Math 482 Quiz 1 Fall 2024

1. (10 points) A coach wishes to break up her n-member team into 3 practice squads. Each player on squad A

will wear either a red or a blue jersey, those on squad B will wear yellow jerseys numbered from 1 to

|squad BJ, and squad C players will wear black jerseys and choose a squad captain. Let t; = 0 and for n > 0,
let t,, count the number of ways that she can do this. Find the closed form of the exponential generating
function ), t, 2™ /n!. Note: This means that the squad B team is ordered and that squad C must have at
least one player.

Hint: The first few terms in this sequence are 0,1,8,51,312,...

Solution:

Let 4,4, and k be the number of players resp. on squad A, squad B, and squad C. Then
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So by the Wilf rules, we must have
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Although it wasn’t requested, we can see that
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So, for example,

3 32
t3 = 3! (1 + i + 5) =6(14+3+9/2) =51, as expected

It is also worthwhile to list the 8 possibilities with two players, say 1 and 2. For example, 17]0|2
indicates that player 1 is given a red jersey on squad A and player 2 would be the captain of
squad C. Here are the other 7 lineups.
1°[0J2, 27]0|1, 2°|0j1
0[12, 0[2[1
0|0]1¢2, 0]0|12°¢

Hopefully, the notation is self-explanatory and it should be clear that these are the only cases.

Remark: (a) Notice that the right-hand side of (1) is zero whenever k = 0. That is, for any configuration
that assigns zero players to squad C, the summand is 0, as expected.

(b) Tt is a worthwhile exercise to list the 51 possibilities for 3 players. This is something I plan to advocate
for the entire semester - List all possible configurations (within reason) for any exercise that you
question. Also, don’t be afraid to use https://oeis.org/.
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https://rjhmath.tiny.us/yerh357c
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2. (a) (6 points) Use exercise 01/20 - #2 to show
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n,k>0

Solution:
Following the suggestion, we have
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=" (1-¢%)"* (by the Binomial Theorem)

We give an another proof of this important identity in the remarks that follow part (b). Now
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as desired.

(b) (4 points) Let by, be the Bell numbers, b, = >, {}}. Use (2) to show that

O
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NO CREDIT FOR ANY OTHER METHOD.

Solution:

We have
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Remark: Let Fi(z) =3, {Z} % Use induction on k to show that

et — k
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Proof: 1t is easy to see that Fy(z) = 1 in agreement with (3). Now suppose that (3) holds for all j < k. Then
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Rearranging and using the induction hypothesis, we obtain
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Now we mulitiply by the intergrating factor e ** to obtain
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Integrating both sides produces
ke 1—e®)k 1—e®)k

which is equivalent to (3). Notice that we used the following recursion at step (*).
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