
MTH 482 Exercises - Exam 2 Spring 2025

Date Section Exercises** (QC - Quick Check and CE - Class Exercises)

03/12* - 4, 5 from here. Also, see below.

03/14* - 3, 4, 5 from here. Also, see below.

03/17* - 1 from here. Also, see below.

03/26* - (Optional) 1 from here. Also, see below.

03/28* 16.2 QC - 3; CE - 5, 6; Also, see below.

03/25* 16.2 CE - 43. Also, see below.

03/27* 16.2 CE - 31 and read Dilworth’s theorem. Also, see below.

03/29* - See below.

03/31* 16.2 CE - 5, 32-34. Also, see below.

04/02* - See below.

04/04* - See below.

04/07* - See below.

04/09* 16.3 CE - 8, 13, 20. Also, see below.

04/16* - See below.

02/24

1. Consider the following orthogonality identity.

∑

k

[

n

k

]{

k

m

}

(−1)n−k = δn(m) (1)

(a) There is a symmetric version of (1). State it.

(b) Use the Stirling Inversion Theorem (Theorem 2 here) to prove (1).

(c) In Math 481 we proved (2). See Example 5 here.

xn =
∑

k

{

n

k

}

xk (2)

We also proved the next result. See (7) here.

xn =
∑

k

[

n

k

]

xk (3)

Now use (2) to prove the following

xn =
∑

k

{

n

k

}

(−1)n−kxk (4)

(d) Use the identities (3) and (4) to prove (1).

(e) Now use (1) (or part (a)) to prove the Stirling Inversion Theorem.

2. Reprove the Binomial Inversion Theorem (Equation (2) here) as indicated below.

(a) Let f(x) =
∑

n fn x
n/n! and g(x) =

∑

n gn xn/n! and mimic the proof of Theorem 2 shown here.

(b) Let f(x) =
∑

n fn x
n and g(x) =

∑

n gn x
n and once again mimic the proof of Theorem 2 shown here.

02/26

1

https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP3.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP4.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP5.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP5.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP1.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/handouts/SetPartitions.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/handouts/CycleNumbers.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP1.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP1.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP1.pdf
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1. Show that

xn =

n
∑

k=0

⌊

n

k

⌋

xn (5)

and

xn =

n
∑

k=0

⌊

n

k

⌋

(−1)n−kxn (6)

2. Prove that
⌊

n

k

⌋

=
∑

j

[

n

j

]{

j

k

}

(7)

3. If n ≥ k ≥ 1, prove that
⌊

n

k

⌋

=

(

n− 1

k − 1

)

n!

k!
(8)

02/28

1. Find a combinatorial proof of (7) from 02/26.

Hint:
[

n
j

]

counts the number of ways to seat n knights at j nonempty round tables and
{

j
k

}

counts the
number of ways to distribute these j tables into k nonempty rooms. Both the tables and rooms are
indistinguishable.

2. Find a combinatorial proof of
∑

k

[

n

k

]{

k

m

}

(−1)k = (−1)nδn(m)

Hint: Using the hint given in the previous exercise, let E contain all seating arrangements with an even
number of tables and let O contain all seating arrangements with an odd number of tables. Now find a
bijection between E and O that has two exceptions.

3. Prove that
[

n

k

]

=
∑

0<j1<j2<···<jn−k<n

j1j2 · · · jn−k

Hint: Divide both sides of (3) by x and notice that the left-hand side is the product
(x+ 1)(x+ 2) · · · (x+ n− 1). Now compare the coefficient of xk−1 on the left and right-hand sides of the
resulting identity.

4. Referring to Example 3 here.

(a) Verify equations (9) and (13).

(b) Prove that
k

n

(

n

k

)

+
k + 1

n

(

n

k + 1

)

=

(

n

k

)

5. Use LIF to show that

bn =
∑

k

(

k

n− k

)

ak iff an =
1

n

∑

k

(

2n− k − 1

n− k

)

kbk(−1)n−k

Hint: Follow Example 3 from here.

03/10

1. Let f(x) =
∑

n≥1 fn x
n ∈ xC[[x]], f1 6= 0. For any g(x) ∈ C((x)), define the degree of g(x) as we did for

formal power series. That is, deg(g(x)) = min{n ∈ Z | [xn]g(x) 6= 0}. Now let k > 0. Show that
f(x)−k ∈ C((x)) with deg(f(x)−k) = −k.

