
1. Introduction

Physically, a dynamical system is an object or collection of objects
in the real world which evolves in time.

Let us give some examples.

(1) A fluid in a container subjected to stirring or external influences
such as changes in temperature or pressure

(2) The population at time t of a certain species of animal or plant
(3) The current through a wire (motion of electrons)
(4) The motion of a object suspended by a spring or rigid rod pen-

dulum
(5) Molecules of a gas in a container

Mathematically, we introduce the following type of dynamical sys-
tems.

1.1. Discrete Dynamical System. Let X be a set, and f : X → X
be a self-map. A dynmical system is the pair (X, f).

(a) Topological dynmical system X is a topological space, and f is
a continuous map or a homeomorphism. Usually X is taken to
be a complete separable metric space.

(b) Smooth dynmical system X is a region of Euclidean space or a
manifold topological space, and f is a differentiable map or a
diffeomorphism.

(c) Complex dynmical system X is a complex plane C or higher di-
mensional complex space Cn, and f is analytic or meromorphic
function.

(d) Ergodic theory X is a measure space or probablility space, and
f is measure preserving transformation.

We write f 0 = id, the identity map, and f 2 = f ◦ f where ◦ denotes
composition, and inductively for any n > 0, fn = fn−1 ◦ f . Here fn

is called the nth iterate of f . If f is invertible, then so are fn for any
n > 0. We denote by f−n the inverse of fn, that is, f−n = (fn)−1. It
is easy to check that for any m,n ∈ Z, fm+n = fm ◦ fn.

For any x0 ∈ X, we write fn(x0) = xn. If x0 is the state of our
system at time 0, then xn gives the state at time n.

For any x ∈ X, the set O(x) = {fn(x) : n ∈ Z} is called the orbit of
x. If f is noninvetible, then we use O+(x) = {fn(x) : n ∈ Z+}, where
Z+ := Z≥0 = {n ∈ Z : n ≥ 0}.

There are three type of orbits:

— periodic
An orbit O+(x) is periodic if there is an integer n > 0 such
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that fn(x) = x. In this case, we also call the point x a periodic
point. If n = 1, such a point x is called a fixed point.

— eventually periodic
An orbit O+(x) is called eventually periodic if there is a positive
integer m such that O+(f

m(x)) is periodic.
— countable sequence of points.

If f is invertible, then O(x) or O+(x) cannot be eventually periodic
except it is periodic.

Example. (1) Let x0 denote an initial amount of money (princi-
ple) deposited in a bank in which interest is paid at a rate of 5%
per year. Let xn denote the amount of money after n years.
We have

x1 = x0 + .05x0,

. . . . . .

xn+1 = xn + .05xn,

, for n ≥ 0. We may use f(x) = (1.05)x, so that fn(x) =
(1.05)nx for each x.

(2) Let S1 = {z ∈ C :| z |= 1} be the unit circle in the complex
plane, and let Rα(z) = eiαz where α ∈ [0, 2π]. We call Rα the
rotation by angle α. We will see later that
(a) if α

2π
is rational then all orbits are periodic, and

(b) if α
2π

is irrational, then all ortits are dense. ( A subset
A ⊂ X is dense if its closure is all of X).

(3) Let I = [0, 1) and f(x) = 2x (mod 1). f is noninvertible.
(a) if x ∈ Q, then O+(x) is periodic or eventually periodic.
(b) if x /∈ Q, then O+(x) is a countable set.

1.2. Continuous dynamical system. Let X be a set. A semi-flow
on X is a map ϕ : R+ ×X → X such that

(1) ϕ(0, x) = x for all x ∈ X, and
(2) ϕ(s+ t, x) = ϕ(s, ϕ(t, x)) for all x ∈ X, and s, t ∈ R+.

If the map ϕ is defined for all t ∈ R and satifies the preceding two
properties, then it is called a flow in X.

The orbit of a point xfor semiflow and flow are the sets O+(x) =
{ϕ(t, x) : t ∈ R+} and O(x) = {ϕ(t, x) : t ∈ R} respectively. We
will mainly consider semi-flows which are actually flows. So we only
describe the orbits of flows. There are three kinds.
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— fixed (or critical) orbit: An orbit O(x) is fixed or critical if
ϕ(t, x) = x for all t. As above we also call the point x a fixed
or critical point of ϕ.

— periodic: An orbit O(x) is called periodic if, there is a real τ > 0
such that ϕ(t+ τ , x) = ϕ(t, x) for all t ∈ R, and ϕ(s, x) ̸= x for
any 0 < s < τ . In this case, we call τ the period of x.

