
Set Partitions

5.2 Set Partitions

Definition 1. Let S = [n]. We say the a collection of nonempty, pairwise disjoint subsets (called
blocks) of S is a set partition if their union is S.

Example. Let S = [4], then {1}{2, 3, 4} is a partition of S into two subsets. Can you list the
other 6?

{1, 2} {3, 4}
{1, 3, 4} {2}
{1, 2, 3} {4}
{1, 4} {2, 3}
{1, 2, 4} {3}
{1, 3} {2, 4}

Definition 2. Now let
{

[n]
k

}

denote the collection of all partitions of [n] into k subsets and let

S(n, k) =
{

n

k

}

be the number of elements in
{

[n]
k

}

. That is,

S(n, k) =

{

n

k

}

=

∣

∣

∣

∣

{

[n]

k

}
∣

∣

∣

∣

These are called Stirling numbers of the second kind or Stirling set numbers. As we did with the
binomial and multinomial coefficients, let’s see if we can prove a recursion formula for these
numbers.

Proposition 3. Let n, k ∈ Z and let
{

n

k

}

= 0 whenever k > n or n < 0 or k < 0. Finally, for
n > 0 set

{

n

0

}

= 0. Then

{

n

k

}

=

{

n− 1

k − 1

}

+ k

{

n− 1

k

}

, ((n, k) 6= (0, 0);

{

0

0

}

= 1) (1)

Proof: The exceptional cases are trivial, so we suppose that 1 ≤ k ≤ n.

Question - In how many ways can we partition [n] into k subsets?

LHS This is
{

n

k

}

by definition.

RHS The set
{

[n]
k

}

contains partitions of two types. Some partitions contain the singleton subset
{n}. The remaining partitions do not. When n is alone, then the remaining n− 1 elements
can be placed into k−1 subsets in

{

n−1
k−1

}

ways. If n is not alone, we first partition [n−1] into

k subsets and then insert n into any of these subsets. So there are k
{

n−1
k

}

ways to do this.

Putting these together, there are
{

n−1
k−1

}

+ k
{

n−1
k

}

partitions of [n] containing k subsets. �
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Set Partitions

n
k

0 1 2 3 4 5 6 7 8 9 bn

0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 3 1 5
4 0 1 7 6 1 15
5 0 1 15 25 10 1 52
6 0 1 31 90 65 15 1 203
7 0 1 63 301 350 140 21 1 877
8 0 1 127 966 1701 1050 266 28 1 4140
9 0 1 255 3025 7770 6951 2646 462 36 1 21147

Table 1: Stirling numbers of the second kind

Table 1 lists the first 9 rows of the Stirling triangle. Do you notice any patterns in the table?

The sums of the entries in each row appear in the last column. They are the so-called Bell

numbers and, by definition, give the number of ways to partition [n] into nonempty blocks of any
size. They will be discussed in more detail below.
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Set Partitions

Example 4. For a history class of n students, in how many ways can the students create m
nonempty study groups? Note: Except for their members, the study groups are indistinguishable
and not all students must participate.

We claim that the there are
∑

k

(

n

k

){

k

m

}

ways to do this. To see this notice that there
(

n

k

)

to select

a group of k students that will participate and
{

k

m

}

ways to partition those k students into m

nonempty study groups. So by the product rule, there are
(

n

k

){

k

m

}

ways to create the study groups
with k students. Now if j 6= k then the study groups created with j students and the study groups
with k students are disjoint. So by the sum rule, there are

∑

k

(

n

k

){

k

m

}

ways to create m study
groups in a class of n students.

For example, in a class of 4 students there are

4
∑

k=2

(

4

k

){

k

2

}

=

(

4

2

){

2

2

}

+

(

4

3

){

3

2

}

+

(

4

4

){

4

2

}

= 6 · 1 + 4 · 3 + 1 · 7 = 25

ways to create 2 nonempty study groups. One easily check that there are 140 ways to create
4 nonempty study groups in a class of 6 students. After looking in Table 1, we make the following
conjecture.

