- 1. Recall that if we let Let $\mathcal{Z} = \{\bullet\}$ with \bullet an atom (of size 1). Then $\mathcal{I} = \text{SEQ}(\mathcal{Z}) \setminus \{\Box\} = \{\bullet, \bullet \bullet, \bullet \bullet \bullet, \ldots\}$ is combinatorial way to describe the positive integers in unary notation. *Note:* It is worth noting that the counting sequence of \mathcal{I} is $\{0, 1, 1, 1, \ldots\}$.
 - (a) (6 points) Find the closed form of the ordinary generating function I(x) of \mathcal{I} . This is not a trick question.

Solution:

$$I(x) = \frac{x}{1-x}$$

(b) (7 points) Let k be a positive integer and let

$$\mathcal{C}^{(k)} = \operatorname{SEQ}_k(\mathcal{I}) = \underbrace{\mathcal{I} \times \mathcal{I} \times \cdots \times \mathcal{I}}_{k \text{ factors}}$$

Find the closed form of the ordinary generating function $C^{(k)}(x)$ of $\mathcal{C}^{(k)}$.

Solution:

By the product rule, $C^{(k)}(x) = (I(x))^k = \frac{x^k}{(1-x)^k}$

(c) (7 points) Find $C_n^{(k)} = [x^n]C^{(k)}(x)$.

Solution:

$$C_n^{(k)} = [x^n] \frac{x^k}{(1-x)^k}$$

= $[x^n]x \frac{x^{k-1}}{(1-x)^k}$
= $[x^{n-1}] \frac{x^{k-1}}{(1-x)^k}$
= $\binom{n-1}{k-1}$ (1)

Remark. The result should look familiar. For $n \ge k$, $C_n^{(k)}$ should count the number of ways to assign n votes to k candidates so that each candidate receives at least one vote since $\Box \notin \mathcal{I}$ (see Figure 1).

$$C_n^{(k)} = \left(\binom{k}{n-k} \right)$$
$$= \binom{n-k+k-1}{n-k}$$
$$= \binom{n-1}{n-k}$$

which is (1).

Figure 1: Graphical representation of 15 votes distributed between 4 candidates with each candidate receiving at least one vote.