2

https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP2.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP2.pdf
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2. Confirm the (**) step in the first proof of LIF here (page 2).

03/12

1. Suppose that z = z(x) satisfies z = xφ(z). For n ≥ 0, show that

[zn]φ(z)n = [xn]

{

xz′(x)

z(x)

}

= [xn]
1

1− xφ′(z(x))
(9)

Solution:

The direct proof is routine. As an alternative, we have

[zn]φ(z)n = [zn−1]
1

z
φ(z)n

= n[xn]

ˆ

dy

y y=z(x)

where we invoked the Lagrange Inversion formula backwards. And we can proceed as we did for
(13) in Problem 03 below.

2. Let gn = [xn](1 + x+ x2)n, n ≥ 0. Use the previous exercise to show that

gn = [xn]
1√

1− 2x− 3x2
(10)

3. Show the following. Hint: For (11) use the generalized Binomial theorem.

1√
1− 4x

=
∑

n≥0

(

2n

n

)

xn (11)

(

1−
√
1− 4x

2x

)k

=
∑

n≥0

k(2n+ k − 1)!

n!(n+ k)!
xn (12)

1√
1− 4x

(

1−
√
1− 4x

2x

)k

=
∑

n≥0

(

2n+ r

n

)

xn (13)

Solution: For (11) we have

1√
1− 4x

= (1 + (−4x))−1/2 =
∑

n≥0

(−1/2

n

)

(−4x)n = · · ·

We leave the details to the student.

For (12), we let C(x) = (1−
√
1− 4x)/(2x) and let z(x) = C(x)− 1. Then as we have shown before (see

Example 2),

z = x(1 + z)2 = xφ(z) (14)

3

https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP3.pdf
https://rjhmath.tiny.us/2p8cka8v
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Now let W (z) = (1 + z)k, then by the Lagrange Inversion formula

[xn]C(x)k = [xn]W (z(x))

=
1

n
[zn−1]W ′(z)φ(z)n

=
k

n
[zn−1](1 + z)k−1(1 + z)2n

=
k

n
[zn−1](1 + z)2n+k−1

=
k

n

(

2n+ k − 1

n− 1

)

For (13), we once again use the Lagrange Inversion formula (step (*) below), but in the reverse direction.
Let z(x), C(x), andφ(z) be as shown above and let g(x) =

∑

n≥0

(

2n+r
n

)

xn. Then

[xn]g(x) =

(

2n+ r

n

)

= [zn](1 + z)2n+r

= [zn−1]
(1 + z)r

z
(1 + z)2n

= [zn−1]
(1 + z)r

z
φ(z)2n

∗
= n[xn]

ˆ

(1 + y)r

y
dy

y=z(x)

= [xn]xDx

ˆ

(1 + y)r

y
dy

y=z(x)

= [xn−1]
(1 + z)r

z

dz

dx z=xφ(z)

(15)

Now by (14),

dz

dx
= φ(z) + xφ′(z)

dz

dx

Rearranging produces

dz

dx
=

φ(z)

1− xφ′(z)

Inserting this into (15) yields

(

2n+ r

n

)

= [xn−1]
(1 + z)r

z

φ(z)

1− xφ′(z) z=xφ(z)

= [xn−1]
φ(z)

z

(1 + z)r

1− xφ′(z) z=xφ(z)

= [xn−1]
1

x

(1 + z)r

1− xφ′(z) z=xφ(z)

= [xn]
(1 + z)r

1− xφ′(z) z=xφ(z)

4
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Now since φ′(z) = 2(1 + z) and since 1 + z(x) = C(x), the last expression above produces
(

2n+ r

n

)

= [xn]
C(x)r

1− 2xC(x)

= [xn]
C(x)r√
1− 4x

which is equivalent to (13).

03/14

1. Let m0 = 1 and for n > 0, suppose that

mn = mn−1 +

n
∑

k=2

mk−2mn−k (16)

Show that if M(x) =
∑

n≥0 mn x
n, then M(x) satisfies the functional equation

M(x)− 1 = xM(x) + x2M(x)2 (17)

Solution:

For n ≥ 2, we have

[xn](M(x)− 1) = mn

and

[xn]
(

xM(x) + x2M(x)2
)

= mn−1 + [xn−2]M(x)2

= mn−1 + [xn−2]
∑

p≥0

p
∑

k=0

mk mp−kx
p

= mn−1 +

n−2
∑

k=0

mk mn−2−k

= mn−1 +

n
∑

k=2

mk−2mn−k

So by (16),

[xn](M(x)− 1) = [xn]
(

xM(x) + x2M(x)2
)

for n ≥ 2. The cases when n ∈ {0, 1} are trivial and are left as exercises. The result now follows.

