
MTH 482 Lecture 3 - Combinatorial Structures - Part 2

Weighted Generating Functions

Before continuing with admissibility, we need to discuss weighted generating functions. We
motivate with the following example.

Example 1. Let Subset be the set of all ordered pairs ([n], A) where A ⊆ [n], n > 0. Let n be
the size of ([n], A). We leave it as an exercise to show that Subset ∼= SEQ({0, 1}) with
|0| = |1| = 1. Now let S(x) be the generating function for Subset. Then

S(x) =
1

1− (x+ x)
=

∑

n≥0

2nxn

So that the counting sequence for Subset is {2n}n≥0, as we would expect.

Now suppose we also wish to track the size of A. How might that be accomplished?

For example, consider the pair ([5], {1, 4, 5}). Using the alphabet {0, 1}, observe that we could
map {1, 4, 5} to the “word” 10011. Clearly the length of the word is 5 and the length of the
nonzero entries is 3. So we could use a second variable to track the length of the nonzero entries.
In the present case, we would assign the weight x5y|{1,4,5}| = x5y3 to the pair ([5], {1, 4, 5}). So in
general, we would assign the weight xny|A| to the element ([n], A). This would correspond to
assigning the weights x and xy to the letters 0 and 1 respectively.

It turns out that

Swt(x, y) =
1

1− (x+ xy)

=
∑

n≥0

(x+ xy)n =
∑

n≥0

xn(1 + y)n

=
∑

n≥0

xn
∑

k

(
n

k

)

yk

so that

Swt(x) =
∑

n≥k≥0

(
n

k

)

ykxn(1)

That is, for 0 ≤ k ≤ n, there are
(
n

k

)
ordered pairs of the form ([n], A) for |A| = k.

We can learn more from this example. Rearranging (1) yields

1 = (1− x− xy)
∑

n≥k≥0

(
n

k

)

ykxn

or
∑

n≥k≥0

(
n

k

)

ykxn = x
∑

n≥k≥0

(
n

k

)

ykxn + xy
∑

n≥k≥0

(
n

k

)

ykxn
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It follows that
(
n

k

)

= [xnyk]
∑

n≥k≥0

(
n

k

)

ykxn = [xnyk]x
∑

n≥k≥0

(
n

k

)

ykxn + [xnyk]xy
∑

n≥k≥0

(
n

k

)

ykxn

= [xn−1yk]
∑

n≥k≥0

(
n

k

)

ykxn + [xn−1yk−1]
∑

n≥k≥0

(
n

k

)

ykxn

=

(
n− 1

k

)

+

(
n− 1

k − 1

)

with
(
n

0

)
=

(
n

n

)
= 1. In other words, we have just used generating functions to prove the recursion

equation for the binomial coefficients! In the exercises, we ask students to use (1) to prove the
Binomial theorem.
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The last example suggests the following.

Definition 2. Let Awt be a set where each element a ∈ Awt is given a weight wt(a). This is
usually a constant multiple of x|a| or, as we saw in Example 1, a monomial in one or more
variables x1, x2, . . . , xm. As before, we require that there only be a finite number of elements of
any given weight. Then the weighted ordinary generating function of the weighted class Awt is

Awt(x1, x2, . . . , xm) =
∑

a∈A

wt(a)

See Exercise 4.

Before we continue with the remaining constructions, we remark that if Bwt and Cwt are weighted

classes, then Bwt + Cwt, Bwt × Cwt and SEQ(Bwt) are all admissible.

Now for each of the remaining constructions, we let B be a class with � /∈ B.

Cycle construction: Cycles are nothing more than sequences taken up to a circular shift. By
convention, empty cycles are excluded. We define

CYC(B) = SEQ(B) \ {�}/S

where S is the equivalence relation between sequences defined by

(b1, b2, . . . , bm)S(b
′
1, b

′
2, . . . , b

′
m)

if and only if there exists some circular shift σ of [m] such that b′j = bσ(j) for 1 ≤ j ≤ m. For
example, let B = {r, g} and consider the 16 sequences from SEQ4(B). We list these by equivalence
class S:

rrrr

rrrg rrgr rgrr grrr

rrgg rggr ggrr grrg

rgrg grgr

gggr ggrg grgg rggg

gggg

In particular, there are only 6 elements in CYC4(B).

