
Lecture 5 - Inversion Theorems - Part 4 Spring 2025

The Lagrange Inversion Formula (cont)

We restate the Lagrange Inversion Theorem here for convenience. Once again, suppose we have
the following functional equation.

(1) z = xφ(z)

Can we solve for z as an explicit function of x? Can we find a closed formula for the sequence of
coefficients, [xn]z(x)? Note: The functional equation (1) implies z(0) = 0.

Theorem 1 (The Lagrange inversion formula (LIF)). Suppose that W (z) and φ(z) are
formal power series in z with φ(0) 6= 0. Then there is a unique formal power series
z = z(x) =

∑

n zn x
n, satisfying (1). In addition, the value of W (z(x)) when expanded in a power

series in x about x = 0 satisfies

(2) n[xn]W (z(x)) = [zn−1]{W ′(z)φ(z)n}

In a previous lecture, we proved (2) using induction. Before introducing the second proof, we need
to extend the ring of formal power series C[[x]] to the ring of formal Laurent series,

(3) C((x)) =

{

∑

n≥−N

cn x
n

∣

∣

∣

∣

N ∈ Z, cn ∈ C

}

Notice that if f(x) ∈ C((x)), then min{n
∣

∣ [xn]f(x) 6= 0, n ∈ Z} > −∞. Many of the rules from
formal power series carry over directly to the ring of formal Laurent series, including sums,
products, and the formal derivative. In addition, coefficient extraction works in C((x)) just as it
does in C[[x]]. We also have the following

Lemma 2.

(i) If z(x) ∈ C((x)) then [x−1]z′(x) = 0.

(ii) If f(x) ∈ C[[x]] with f(0) = 0 and f ′(0) 6= 0, then

(4) [x−1]f(x)kf ′(x) = δ−1(k)

for k ∈ Z.

Proof: (i) is obvious. Let f(x) =
∑

n≥1 an x
n, with [x1]f(x) = f ′(0) 6= 0. If k = −1 we have

f(x)−1f ′(x) =
a1 + 2a2x+ · · ·
a1x+ a2x2 + · · ·

=
1

x
+

a2
a1

+ · · ·
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so that

[x−1]f(x)−1f ′(x) = [x−1]
1

x
+ [x−1]

(

a2
a1

+ · · ·
)

= 1 + 0

If k 6= −1 then

[x−1]f(x)kf ′(x) = [x−1]
1

k + 1
(f(x)k+1)′ = 0

by (i) above �

Remark: Notice that if k < 0, then f(x)k /∈ C[[x]] since [x0]f(x) = f(0) = 0. See Proposition 2
on the handout about formal power series. However, f(x)k ∈ C((x)), the ring of formal Laurent
series. We have more to say about this in the exercises.

Our second proof is lifted from the volume 2 of R. Stanley’s Enumerative Combinatorics. We will
show that although Stanley’s version appears to be different, it is equivalent to the version
presented above. We have

Theorem 3 (The Lagrange inversion formula). Let F (x) =
∑

n≥1 fn x
n be a formal power

series with f1 6= 0. Then

(5) n[xn]{F<−1>(x)}k = k[xn−k]

(

x

F (x)

)n

, k ∈ Z

Here, F<−1>(x) is the compositional inverse of F (x). That is, F<−1>(F (x)) = F (F<−1>(x)) = x.

Proof (Second proof of LIF): So let

{F<−1>(x)}k =
∑

j≥k

pj x
j(6)

Then

xk =
{

F<−1>(F (x))
}k

=
∑

j≥k

pj F (x)j

After differentiating both sides and dividing by F (x)n we obtain

kxk−1

F (x)n
=

∑

j≥k

j pj F (x)j−n−1F ′(x)(7)

Notice that we are treating both sides of (7) as Laurent series. For example,

kxk−1

F (x)n
=

kxk−1

(f1x+ f2x2 + · · · )n

= kxk−n−1(f1 + f2x+ · · · )−n
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And the last expression is an element of C((x)) since (f1 + f2x+ · · · )−n ∈ C[[x]]. Now by Lemma 2

[x−1]F (x)j−n−1F ′(x) = δ−1(j − n− 1) = δn(j)(8)

so that

k[xn−k]

(

x

F (x)

)n

= [x−1]
kxk−1

F (x)n

(7)
= [x−1]

∑

j≥k

j pj F (x)j−n−1F ′(x)

(8)
=

∑

j≥k

j pj δn(j)

= npn

Thus
�

k[xn−k]

(

x

F (x)

)n

= npn = n[xn]
∑

j≥k

pj x
j (6)
= n[xn]{F<−1>(x)}k

as desired.