2. Find the sum of the first n terms in the binomial expansion of

(

1− 1

2

)−n

=
∑

k≥0

(−n

k

)(−1

2

)k

=
∑

k≥0

(

n+ k − 1

k

)

2−k (18)

For example, when n = 4 the sum is 1 + 4/2 + 10/4 + 20/8 = 8. Hint: Use LIF.

3. Let J(x) = (1 + x)2/(2 + x). Show that for all n ∈ P

[xn−1]
J(x)n

1 + x
=

1

2

5
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03/17

1. Let {an}n≥0 ⊂ R with a0 6= 0. Find a sum formula for [zn]
(

∑N
k=0 ak z

k
)n

when N ∈ {2, 3}. Do you see a

pattern?

2. Let T = T Ω where Ω = {0, 1, 3}. However, this time we measure the size of each tree by the number of
edges. Let T (x) be the ordinary generating function for T . Find a sum formula for [xn]T (x).

3. Let mn be the Motzkin numbers as defined on page 3 here and let {cn}n≥0 be the Catalan numbers.
Answer the questions below.

(a) Use (17) to show that

M(x) =
∑

n≥0

mnx
n =

1− x−
√
1− 2x− 3x2

2x2

(b) Show that

mn =
∑

k

(

n

2k

)

ck and cn+1 =
∑

k

(

n

k

)

mk

Hint: Part (a) above and exercise 3 from 02/17 should help with the second identity.

(c) Show the Motzkin’s original definition (stated here) is equivalent to the one given in class by showing
that the original definition satisfies the following recursion.

mn = mn−1 +

n
∑

k=2

mk−2mn−k, n > 0

4. Find a formula tn for the number of triangulations of an (n+ 2)-gon. (e.g., t1 = 1 and t2 = 2 since there is
one triangulation of a triangle and there are two triangulations of a square).

03/19

1. Consider the lattice of compositions, (Kn,≤). Here Kn is the set of all compositions of n and α ≤ β is a
refinement of compositions defined by

If [α1, α2, . . . , αp] � α and [β1, β2, . . . , βq] � β, then [αk1
, αk2

, . . . , αkl
] � βk for k ∈ [q].

For example, in K11, 3 + 2 + 5 + 1 is a refinement of 5 + 5 + 1 hence [3, 2, 5, 1] ≤ [5, 5, 1]. On the other
hand, [3, 3, 4, 1] � [5, 5, 1]. Sketch the Hasse diagram for K4.

2. The Young lattice (Y,≤) is the set of all integer partitions and α ≤ β if the Young diagram for α is a
contained in the Young diagram for β. Sketch the Hasse diagram for Y up to integer partitions of 4.

03/21

1. Find all linear extensions (see Example 16.9 of the text) of the 5 posets shown in Figure 16.3 from the text.

6

https://users.math.msu.edu/users/hensh/courses/482/spring25/lectures/05-InversionTheoremsP5.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/handouts/CatalanNumbers.pdf
https://users.math.msu.edu/users/hensh/courses/482/spring25/exercises/Set01.pdf
https://en.wikipedia.org/wiki/Motzkin_number
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2. List all 4-element posets.

3. How many linear extensions do the posets below have?

b

b

b b

a c d

b
b

b

b

b

a c

db

03/24

1. Consider the poset P shown below and the linear extension L(a) = 1, L(b) = 3, L(c) = 2, L(d) = 4 to
answer the questions that follow.

b

b b

b

a = 0̂

c

d

b

(a) Let Z = Zζ be the upper-triangular matrix associated with zeta function ζP of P . Find Z.

(b) Use a CAS to find the matrix M = Mµ associated with the Möbius function µP of P .

(c) Now let µ(x) = µ(a, x) and compute µ(x) for all x ∈ P . Compare to the values that we obtained in
class using the linear extension K(a) = 1,K(b) = 2,K(c) = 3,K(d) = 4.