∑

k

(

n

k

){

k

m

}

=

{

n+ 1

m+ 1

}

(2)

Proof: As we noted above, the left-hand side counts the number of m nonempty study groups
from a class of n students. For the right-hand, we identify those who do not wish to participate as
the students in the same block as n+ 1. �

Remark. Notice that we used a version of the “distinguished” element argument. In this case, we
used it to identify which “study group” didn’t exist. Notice that if n+ 1 appears alone in a block,
then all students joined a study group.
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Set Partitions

Example 5. For n ≥ 0 prove that

xn =
n

∑

k=0

{

n

k

}

xk (3)

Proof: Q. How many ways can n students be assigned to x classrooms if rooms are allowed to
remain empty?

Note: We remark that if there are 9 students and 3 classrooms, say A,B,C, we could use the
ordered partition 236/17/4589 to indicate that students 2,3,6 were assigned to room A, students
1,7 to room B, etc. and the ordered partition 17/236/4589 would be a different assignment.

LHS. Clearly there are xn ways to make such assignments.

RHS. Condition on the number of nonempty classrooms k. If there is only one nonempty room,
then all of the students must be placed into the same room. Since there are x rooms, there are
x =

{

n

1

}

x1 ways to do this. For the general case, suppose that there are k nonempty rooms. Then
there are

{

n

k

}

to divide the students into k subgroups and there are x(x− 1) · · · (x− k + 1) = xk

ways to arrange the groups into the rooms. So by the product rule, there are
{

n

k

}

xk to distribute
the students into k nonempty classrooms. Summing over all k produces the result.

Remark. Explain why (3) must hold for all real (complex?) numbers.
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Set Partitions

Set partitions can also be described using the canonical form.

Definition 6. Let σ ∈
{

[n]
k

}

, say σ = B1/B2/ · · · /Bk written in standard block form. Now let
w(σ) = w1w2 · · ·wn ∈ [k]n (an n-string on the alphabet [k]) defined by wi = j if and only if i ∈ Bj.
Given a partition σ written in block form, we shall refer to w(σ) as its canonical form.

For example, say σ = 127/3/48/56 ∈
{

[8]
4

}

. Then w(σ) = 11234413 since, for example, 7 ∈ B1 iff
w7 = 1.

Question - Does the canonical form of a set partition give us any additional info about the size of
Stirling set numbers?

Example 7. For m,n ∈ N, show that

∑

k

(

n

k

){

k

m

}

=

{

n+ 1

m+ 1

}

Proof: We may assume that 0 ≤ m ≤ n. Now, the right-hand side counts that number of ways to
partition [n+ 1] into m+ 1 blocks.

For the left-hand side, we condition on the block, call it B, containing n+ 1. If n+ 1 is alone,
then there are

(

n

n

){

n

m

}

ways to partition the remaining n elements across m blocks. If |B| = 2 then

there are
(

n

1

)

=
(

n

n−1

)

ways to choose the element that pairs with n+ 1 and
{

n−1
m

}

ways to

partition the remaining elements. So by the product rule, there are
(

n

n−1

){

n−1
m

}

to partition [n+ 1]

whenever n+1 is in a doubleton block. In general, there are
(

n

k

)

ways to choose the n− k elements

that are paired with n+ 1 and
{

k

m

}

ways to partition the remaining k elements into m blocks and

we apply the product rule to obtain
(

n

k

){

k

m

}

to create m+ 1 blocks when |B| = n− k + 1. Since
each of these cases are disjoint, we can now sum on k and the result follows. �
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Set Partitions

Example 8. For n,m ∈ N show that

m
∑

k=1

k

{

n+ k

k

}

=

{

m+ n+ 1

m

}

(4)

Hint: Use Proposition 3 and telescoping sums.