To see that the two versions are equivalent, we let z(x) = F<−1>(x) and let φ(x) = x/F (x). Then
F (z(x)) = x and

xφ(z(x)) = x
z(x)

F (z(x))
= x

z(x)

x

so that (1) is satisfied. Making the appropriate substitutions in (5), we have

(9) n[xn]z(x)k = k[xn−k]φ(x)n = [xn−1]kxk−1φ(x)n

which is equivalent to our original version, except that (9) holds for any k ∈ Z.

Example 4. In 1870, the German mathematician Ernst Schröder asked the following question.
In how many ways can n identical variables be “bracketed”? We give a recursive definition: x is a
bracketing. And for k ≥ 2, if δ1, δ2, . . . , δk are bracketed expressions, then so is (δ1 · δ2 · · · δk). For
example, x, (xx), and (x(xx)) are bracketed expressions and (xxx), (x(xx)), ((xx)x) are the three
bracketings of size 3. If S is the class of all bracketings, then

(10) S = Z + SEQ≥2(S) =⇒ S(x) = x+
S(x)2

1− S(x)

Although the Lagrange Inversion formula does not directly apply to right-hand side of (10), one
can solve the equation to conclude

(11) S(x) =
1 + x−

√
1− 6x+ x2

4

The counting sequence of S(x) begins with 0, 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, . . .

We note that right-hand side of (10) can be rearranged so that the Lagrange Inversion formula
applies. We explore this in the exercises.
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Exercises

1. Let f(x) =
∑

n≥1 fn x
n ∈ xC[[x]]. For any g(x) ∈ C((x)), define the degree of g(x) as we did

for formal power series. That is,

deg(g(x)) = min{n ∈ Z | [xn]g(x) 6= 0}

Let k > 0. Show that f(x)−k ∈ C((x)) with deg(f(x)−k) = −k. (Also, see Lemma 2.)

2. What happens in (6) if k > n? Is this consistent with (5)? Hint: Use polynomial division to
write out the first few terms in x/F (x).

3. In this problem, we investigate the Schröder bracketing problem from Example 4.

(a) List the 11 bracketings of size 4.

(b) Use (11) to show that

[xn]S(x) =
δ0(n) + δ1(n) +

∑

k≥0

(

1/2
k

)(

k
2k−n

)

(−6)2k−n

4

(c) Rearrange the defining equation for S(x) given on the right-hand side of (10) so that
the Lagrange Inversion formula can be applied. What is φ(z)?

(d) Now use the Lagrange Inversion formula to show that

[xn]S(x) =
1

n

∑

k≥0

(

2n− k − 2

n− 1

)(

n− 2

k

)

4. Now let Fk to the class of k-ordered forests defined by Fk = SEQk(T ) where T is a plane
tree and, once again, we measure the size of a forest by the number of vertices. For example,
in F2, there are zero forests of size 1, one forest of size 2, and two forests of size 3. For the

last case, we have (•, ) and ( , •). Note: There is only one plane tree of size 2, so it is

shown here as a barbell: .
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(a) List all of the 2-ordered forests of size 4. There should be five of them.

(b) Let F k
n = [xn]Fk(x). According the Lagrange Inversion formula,

F k
n = [xn]T (x)k = k

n
[zn−k]φ(z)n. Find a closed formula for F k

n .

(c) Notice that

(12) F k
n = [xn]

(

1−
√
1− 4x

2

)k

Use a CAS (such as MatLab or Wolfram Alpha) to verify (12) for k ∈ {2, 3}.

5. Let Fk = SEQk(T Ω). Repeat the part (b) of the previous exercise for each of the following
Ω-restricted trees.

(a) Ω = {0, 2}

(b) Ω = {0, 1, 2}
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