2. Repeat the previous exercise for the divisor lattice D30. If you are working with a classmate,

choose different linear extensions and compare results.

3. Let P = {a, b, c, d, e, f} be a poset with linear extension L : P → [6] defined by
L(a) = 1, L(b) = 2, . . . , L(f) = 6. Suppose that ZL, the zeta matrix of P , is defined as

ZL =























1 1 1 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1























Answer the questions below.

7
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(a) Use ZL to sketch the Hasse diagram for P .

(b) Use the diagram that you created in part (a) to compute µ(a, y) for all y ∈ P . Also, explain how

to use this link to check your values.

03/26

1. For each of the following posets (P,≤), sketch the Hasse diagram and use Theorem 16.15 from the text to
compute µ(x) := µ(0̂, x) for all x ∈ P .

(a) P = 2[4] and the partial order is set containment. That is, x ≤ y if x ⊆ y.

(b) P = Π4, the (set) partition poset. Here the partial order is “refinement”. That is, x ≤ y if each block
in x is contained in a block in y. For example, 1/2/34 ≤ 12/34.

(c) P = D40, the divisor lattice with the usual partial order.

Solution:

b

b

b

b

b

b

b

b

1 = 0̂

5 −1

10 1

20 0

−1 2

0 4

0 8

0 40The Mobius function values are shown in red. For example,

µ(20) = µ(1, 20) = −(µ(1, 1) + µ(1, 2) + µ(1, 5) + µ(1, 4) + µ(1, 10))

= −(1− 1− 1 + 0 + 1)

= 0

Notice that we can also appeal directly to 16.20 to conclude that
µ(1, 20) = 0 since 20

1 is not square-free.

2. Construct the ζ matrix Z for the divisor lattice D40 and use a CAS to find the µ matrix M . Compare the
first row of M with the values derived from the exercise above.

Solution:

Note: The first row of the ζ matrix Z just gives the linear order that was used to compute the
entries (of Z) and is not actually part of the matrix.

Z =





































1 2 4 5 8 10 20 40

1 1 1 1 1 1 1 1

0 1 1 0 1 1 1 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1





































M =

































1 −1 0 −1 0 1 0 0

0 1 −1 0 0 −1 1 0

0 0 1 0 −1 0 −1 1

0 0 0 1 0 −1 0 0

0 0 0 0 1 0 0 −1

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 1

































Compare the first row of M with the Mobius function values displayed in exercise 1(c) above.

8
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03/28

1. Read the proof of Theorem 7.6 in the text.

2. Verify the statement that the intervals [x, y] and [1, y/x] are isomorphic as posets in Example 16.20 of the
text.

03/31

1. Use the Theorem 7.6 to re-prove Theorem 2 in the Binomial Inversion handout.

Solution:

9

https://users.math.msu.edu/users/hensh/courses/482/spring25/handouts/BinomialInversion.pdf
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2. Let P be the poset of the positive integers with x ≤ y ∈ P if x | y. Also, let p1, p2, . . . , pk be k distinct
primes and let y = p1 · p2 · · · pk. Show that [1, y] is isomorphic to Bk.

Solution:

Let f : Bk → [1, y] be defined as follows. f(∅) = 1 and for ∅ 6= T ⊆ [k], let f(T ) =
∏

m∈T pm. It is
easy to confirm that f is a bijection. Also, f is order-preserving, for if T ⊆ S ⊆ [k], then

f(T ) =
∏

m∈T

pm and f(S) =
∏

m∈S

pm

Now it is easy to conclude that f(T ) | f(S). That is, f(T ) ≤ f(S), as expected.

Note: The conclusion is false if the primes p1, p2, . . . , pk are not distinct. Where did we use this
fact in the proof?

3. Let P be the poset shown below and consider the linear extension (x1, x2, x3, x4, x5) = (c, a, b, d, e). Let
f : P → R be defined be f(c) = f(x1) = −3, f(a) = 1, f(b) = 2, f(d) = 6, f(e) = 10. Finally, let g : P → R
be given by

g(y) =
∑

x≤y

f(x) (19)

b

b b

b

b

a

b c

d

e

(a) Construct the zeta matrix Z associated with this linear extension.
Note: It should be different than the matrix that we discovered
in class. Also, use a CAS to find the Mobius matrix M .

(b) Use the matrix Z to determine the values of the function g defined
in (19). Compare with the values that we computed in class.