Proof: We give two proofs. Fix n and notice that by Proposition 3, the left-hand side can be
rewritten as a telescoping sum. Let ak =

{

n+k+1
k

}

. Then

k

{

n+ k

k

}

=

{

n+ k + 1

k

}

−

{

n+ k

k − 1

}

= ak − ak−1

It follows that
m
∑

k=1

k

{

n+ k

k

}

=
m
∑

k=1

ak − ak−1

= am − a0

=

{

m+ n+ 1

m

}

− 0

as desired.

Now let’s give a combinatorial proof. We’ll let m = 7 and n = 3 to make the argument easier to
follow. The right-hand side of (4) counts the number of ways to partition [m+ n+ 1] = [11] into
m = 7 blocks.

For the left-hand side, we condition by identifying one or more singleton blocks and counting
down. So what does m

{

n+m

m

}

= 7
{

10
7

}

actually count? There are
{

10
7

}

ways to partition [10] into 7

blocks and we can place 11 into any of the blocks. So, by the product rule there are 7
{

10
7

}

ways to
do this. Observe that 11 is never in a singleton block.

Next, partition [9] into 6 blocks and let 11 occupy the last block. Now insert 10 into any of the
first 6 blocks. By the product rule there are 6

{

9
6

}

ways to do this. Notice that 11 is singleton, so
this collection of partitions is disjoint from the previous collection.

Continuing, we partition [8] into 5 blocks, let 10 and 11 occupy the last two blocks, and insert 9
into any of the first 5 blocks. By the product rule there are 5

{

8
5

}

ways to do this. Notice that 10
and 11 are singleton, so this collection of partitions is disjoint from the previous collections.

We continue in this fashion until we partition [4] into 1 block, let 6–11 occupy the last 6 blocks,
and insert 5 into the first block. Clearly, there are 1

{

4
1

}

ways to do this. Once again, these
partitions are disjoint from each of the collections above.

Now the result follows by the sum rule. �
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Set Partitions

Remark. Notice that there can never be more than 6 singleton blocks. Now one might argue that
this method omits some partitions. It’s pretty clear that if it does miss any, then singletons are
involved. As an example, can you identify if and where the partition 1/2/34/58/679/10/11 was
counted? What about 1/2/34/568/710/9/11 or 1/2/346/58/7/9/1011?
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Set Partitions

Proposition 9. The Bell numbers bn satisfy the following recursion.

bn+1 =
∑

k

(

n

k

)

bk, n > 0, b0 = 1 (5)

Proof: We consider the number of set partitions of [n+ 1]. By definition, this is bn+1. Now for
each partition, we condition on the subsets that contain the number 1. If 1 is a singleton, there are
bn ways to partition the remaining n elements. Now suppose that 1 is in a doubleton. So there are
(

n

1

)

to choose the element that is paired with 1, and there are bn−1 to partition the remaining n− 1
elements. So by the product rule there

(

n

1

)

bn−1 ways to partition [n+ 1] in the case. It follows
that for the general case, there

(

n

k

)

bn−k ways to partition [n+ 1] whenever there are k elements in
the same subset as 1. Since these cases are disjoint, we can sum over all values of k to obtain

bn+1 =
n

∑

k=0

(

n

k

)

bn−k =
n

∑

k=0

(

n

k

)

bk (6)

And the last equality follows by the symmetry of the binomial coefficients,

(

n

k

)

=

(

n

n− k

)

. �
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Set Partitions

The next example yields a “practical” formula for Stirling set numbers.

Example 10. For n ≥ m ≥ 0, show that

m
∑

k=0

(

m

k

)

kn(−1)k = (−1)mm!

{

n

m

}

(7)

Proof:

∑

k

(

m

k

)

kn(−1)k =
m
∑

k=0

(

m

k

)

∑

j

{

n

j

}

(k)j(−1)k (by (3))

=
∑

j

j!

{

n

j

}

∑

k

(

m

k

)(

k

j

)

(−1)k

=
∑

j

j!

{

n

j

}

δjm(−1)m

= (−1)mm!

{

n

m

}

�

Remark. We will revisit (7) in chapter 7 when we study sieve methods.
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