Multiset construction: Like cycles, multisets are sequences taken up to arbitrary permutations.
That is,

MSET(B) = SEQ(B)/Π

where Π is the equivalence relation between sequences defined by

(b1, b2, . . . , bm)Π(b
′
1, b

′
2, . . . , b

′
m)
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if and only if there exists some permutation π of [m] such that b′j = bπ(j) for 1 ≤ j ≤ m. Once
again, let B = {r, g} and consider the 16 sequences from SEQ4(B). We list these by equivalence
class Π:

rrrr

rrrg rrgr rgrr grrr

rgrg rrgg rggr ggrr grrg grgr

gggr ggrg grgg rggg

gggg

Notice that there are only 5 elements in MSET(B) which is no surprise since
((

2
4

))
=

(
2+4−1

4

)
= 5.
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Powerset construction: The powerset class PSET(B) is defined as the class consisting of all finite
subsets of B. Equivalently, PSET(B) ⊂ MSET(B) without repetitions.

Theorem 3. Let A, B, and C be classes with corresponding generating functions A(x), B(x),
and C(x), respectively. Then the constructions defined above are all admissible. We have

Sum: A = B + C =⇒ A(x) = B(x) + C(x)(2)

Product: A = B × C =⇒ A(x) = B(x)C(x)
(3)

Sequence: A = SEQ(B) =⇒ A(x) =
1

1−B(x)

(4)

Powerset: A = PSET(B) =⇒ A(x) =
∏

n≥1

(1 + xn)Bn = exp
∑

k≥1

(−1)k−1

k
B(xk)

(5)

Multiset: A = MSET(B) =⇒ A(x) =
∏

n≥1

(1− xn)−Bn = exp
∑

k≥1

1

k
B(xk)

(6)

Cycle: A = CYC(B) =⇒ A(x) = −
∑

k≥1

φ(k)

k
log(1−B(xk))(7)

where φ is the Euler totient function. For the last 4 constructions, we assume that B(0) = 0.

Proof: For the combinatorial sum we have

A(x) =
∑

a∈A

x|a| =
∑

a∈B

x|a| +
∑

a∈C

x|a| = B(x) + C(x)

We have already established the result for cartesian products.

Observe that B(0) = 0 =⇒ B(x) = x
∑

n≥1Bnx
n−1. Now let

fn(x) = (B(x))n = xn
(∑

n≥1Bnx
n−1

)n
and notice that deg(fn(x)) → ∞ as n → ∞. It follows by

Theorem 6 from the Formal Power Series handout and the above rules that

A(x) =
∑

n≥0

(B(x))n
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is a well-defined power series. Now

(1−B(x))A(x) = (1−B(x))
∑

n≥0

(B(x))n

=
∑

n≥0

(B(x))n −
∑

n≥0

(B(x))n+1

= 1 +
∑

n≥1

(B(x))n −
∑

n≥1

(B(x))n

= 1

In other words

∑

n≥0

(B(x))n =
1

1−B(x)

which establishes (4).
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For the powerset construction, we first suppose that B is finite with B0 = 0. Then

A = PSET(B) ∼=
∏

b∈B

({�}+ {b})(8)

For example, if B = {a, b, c, d} then (8) becomes

PSET({a, b, c, d}) ∼= ({�}+ {a}) ({�}+ {b}) ({�}+ {c}) ({�}+ {d})(9)

Now the subset {a, c} would correspond to choosing a from the first factor, c from the third
factor, and choosing no elements from the second and fourth factors of the right-hand side of the
last expression. The other subsets can be recovered in a similar manner.

It now follows by the sum and product rules above, that

A(x) =
∏

b∈B

(1 + x|b|) =
∏

n≥1

(1 + xn)Bn

where Bn is the number of elements in B of size n. Notice that the product is finite since B is
finite.