(c) Let f = [f(x1) f(x2) f(x3) f(x4) f(x5)] and similarly for g.
Confirm that f = gM .

04/02

1. Let P and Q be posets. Show that P ×Q with partial order as given by Definition 16.23 is a poset.

2. Construct a poset P such that µ(0̂, x) = n for any n ∈ Z.

3. Let P and Q be posets and consider the following alternative (partial) orders on P ×Q. Is P ×Q a poset
under the given order? Note: Throughout, we assume that [p, p′] ⊂ P and [q, q′] ⊂ Q and, for example, we
write p ≤ p′ instead of p ≤P p′, etc.

(a) (p, q) ≤ (p′, q′) if p < p′ or if p = p′ and q ≤ q′.

(b) (p, q) ≤ (p′, q′) if p ≤ p′.

10
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(c) (p, q) ≤ (p′, q′) if p < p′ and q < q′ or p = p′ and q = q′.

04/04 The exercises below depend on the following results.

Proposition. Let [x, y] be an interval in Πn with the usual refinement (partial) order. If
y = B1/B2/ · · · /Bk and if each Bi splits into ni blocks in x, then

[x, y] ∼=
k
∏

i=1

Πni
(20)

In particular,

µ(x, y) =

k
∏

i=1

µ(Πni
),

by Theorem 16.24. For example, let x = 1/3/256/47 and y = 1347/256 in Π7. Then x < y and

µ(x, y) = µ(Π3)µ(Π1)

= (−1)22! · (−1)00! = 2

And the last line follows since

µ(Πn) = (−1)n−1(n− 1)! (21)

as we showed in class.

1. Use the above results to compute µ(x, 1̂) for all x ∈
{

[4]
k

}

for each k ∈ [3]. Also, compute

µ(13/2/48/56/7, 123478/56) and µ(13/2/48/56/7, 1̂) in Π8.

2. Let {fn}n≥1 where fn = 2Cn − n and Cn are the Catalan numbers. Let Πn be the set partition poset with
the usual refinement order. Let F : Π4 → Z be defined by the rule F (x) = f5−|x| where |x| is equal to the
number of blocks in x. If we define G(y) =

∑

x≤y F (x), then by Mobius inversion

F (y) =
∑

x≤y

G(x)µ(x, y) (22)

Use (22) to show that F (1234) = 24.

04/07

1. Find an interval [x, y] ⊂ Πn such that

(a) µ(x, y) = −12

(b) µ(x, y) = 96

Note: In each case, you will also need to specify the value of n. Answers will not be unique.

2. In our textbook’s the definition of the incidence algebra, I(P ), it is stated that P must be a locally finite
poset. Why is this?

11
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3. Prove (20) in the proposition stated at the beginning of the assignments from 04/04.

4. Show that
∏

n is a lattice. In addition, verify the following

Suppose that ρ, τ ∈ ∏

n. Then δ = ρ∨ τ is the partition such that b and c are in the same block of
δ if and only if these is a sequence of blocks B1, B2, . . . , Bm where each Bi is a block of either ρ or
τ , b ∈ B1, c ∈ Bm, and Bi ∩Bi+1 6= ∅ for all i.

04/09

1. Let L be a lattice with x, y, z ∈ L. Prove the following statements.

(a) (x ∧ y) ∧ z = x ∧ (y ∧ z)

(b) x ≤ y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y

(c) x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z)

2. If L is a lattice and M is a poset and if there is an isomorphism f : L → M , then M is also a lattice. In
addition, for x, y ∈ L,

f(x ∧ y) = f(x) ∧ f(y)

Note: Recall that poset isomorphisms are, by definition, order-preserving.
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1. Let A0 =
∑

n≥1 a2nx
n and let A1 =

∑

n≥0 a2n+1x
n. In class we showed that a2n+1 =

∑n
j=0 a2ja2n−2j .

Show that
A1 = (1 +A0)

2

2. Let an = 2 · 3n for all n ∈ Z. Recall that A(x) =
∑

n≥0 anx
n = 2(1− 3x)−1. Let B(x) =

∑

n≥1 a−nx
n. Is

there any relationship between A(x) and B(x)? More specifically, is there a transformation T that such
that B(x) = T (A(x))?

3. How many acyclic orientations are there for each of the graphs below? In each case, sketch a few.

(a) K3

(b) P3

(c) C4
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