1. (8 points) Let P_j be the poset of all positive divisors of $2 \cdot 3^j$ and call $x \leq y$ if $x \mid y$. Find a simple formula for $\mu_{P_j}(x, y)$. *Hint:* A Hasse diagram may help.

Solution:

In class we stated that $[x,y]\cong [1,y/x].$ It follows that

$$\mu_{P_j}(x,y) = \begin{cases} 1, & \text{if } y/x \in \{1,6\} \\ -1, & \text{if } y/x \in \{2,3\} \\ 0, & \text{otherwise.} \end{cases}$$

- 2. Let m and n be distinct positive integers and let D_m and D_n be the corresponding divisor lattices.
 - (a) (8 points) Under what condition(s) is $D_m \times D_n \cong D_{mn}$? Justify your claim.

Solution:

We claim that $D_m \times D_n \cong D_{mn}$ whenever m and n are relatively prime, i.e., gcd(m, n) = 1.

Let $\phi: D_m \times D_n \to D_{mn}$ be defined by $\phi(r, s) = rs$. The map is clearly surjective for if $w \in D_{mn}$, then $w \mid mn$ and we can write w = ab where $a \mid m$ and $b \mid n$, so that $w = \phi(a, b)$. Now suppose that $uv = \phi(u, v) = \phi(w, z) = wz$. Then $u \mid wz$, so either $u \mid w$ or $u \mid z$. Clearly, $u \mid w$ since $u \mid m$ and gcd(m, n) = 1. Similarly, we can reverse the argument to show that $w \mid u$. It follows that u = w and hence v = z, so that (u, v) = (w, z). Thus, ϕ is an injection and hence, a bijection.

We leave it as an easy exercise to show that if $(a, b) \leq (x, y)$, then $\phi(a, b) \leq \phi(x, y)$. Note: Since $D_m \times D_n$ is finite, it is only necessary to show that ϕ is order-preserving because of Problem 2 on Quiz 9.

It now follows that $D_m \times D_n \cong D_{mn}$ whenever gcd(m, n) = 1.

(b) (4 points) Show by example that $D_m \times D_n \ncong D_{mn}$ when the above condition(s) are not met.

Solution:

For example, $D_2 \times D_2 \cong B_2$ and has 4 elements. On the other hand, D_4 is a chain with only 3 elements, so the two are not isomorphic.