Now recall from second semester calculus that

log(1 + x) =
∑

n≥1

(−1)n+1x
n

n

It follows that

log(1 + xn) =
∑

k≥1

(−1)k+1x
kn

k

Thus

A(x) =
∏

n≥1

(1 + xn)Bn = exp log
∏

n≥1

(1 + xn)Bn

= exp
∑

n≥1

Bn log(1 + xn)

= exp
∑

n≥1

Bn

∑

k≥1

(−1)k+1x
kn

k

= exp
∑

k≥1

(−1)k+1

k

∑

n≥1

Bn (xk)n

= exp
∑

k≥1

(−1)k+1

k
B(xk)

which proves (5) whenever B is finite. We postpone the discussion of the infinite case.
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For the multiset construction we once again suppose that B is finite and that B0 = 0. Now observe
that we can sort any multiset. For example, S = {a, b, d, b, c, a, d, b, a} = {a, a, a, b, b, b, c, d, d}. It
now follows immediately that if A = MSET(B) then

(10) A = MSET(B) =
∏

b∈B

SEQ({b})

That is, if B = {b1, b2, . . . , bm} then A is formed be a sequence of zero or more b1s, followed by a
zero or more b2s, and so on. It now follows by (4) that

A(x) =
∏

b∈B

(1− x|b|)−1 =
∏

n≥1

(1− xn)−Bn

= exp log
∏

n≥1

(1− xn)−Bn = exp−
∑

n≥1

Bn log(1− xn)

= exp
∑

n≥1

∑

k≥1

Bn

xkn

k
= exp

∑

k≥1

1

k

∑

n≥1

Bn(x
k)n

= exp
∑

k≥1

1

k
B(xk)

and (6) is established whenever B is finite. The argument for infinite B is similar to the one for
powerset construction and is omitted.

For the proof of the (7), we refer the interested reader to the text. �

It is useful to allow the admissible constructions identified in Theorem 3 to be restricted in some
way. So let k ≥ 0 and let B be a class. Then we define the following restricted constructions:

SEQk(B) = B × B × · · · × B
︸ ︷︷ ︸

k factors

= Bk(11)

SEQ≤k(B) =
k∑

j=1

Bj(12)

SEQ≥k(B) =
∑

j≥k

Bj = Bk × SEQ(B)(13)

In a similar manner, we will use the symbols SEQodd and SEQeven to denote sequences with and
odd and even number of components, respectively. The other constructions admit similar
restrictive notations.

Now because of Theorem 3, we can immediately specify the corresponding ordinary generating
functions for such restricted constructions. For example, (13) immediately yields

Bk × SEQ(B) =⇒ (B(x))k
1

1− B(x)
=

(B(x))k

1−B(x)
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Exercises

1. Prove that Subset ∼= SEQ({0, 1}) with |0| = |1| = 1 (see Example 1).
Hint: See the proof of the powerset construction in Theorem 3.

2. Example 1 was not our first encounter with a weighted generating function. Consider the
collection of unlabeled connected graphs with n vertices. Assign the weight xnyk to a graph
g with n vertices and k edges.

(a) Explain why n− 1 ≤ k ≤
(
n

2

)
for each n.

(b) List the weights for each of the graphs of order 1 ≤ n ≤ 5. Note: By part (a), there are
at least 16.

3. Use (1) to prove the Binomial theorem. That is, prove that (1 + y)n =
∑

k

(
n

k

)
yk.

4. Convince yourself that Definition 2 makes sense by generating all of the terms in the
expansion of the right-hand side of (1) for 0 ≤ n ≤ 3.

5. List at least 8 elements in each of the following classes. Also, find the corresponding
generating functions.

(a) b SEQ(a)

(b) SEQ(b SEQ(a))

(c) SEQ(a) SEQ(b SEQ(a))

6. Let W2 = SEQ(a) SEQ(b SEQ(a)).

(a) Identify W2. List enough elements to see what is going on and find a more direct
description.

(b) What is W1? Express W3 in two different ways.
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