
MTH 482 Exercises - Exam 1 Spring 2025

Date Section Exercises** (QC - Quick Check and CE - Class Exercises)

01/13* 8.2 CE - 31, 32

01/15* 8.2 CE - 24, 45, 46

01/17* 5.3 CE - 7, 8, 11, 14

01/22* 5.3 CE - 30

01/24* - See below.

01/27* - See below.

01/29* - See below.

01/31* - See below.

02/03 - 2, 4, 7 from here.

02/05* - See below.

02/07* - See below.

02/10* - See below.

02/12* - See below.

02/17* - 1(c), 2, 4, from here. Also, see below.

01/13

1. Extend Rule 3′ to a product of 3 exponential generating functions. Verify your formula.

Solution:

Let A
egf←−−→ {an}n, B egf←−−→ {bn}n, and C

egf←−−→ {Cn}n. Then

A(x)B(x)C(x) =
∑

n≥0

∑

k

(
n

k

)

akbn−k

︸ ︷︷ ︸

hn

xn

n!
C(x) =

∑

n≥0

hn
xn

n!
C(x)

=
∑

n≥0

∑

j

(
n

j

)

hjcn−j
xn

n!

=
∑

n≥0

∑

j

(
n

j

)
∑

k

(
j

k

)

akbj−k cn−j
xn

n!

=
∑

n≥0

n∑

j=0

j
∑

k=0

n!

k!(j − k)!(n− j)!
akbj−k cn−j

xn

n!

=
∑

n≥0

∑

i+j+k=n

n!

i!j!k!
aibjck

xn

n!

2. Recall that π ