left\{ \frac{F^n(0)}{n} \right\}$ is a Cauchy sequence, and thus has a limit. \qed

Lemma 4.3. Let F and G are both lift of f, then there exists $p \in \mathbb{Z}$ such that $\tau(G) = \tau(F) + p$.

Proof. Since F and G are both lift of f, then there exists $p \in \mathbb{Z}$ such that $G(x) = F(x) + p$ for any $x \in \mathbb{R}$. So we have $G^2(x) = G(G(x)) = F(F(x) + p) + p = F(x) + 2p$, and for each $n > 0$, $G^n(x) = F^n(x) + np$. Hence,

$$\tau(G) = \lim_{n \to \infty} \frac{G^n(x)}{n} = \lim_{n \to \infty} \frac{F^n(x) + np}{n} = \tau(F) + p. \quad \Box$$

The above lemma says that $\tau(f)$ is independent of the choice of the lift F.

Definition 4.1. The number $\tau(f) := \pi \tau(F)$ is called the rotation number of f.

We say that $\tau(f)$ is rational if for any lift F of f, $\tau(F)$ is rational.
4.2. Dynamical properties.

Proposition 4.4. Let f be an orientation preserving homeomorphism of S^1. Then, $\tau(f)$ is rational if and only if f has a periodic point.

Proof. We have already proved that if f has a periodic point, and F is any lift of f as above, then $\tau(F)$ is rational. So we must prove the converse.

Let F be a lift of f.

Note that for any integers m and k, we have $\tau(F^m + k) = m\tau(F) + k$ where $(F^m + k)(x)$ is defined to be $F^m(x) + k$ for all x.

Assume that $\tau(F) = \frac{p}{q}$ for some integers p and $q \neq 0$. Then, $q\tau(F) - p = 0$, so that map $G := F^q - p$ has rotation number 0.

If $G(x) - x = 0$ for some $x \in \mathbb{R}$, then G has a fixed point x. Hence f has a periodic point (of period q).

Now we suppose that G has no fixed point. Then either $G(x) - x > 0$ for all x or $G(x) - x < 0$ for all x. By translating by the lift F by an integer, we may assume that $G(x) - x > 0$. Consider $\{G^n(0)\}$ for $n > 0$. By Claim 4.5 below $\{G^n(0)\}$ is bounded above by 1. Clearly the sequence is monotone. So $\{G^n(0)\}$ must converge to some y. It follows that $G(y) = G(\lim_{n \to \infty} G^n(0)) = \lim_{n \to \infty} G(G^n(0)) = \lim_{n \to \infty} G^{n+1}(0) = y$, contradicting the supposition that G has no fixed point. \qed
Claim 4.5. If $G(x) - x > 0$ for all x, then the sequence $\{G^n(0)\}$ is bounded above by 1.

Proof. Suppose there exists a number k such that $G^k(0) > 1$. Then

$$G^{2k}(0) = G^k(G^k(0)) > G^k(1) = G^k(0+1) = G^k(0)+1 > 2.$$

Similarly, $G^{nk}(0) > n$ for all $n > 0$. Hence

$$\lim_{n \to \infty} \frac{G^{nk}(0)}{nk} \geq \frac{1}{k}$$

which would contradict $\tau(G) = 0$. \square

Suppose the rotation number of f is rational, say $\tau(f) = \frac{p}{q}$. Then f^q has rotation number 0, and therefore has fixed points. In this case, $P(f) = \Omega(f) = \text{Fix}(f^q)$, and for any $x \in S^1$, $\alpha(x) \cup \omega(x) \subset \text{Fix}(f^q)$, where $\text{Fix}(f)$ denote the set of fixed points of f.

Now we consider the case that the rotation number of f is irrational.

Lemma 4.6. Suppose the rotation number of f is irrational. For any $x \in S^1$ and $m,n \in \mathbb{Z}$ with $m \neq n$, let $I = [f^m(x), f^n(x)]$. Then any forward orbit intersects I, i.e., for each $z \in S^1$, there is a $k > 0$ such that $f^k(z) \in I$.

Proof. The intervals $f^{-k(m-n)}I$ and $f^{-(k-1)(m-n)}I$ have one boundary point in common. So either $\{f^{-k(m-n)}I\}$ converge monotonically to a point on S^1 or some finite union of them covers S^1. Since the former case
implies that \(f^{m-n} \) has a fixed point, contradicting the fact that \(\tau(f) \) is irrational, the latter must occur and the lemma is proved. \(\square \)

Proposition 4.7. Suppose the rotation number of \(f \) is irrational. Then

(1) \(\omega(x) \) is independent of \(x \); and

(2) \(\omega(x) \) is a perfect invariant set which is either nowhere dense or the whole circle \(S^1 \).

Proof. (1) Let \(x, y \in S^1 \). Let \(x_0 \in \omega(x) \). By definition, there is a sequence \(n_1 < n_2 < \ldots \) such that \(f^{n_i}(x) \to x_0 \). Take \(m_0 = 0 \). We define an increasing sequence \(\{m_i\} \) inductively as follows. Suppose \(m_{i-1} \) is taken. We apply the above lemma with \(I = [f^{n_i}(x), f^{n_{i+1}}(x)] \) and \(z = f^{m_{i-1}}(y) \) to get \(k_i > 0 \) such that \(f^{k_i}(f^{m_{i-1}}(y)) = f^{k_i}(z) \in [f^{n_i}(x), f^{n_{i+1}}(x)] \). Then we let \(m_i = m_{i-1} + k_i \). Clearly \(f^{m_i}(y) \to x_0 \), and therefore \(x_0 \in \omega(y) \). Thus, \(\omega(x) \subset \omega(y) \). Interchanging \(x \) and \(y \), gives \(\omega(y) \subset \omega(x) \).

(2) Let \(E = \omega(x) \) which we have seen is independent of \(x \). Since \(\omega(x) \) is \(f \)-invariant, we only need to show that \(E \) is perfect. Take any \(z \in E \). Since \(E = \omega(x) = \omega(z) \), we have \(z \in \omega(z) \). Then there is a sequence \(n_1 < n_2 < \ldots \) such that \(f^{n_i}(z) \to z \). Since \(f(E) = E, f^{n_i}(z) \in E \). Also, since \(f \) has no periodic points, \(f^{n_i}(x) \neq f^{n_{i+1}}(z) \). So \(z \) is a limit point of \(E \), and \(E \) is perfect.
Since each orbit has the same \(\omega \)-limit set \(E \), it follows that \(E \) is the unique minimal set of \(f \). Note that the boundary of \(E \) is a closed subset of \(E \) which is also invariant. The boundary of \(E \) is either equal to \(E \) itself, or an empty set, which means that either \(E \) is nowhere dense, or \(E = \mathbb{S}^1 \). \(
abla\)

Corollary 4.8. Let \(R_\alpha : \mathbb{S}^1 \to \mathbb{S}^1 \) be a circle rotation with an irrational angle. Then every orbit is dense in \(E = \mathbb{S}^1 \)

Proof. Observe that if \(x_0 \in \omega(x) \), then for any \(a \neq 0 \), \(x_0 + a \in \omega(x + a) = \omega(x) \) by the fact that the map is a rotation, and by part (1) of the proposition. Hence we must have \(\omega(x) = \mathbb{S}^1 \), and therefore \(O(x) \) is dense in \(\mathbb{S}^1 \). \(
abla\)

Note that in the case \(\omega(x) \neq \mathbb{S}^1 \), the complement of \(\omega(x) \) is a open set. Hence it consists of infinitely many pairwise disjoint subintervals \(\{I_j\} \), and \(f \) maps each interval to another. For any \(j \), \(f^n(I_j) \neq f^m(I_j) \) whenever \(n \neq m \), since if otherwise there will be a periodic interval \(I_j \) and the rotation number will become rational. It follow that the intervals are wandering sets, which is called *wandering intervals*. In this case, \(\Omega(f) = \omega(x) \) for any \(x \in \mathbb{S}^1 \).

A homeomorphism is *topologically transitive* if it has a dense orbit.

It is clear that if \(\omega(x) = \mathbb{S}^1 \) for some \(x \in \mathbb{S}^1 \), then \(f \) is topologically transitive.
Theorem 4.9 (Poincaré Classification). Let $f : S^1 \to S^1$ be an orientation preserving homeomorphism with irrational rotation number τ.

1. If f is topologically transitive, then f is topologically conjugate to the rotation R_{τ}.
2. If f is not topologically transitive, then R_{τ} is a factor of f, and the factor map $h : S^1 \to S^1$ can be chosen to be monotone.

These two cases corresponding to the cases stated in Proposition 4.7. In the second case, h is constant on each wandering interval.

The next result shows that $\tau(f)$ is a topological conjugacy invariant.

Proposition 4.10. Suppose f and h are order preserving circle homeomorphisms and $g = hfh^{-1}$. Then, $\tau(f) = \tau(g)$.

Proof. Let F be a monotone lift of f such that $F - \text{id}$ is periodic of period 1, and let H be a monotone lift of h such that $H - \text{id}$ is periodic of period 1. Then, one can check that $\pi H^{-1} = h^{-1} \pi$, and $H^{-1} - \text{id}$ is periodic of period 1. Further $G := HFH^{-1}$ is a lift of g such that $G - \text{id}$ is periodic of period 1. Now,

$$\lim_{n \to \infty} \frac{G^n(0)}{n} = \lim_{n \to \infty} \frac{HF^n H^{-1}(0)}{n}.$$

Since $H - \text{id}$ has period 1, we have that there is a real number $M > 0$ such that $|H(x) - x| \leq M$ for all $x \in \mathbb{R}$. Thus, $|G^n(0) - F^n H^{-1}(0)| =$
\[|HF^n H^{-1}(0) - F^n H^{-1}(0)| \leq M \] independent of \(n \), and
\[
\tau(G) = \lim_{n \to \infty} \frac{G^n(0)}{n} = \lim_{n \to \infty} \frac{F^n H^{-1}(0)}{n} = \tau(F).
\]
This gives that \(\tau(f) = \tau(g) \).

4.3. **Continuity of \(\tau(f) \) and Cantor phenomena.** We shall next show that the rotation number \(\tau(f) \) depends continuously on \(f \) in \(C^0 \) topology.

We consider the set \(\text{Homeo}(\mathbb{S}^1) \) of orientation preserving homeomorphisms of the circle \(\mathbb{S}^1 \). Let \(d \) denote the metric on \(\mathbb{S}^1 \). Define the \(C^0 \) distance \(d_0 \) between two continuous maps \(f : \mathbb{S}^1 \to \mathbb{S}^1 \) and \(g : \mathbb{S}^1 \to \mathbb{S}^1 \) to be
\[
d_0(f, g) = \sup_{x \in \mathbb{S}^1} d(f(x), g(x)),
\]
and then define
\[
d(f, g) = \max \{ d_0(f, g), d_0(f^{-1}, g^{-1}) \}.
\]
it is easy to see that this is a metric on \(\text{Homeo}(\mathbb{S}^1) \).

The topology induced by \(d \) is called the \(C^0 \) topology.

Proposition 4.11. The rotation number map \(f \to \tau(f) \) is a continuous map from \(\text{Homeo}(\mathbb{S}^1) \) to \(\mathbb{S}^1 \).

Proof. Let \(1 > \epsilon > 0 \). We show that if \(f, g \in \text{Homeo}(\mathbb{S}^1) \) are close then \(|\tau(f) - \tau(g)| < \epsilon \).

Let \(N > 0 \) be such that \(\frac{1}{N} < \epsilon \). If \(f \) is close enough to \(g \), there will be lifts \(F \) of \(f \) and \(G \) of \(g \) such that \(|F^N(x) - G^N(x)| < \epsilon \) for all \(x \in [0, 1] \). Hence,
\[|F^N(x) - G^N(x)| = |(F^N(x) - x) - (G^N(x) - x)| < \epsilon \]

for all \(x \in \mathbb{R} \) since \(F^N(x) - x \) and \(G^N(x) - x \) are periodic of period 1.

By the claim below we have that for any \(k \in \mathbb{N} \),

\[F^{kN}(0) < G^{kN}(0) + k - 1 + \epsilon. \]

Dividing the inequality by \(kN \), and letting \(k \to \infty \), we get

\[\frac{1}{N} < \tau(G) + \epsilon. \]

Interchange \(F \) and \(G \) to get \(\tau(G) \leq \tau(F) + \epsilon \), proving the proposition.

\[\square \]

Claim 4.12. for any \(k \in \mathbb{N} \), \(F^{kN}(0) < G^{kN}(0) + k - 1 + \epsilon \).

