1. (10 points) Let $S(\cdot) = 2^{\cdot}$ and $\mathcal{T}(\cdot) = {\cdot \choose 2}$. Let $s_n = |2^{[n]}| = 2^n$ and let $t_n = |{[n] \choose 2}| = {n \choose 2}$. According to a theorem that we discussed in class today,

$$|(\mathcal{S} \times \mathcal{T})([3])| = \sum_{k=0}^{3} \binom{3}{k} s_k t_{3-k} = \binom{3}{0} \cdot 1 \cdot 3 + \binom{3}{1} \cdot 2 \cdot 1 + 0 + 0 = 9$$
(1)

List all 9 elements in $(\mathcal{S} \times \mathcal{T})([3])$.

Solution:

Looking at (1), we should find 3 ordered pairs of the form $(\emptyset, \cdot/\cdot)$ where $\cdot/\cdot \in {[3] \choose 2}$. We should also have 6 ordered pairs of the form $(\emptyset|k, \cdot/\cdot)$. Here a|b means either a or b and $\cdot/\cdot \in {L \choose 2}$ with $L \subset [3]$ and |L| = 2. Thus

$$(\mathcal{S} \times \mathcal{T})([3]) = \underbrace{\{(\emptyset, 1/23), (\emptyset, 12/3), (\emptyset, 13/2)\}}_{\text{first form}} \cup \underbrace{\{(\emptyset, 2/3), (1, 2/3), (\emptyset, 1/3), (2, 1/3), (\emptyset, 1/2), (3, 1/2)\}}_{\text{second form}}$$

We can actually say a bit more about this example. According to the product rule for exponential generating functions, we must have

$$F_{\mathcal{S}\times\mathcal{T}}(x) = F_{\mathcal{S}}(x) \cdot F_{\mathcal{T}}(x)$$

= $e^{2x} \cdot \frac{(e^x - 1)^2}{2!}$ (See exercise 02/07 Problem 1)
= $\frac{1}{2}(e^{4x} - 2e^{3x} + e^{2x})$

It follows that

$$3![x^3]F_{\mathcal{S}\times\mathcal{T}}(x) = \frac{6}{2}[x^3](e^{4x} - 2e^{3x} + e^{2x})$$
$$= 3\left(\frac{4^3 - 2 \cdot 3^3 + 2^3}{3!}\right)$$
$$= 9$$

in agreement with (1). The first 12 terms in the counting sequence of the exponential generating function $F_{S \times T}(x)$ are

 $0, 0, 1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, \ldots$

2. (10 points) Let $\mathcal{S}(\cdot) = 2^{\cdot}$ and $\mathcal{T}(\cdot) = \begin{bmatrix} \cdot \\ 2 \end{bmatrix}$. List all elements in $(\mathcal{S} \times \mathcal{T})([4])$.

Solution:

From Table 4.3.1 in <u>AoC</u>, we have $F_{\mathcal{S}} = E^{2x}$ and $F_{\mathcal{T}} = \frac{\ln^2(1-x)}{2}$. Now, with some help from a <u>CAS</u>, we have

$$|(\mathcal{S} \times \mathcal{T})([4])| = [x^4] F_{\mathcal{S} \times \mathcal{T}}$$
$$= [x^4] e^{2x} \frac{\ln^2(1-x)}{2}$$
$$= 59$$

It might be more instructive to mimic what we did in equation (1). So, let $s_n = |2^{[n]}| = 2^n$ and let $t_n = |\binom{[n]}{2}| = \binom{n}{2}$. Then

$$\begin{aligned} |(\mathcal{S} \times \mathcal{T})([4])| &= \sum_{k} \binom{4}{k} s_{k} t_{4-k} \\ &= \binom{4}{0} 2^{0} \binom{4}{2} + \binom{4}{1} 2^{1} \binom{3}{2} + \binom{4}{2} 2^{2} \binom{2}{2} + \binom{4}{3} 2^{3} \binom{1}{2} + \binom{4}{4} 2^{4} \binom{0}{2} \\ &= 11 + 4 \cdot 2 \cdot 3 + 6 \cdot 4 \cdot 1 + 0 + 0 \\ &= 59 \end{aligned}$$

The advantage of this second approach is that we now know how the objects are constructed. So there are 11 objects of the form (\emptyset, π) for some $\pi \in \begin{bmatrix} [4] \\ 2 \end{bmatrix}$. For example, $(\emptyset, (132)(4))$.

There 6 objects that have the form $(\emptyset|1,\pi)$ for some $\pi \in \begin{bmatrix} \{2,3,4\}\\ 2 \end{bmatrix}$. For example, $(\emptyset, (24)(3))$ and (1, (24)(3)). Six more that have the form $(\emptyset|2,\pi)$ for some $\pi \in \begin{bmatrix} \{1,3,4\}\\ 2 \end{bmatrix}$, and so on, for a total of 24. Here a|b means either a or b.

Finally, there are 6 objects of the form (s, (3)(4)) where $s \in 2^{\{1,2\}}$. For example, $(\{1,2\}, (3)(4))$ and $(\{2\}, (3)(4))$. There are 6 more objects of the form (s, (2)(4)) where $s \in 2^{\{1,3\}}$, and so on, for a total of 24.

Putting this all together yields 59 objects, as expected.