— all other orbits, these are in 1-1 correspondence with the whole
set of real numbers R.

Example. (4) Let X be a C1 vector field defined on all of Rn, and
let x ∈ Rn. Let ϕ(t, x) be (unique) solution of the initial value
problem.

x′ = X(x), x(0) = x.

By the Existence-Uniqueness Theorem for ordinary differen-
tial equations, such a solution exists on some open interval I
containing 0. Assume that all such solutions can actually be de-
fined for all real numbers t. Then, the function ϕ : R×Rn → Rn

is a flow on Rn.
(5) Let (X, f) be a discrete dynamical system. Take a function

τ : X → R such that τ(x) > 0 for any x ∈ X. Define Y =
X × R/ ∼, where (x, s + τ(x)) ∼ (f(x), s). Then define a flow
or semiflow given by

ϕt((x, s)) = (x, t+ s).

Hence, ϕτ(x)((x, 0)) = (f(x), 0). ϕ is called a suspension flow
for f , while Y is called a suspension manifold of X. τ is some-
times called a roof function.

1.3. Group actions. Recall that a group G is a pair (G.·) consisting
of a set G and a binary operation · called the product (or sum in the
commutative case) satisfying

(i) (associativity) · is associative: (g1 · g2) · g3 = g1 · (g2 · g3) for all
g1, g2, g3 ∈ G;

(ii) (identity) there is an element e ∈ G such that e · g = g · e = g
for all g ∈ G;

(iii) (inverse) for each g ∈ G, there there is an element h ∈ G such
that g · h = e = h · g.

If · only satisfies (i) and (ii), then G is called a semigroup.
Let (G, ·) be a semi-group and X be a set. An action of (G, ·) on X

is a map Φ : G×X → X such that

(i) Φ(g · h, x) = Φ(g,Φ(h, x)) for all g, h ∈ G and x ∈ X.
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(ii) Φ(e, x) = x for all x ∈ X.

An orbit of a point x ∈ X of a group action (X,G) is given by
O(x) = {g(x) : g ∈ G}. O(x) is periodic if O(x) is a finite set. So if G
is a finite group, every orbit is periodic.

More formally, an action of (G, ·) is a map σ : G → (X), where (X)
is the set of all selfmaps on X, such that

(i) σ(g · h) = σ(g) ◦ σ(h) for all g, h ∈ G, and
(ii) σ(e) = idX .

With the notation, for any x ∈ X, O(x) = {σ(g)(x) : g ∈ G}.
A group action σ : G → (X) is faithful if σ is an injective, that is,

for g, h ∈ G, g ̸= h implies σ(g) ̸= σ(h).

Example. (6) G = Z or Z+ and · is the usual addition of integers.
If σ(1) = T , then σ(n) = T n for n ∈ Z or Z+. The group action
gives a discrete dymanical system.

(7) G = R or R+ and · is the usual addition of real numbers. If
σ(t0) = ϕ(t0, ·) for any t0 ̸= 0, then σ(s) = ϕ(s, ·)T n for any
s = rt0, where r ∈ Q. If moreover both ϕ(t, ·) and σ(t) are
continuous on t, then σ(t) = ϕ(t, ·) for any t ∈ R or R+. The
group action gives a continous dymanical system.

(8) G = Z2 or Z2
+. Then G is a Abelian group or semigroup. Sup-

pose X = [0, 1) and G is generated by the actions f(x) = 2x
(mod 1), and g(x) = 3x (mod 1). The action is sometimes
called the (×2,×3) map, which is faithful.

(9) Let G be a discrete Heisenberg group, that is, the group

H = {< a, b, c >: ac = ca, bc = cb, ab = bac}.
or, quivalently,

H =


 1 x y

0 1 z
0 0 1

 : x, y, z ∈ Z

 .

Let

a =

 1 1 0
0 1 0
0 0 1

 , b =

 1 0 0
0 1 1
0 0 1

 , c =

 1 0 1
0 1 0
0 0 1

 .

Then ac = ca, bc = cb, ab = bac and for every k ∈ H, there
is a unique triple (n1, n2, n3) ∈ Z3 such that k = an1bn2cn3.
Take X = R3 or T3. It is clear that each of a, b, c induces

a map on R3 or T3. Then we get a discrete Heisenberg group
action on X. Heisenberg group action is the simplest nonabelian
group action.