Proof. Using the facts that \(F^N \) and \(G^N \) are monotonic, \(F^N(0) < G^N(0) + \epsilon \), and \(G^N(x) - x \) is periodic of period 1, we have

\[F^{2N}(0) = F^N(F^N(0)) < F^N(G^N(0) + \epsilon) < G^N(G^N(0) + \epsilon) + \epsilon < G^N(G^N(0) + 1) + \epsilon = G^{2N}(0) + 1 + \epsilon. \]

This proves the claim for \(k = 2 \). For \(k = 1 \) it is clear.

Assume, inductively, that it is true for \(k \). Then,

\[F^{(k+1)N}(0) = F^N(F^{kN}(0)) < F^N(G^{kN}(0) + k - 1 + \epsilon) \]

\[= F^N(G^{kN}(0) + \epsilon) + k - 1 < G^N(G^{kN}(0) + \epsilon) + \epsilon + k - 1 \]

\[< G^N(G^{kN}(0) + 1) + \epsilon + k - 1 < G^{(k+1)N}(0) + k + \epsilon \]

which is the claim for \(k + 1 \). So, by induction, the claim is proved.

\[\square \]

Define “<” on \(S^1 \) by \([x] < [y] \) if \(y - x \in (0, 1/2) \) (mod 1) and define a partial ordering “≺” on the
collection of orientation-preserving circle homeomorphisms by $f_0 \prec f_1$ if $f_0(x) < f_1(x)$ for all $x \in \mathbb{S}^1$.

Notice that neither of these orderings is transitive. Indeed, $[0] < [1/3] < [2/3] < [0]$ and correspondingly $R_0 \prec R_{1/3} \prec R_{2/3} \prec R_0$, where R_α is the rotation.

It is easy to see that if $f_1 \prec f_2$, then $\tau(f_1) \leq \tau(f_2)$.

Proposition 4.13. Let $f : \mathbb{S}^1 \to \mathbb{S}^1$ be an orientation-preserving homeomorphism with rational rotation number $\tau(f)$.

(i) If $\tau(f) \notin \mathbb{Q}$, then $f \prec \bar{f}_1$ implies $\tau(f) < \tau(f_1)$.

(ii) If $\tau(f) = p/q \in \mathbb{Q}$ and f has some non-periodic points, then all sufficiently nearby perturbations \bar{f} with $\bar{f} \prec f$ or $f \prec \bar{f}$ (or both) have the same rotation number p/q.

(iii) If $\tau(f) \in \mathbb{Q}$ and all points of a map f are periodic, then the rotation number is strictly increasing at f.

Definition 4.2. A monotone continuous function $\phi : [0, 1] \to \mathbb{R}$ (or $\phi : [0, 1] \to \mathbb{S}^1$) is called a devil’s staircase if there exists a family $\{I_\alpha\}_{\alpha \in A}$ of disjoint closed subintervals of $[0,1]$ of nonzero length with dense union such that ϕ takes distinct constant values on these subintervals.

Based on Proposition 4.13 we have the following.

Proposition 4.14. Suppose that $(f_t)_{t \in [0,1]}$ is a monotone continuous family of orientation-preserving
circle homeomorphisms, each of which has some nonperiodic points. Then \(\tau : t \to \tau(f_t) \) is a devil’s staircase.

4.4. **Circle diffeomorphisms.** A partition on the interval \([0, 1]\) is given by \(0 = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = 1\). A partition on the unit circle \(S^1\) can be regarded as a partition on the interval \([0, 1]\), with 0 and 1 being identified.

For a function \(\phi : [0, 1] \to \mathbb{R}\), the total variation is given by

\[
\text{Var}(\phi) = \sup \sum_{k=1}^{n} 1^n |\phi(x_k) - \phi(x_{k-1})|,
\]

where supremum is taken over all partitions.

Theorem 4.15 (Denjoy). Let \(f\) be an orientation preserving \(C^1\) diffeomorphism of the circle with irrational rotation number \(\tau = \tau(f)\). If \(f'\) has bounded variation, then \(f\) is topologically conjugate to the rotation \(R_\tau\).

Theorem 4.16 (Denjoy Example). For any irrational rotation number \(\tau \in (0, 1)\), there exists a nontransitive \(C^1\) orientation preserving diffeomorphism \(f : S^1 \to S^1\).