## Compositions

In Math 481 we defined and discussed multisets and various equivalent ways that certain problems were equivalent to counting multisets. One of these was the following:

**Definition 1.** Let n, k be integers. Then  $\binom{k}{n}$  is the total number of nonnegative solutions to the equation

$$n = x_1 + x_2 + \dots + x_k \tag{1}$$

The right-hand side of (1) is called a *weak composition* of n into k parts. If we insist that the  $x_i > 0$ , then (1) is called a *composition* of n into k parts.

For example, 4 + 0 + 12 + 10 is a weak composition of 24 into 4 parts and 4 + 8 + 9 + 3 is a composition of 24 into 4 parts. It's important to remember that order matters, so that 4 + 8 + 9 + 3 and 8 + 4 + 9 + 3 are different compositions of 24 into 4 parts.

We restate two of the results from Math 481 using the language of compositions.

**Theorem 2.** Let n, k be nonnegative integers. Then the number of weak compositions of n into k parts is

$$\binom{\binom{k}{n}}{n} = \binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$
(2)

and the number of compositions of n into k parts is

$$\binom{k}{k-n} = \binom{n-1}{n-k} = \binom{n-1}{k-1}$$
(3)

The next result is new.

**Theorem 3.** Let n be a positive integer. Then the number of compositions of n is  $2^{n-1}$ .

*Proof:* Let n be a positive integer. Then n can be written as a composition into 1 part, or 2 parts, etc. So by the Addition rule and Theorem 2, the number of compositions of n is

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = \sum_{k} \binom{n-1}{k} = 2^{n-1}$$

The set of compositions of n into k parts is often denoted by the symbol Q([n], k) and the set of all compositions of n is denoted by Q([n]). The size of these two sets is then denoted q(n, k) and q(n), respectively. With this notation, the last two results can be restated as

$$q(n,k) = |Q([n],k)| = \binom{n-1}{k-1}$$
$$q(n) = |Q([n])| = 2^{n-1}$$

## **Integer Partitions**

In Math 481 we also introduced set partitions and the Bell numbers. It turns out that we can develop a similar concept with integers.

**Definition 4.** Let *n* be a nonnegative integer. An *integer partition* of *n* is a multiset  $\lambda$  whose elements (called *parts*) sum to *n*. We introduce the notation  $\lambda \vdash n$  to mean that  $\lambda$  is an integer partition of *n*. Since the elements of a multiset set have no inherent order, we will always list the elements of  $\lambda$  as a weakly decreasing sequence. In keeping with earlier conventions, the set of all integer partitions of *n* will be denoted P([n]) and its size is given by p(n). That is, p(n) = |P([n])|.

For example,  $(3, 1, 1) \vdash 5$  and the set of all integer partitions of 5 is

$$P([5]) = \{(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)\}$$

It follows that p(5) = 7.

There is a useful visualization for integer partitions. A Young diagram (or Ferrers shape) of an integer partition  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$  is a left-justified array of squares whose *j*th row has  $\lambda_j$  squares. Figure 1 shows the Young diagram for  $\lambda = (5, 3, 2, 2) \vdash 12$ . It also includes its transpose or conjugate,  $\lambda^{t}$ .



Figure 1: Young diagram and its transpose for the integer partition  $\lambda = (5, 3, 2, 2)$ 

Notice that if  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$  and  $\lambda^t = (\lambda_1^t, \lambda_2^t, \dots, \lambda_m^t)$  is its transpose, then  $\lambda^t$  is an integer partition of n whose jth part counts the number of parts of  $\lambda$  that are greater than or equal to j.

| $\begin{array}{c} k \\ n \end{array}$ | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---------------------------------------|---|---|---|----|----|----|----|----|----|----|
| 0                                     | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 1                                     | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 2                                     | 0 | 1 | 2 | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| 3                                     | 0 | 1 | 2 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 4                                     | 0 | 1 | 3 | 4  | 5  | 5  | 5  | 5  | 5  | 5  |
| 5                                     | 0 | 1 | 3 | 5  | 6  | 7  | 7  | 7  | 7  | 7  |
| 6                                     | 0 | 1 | 4 | 7  | 9  | 10 | 11 | 11 | 11 | 11 |
| 7                                     | 0 | 1 | 4 | 8  | 11 | 13 | 14 | 15 | 15 | 15 |
| 8                                     | 0 | 1 | 5 | 10 | 15 | 18 | 20 | 21 | 22 | 22 |
| 9                                     | 0 | 1 | 5 | 12 | 18 | 23 | 26 | 28 | 29 | 30 |

Table 1: Integer partitions of n into at most k parts,  $p_{\leq k}(n)$ .

**Definition 5.** Let  $n \ge k > 0$  and define  $P_k([n])$  to be the set of integer partitions of n into exactly k parts and  $P_{\le k}([n])$  to be the set of integer partitions of n into at most k parts. Now let  $p_k(n) = |P_k([n])|$  and  $p_{\le k(n)} = |P_{\le k}([n])|$ . As usual, let  $p_{\le k}(n) = 0$  if either n < 0 or k < 0 and let  $p_{<0}(0) = 1$ .

## Example 6.

 $P([6]) = \{(6), (5, 1), (4, 2), (4, 1^2), (3^2), (3, 2, 1), (3, 1^3), (2^3), (2^2, 1^2), (2, 1^4), (1^6)\}$   $P_2([6]) = \{(5, 1), (4, 2), (3^2)\}$  $P_{<3}([6]) = \{(6), (5, 1), (4, 2), (4, 1^2), (3^2), (3, 2, 1), (2^3)\}$ 

It is pretty easy to see that  $p_2(6) = 3$ , and  $p_{\leq 3}(6) = 7$ .

Table 1 lists a few values of  $p_{\leq k}(n)$ . Notice the row entries eventually stabilize.

We state a few facts about  $p_{\leq k}(n)$  and  $p_k(n)$  in the following proposition.

## Proposition 7.

$$p_k(n) = p_{\le k}(n) - p_{\le k-1}(n) \tag{4}$$

and for n > 0,

$$p_{\leq k}(n) = p_{\leq k-1}(n) + p_{\leq k}(n-k)$$
(5)

*Proof:* The proof of identity (4) is routine. For (5), the left-hand side counts the number of integer partitions of n into at most k parts. The first term on the right-hand side counts the number of partitions of n into at most k - 1 parts. Now let  $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \vdash n$  and define  $\pi$  by the rule  $\pi(\lambda) = (\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_k - 1)$  where we agree to collapse any zero-entries.

For example, if  $\lambda = (4, 3, 1) \in P_3(8)$ , then  $\pi(\lambda) = (3, 2, 0) = (3, 2) \in P_{\leq 3}(5)$ .

Then  $\pi: P_k([n]) \longrightarrow P_{\leq k}([n-k])$  is a bijection and the result follows by (4).