Lecture 3 - Integer Partitions - Part 2 (Generating Functions)

Example 1. In how many ways can we make change for a dollar with the following collections of
coins.

a. Using 5 pennies, 8 nickels, 3 dimes and 4 quarters.

b. Using an unlimited supply of pennies, nickels, dimes and quarters.

For part (a), it turns out to be easier to answer a more general question, “In how many ways can
we make change for any monetary denomination using the specified collection of coins?”

For example, if we chose 2 pennies, 2 nickels, 1 dime, and 1 quarter, that would be one way to
“make change” for 47 cents. That correspond to choosing z? from the first factor, z'° from the
second factor, x!° from the third factor and 2 from the last factor of the expression

(1—|—x—|—---—|—x5) (1+x5+---—|—x40) (1—|—x10—|—x20+x30) (1—|—x25—|—---—|—x100)
With the help of a CAS, we can easily expand the previous expression to obtain
v+ 428+ + 224+ 4+ 72+ 62" o 142! 70 2T (1)
Notice that there are 6 ways to make change for 47 cents. Here is the complete list:
A7T=254+10+10+1+1
=254+10+5+5+1+1
=254+54+5+5+5+1+1
=104+10+104+5+5+5+1+1
=104+10+54+54+54+5+5+1+1
=10+54+5+5+5+5+5+5+1+1

Notice that the above list includes exactly 6 of the 124,754 integer partitions of 47.

Scanning (1) we see that there are 7 ways to make change for a quarter and 14 ways to make
change for a dollar.

What about part (b)? First, recall that if k is a positive integer, then

>t ®)

n>0

Now an unlimited supply of pennies and nickels could be represented by > 2™ and Y 2"
respectively. With the help of (2) and proceeding as we did in part (a), the answer should be

(2199 C (), where
C(x) = Zx" ZxS” me” Zx25"

n>0  n>0 n>0 n>0
1 1 1 1
l—z1—2°1—2'01—2%
Now, with the help of a computer, we can calculate that there are [z'°]C/(z) = 242 ways to make
change for a dollar with an unlimited supply of pennies, nickels, dimes and quarters.
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Motivated by the previous example, we have the following

Theorem 2. (Euler) Let p(n) be the number of ways to partition the nonnegative integer n.
Then

1 1 1 :

E(z) = "= o=l =2 3

@) =Y ple" = == = [[ - ) 8
n>0 7>1

Remark. Since that right-hand side of (3) involves an infinite product, it does not appear to be a

legitimate rational generating function since computing any coefficient would seem to require an

infinite number of operations. However, this is misleading since

p(n) = [£"P(a) = [a") 2ty (1
— o) () B 0 5)

where deg(qx) < k — 1.

Example 3. Let f(n) be the number of partitions of n that have no part equal to 2. Then

1 1 1
F(z):Zf(n)z T 1-z  1—a% 1-—at
n>0
11— 1 1
Cl—x 1—22 1—23 1—2g4
= (1—-2%)&(x)

It follows that
f(n) = [2")(1 = 2*)€(x)
= [2"E(x) — [z"?]E(x)
=p(n)—pn—2), n=>2

Example 4. Can you guess what the following generating functions might count?

d(x) = H(l + a7)

O(x) = H(l AL
D(z)=(1+2)1+2>)1+2H(1+2%) -

= H(l + xzj)

7>0
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Definition 5. Let py(n) be the number of ways to partition n into distinct parts and let p,(n) be
the number of ways to partition n into parts, all of which are odd. For example, two partitions of
10 are 5+ 5 and 4 + 3+ 2+ 1. The first is a partition of 10 into odd parts and the second is a
partition of 10 into distinct parts.

Theorem 6. For n > 0,
pd(n> = po(n) (6)

Proof: In Example 4 we argued, in class, that ) -, pa(n)z" = d(x) and }_ -, po(n)z" = O(x).
Hence it suffices to show that d(x) = O(x).

d(z) = (1+2)(1+2*)(1+2%)- -

_1—x2 1—a* 1—25 1—28

S l—z 1—22 1—23 1—24

1 1 1 1

o l—x 1—2% 1—25 1—2a7

= O(x) O
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Exercises

L. Let D(z) = [[;5,(1 + 2?) from Example 4. Find a combinatorial proof that
D(z)=(1-xz)""
Hint: Show that [z"]D(z) = 1 for all n.

2. Let g(n) count the number of partitions of n that have no part equal to 1 or 2. Express g(n)
in terms of p(n).

3. There is another compelling (but not rigorous?) argument that computing [z"]€(x) involves
only a finite number of operations. Can you find it?
Hint: The starting point is the right-hand side of (4).

4. Which of the following are formal power series? For those that are, use the extractionator to
identify the nth coefficient of its power series expansion.

Jx) = 1 —13x)2
=% ()
k(z) = %(1 + )"

I(z) = %(m + 2"

For example, k(z) is not a formal power series since k(z) = u(v(z)) where v(z) = 1+ 2. But
v(0) # 0 contrary to the restrictions placed on compositions in Wilf.



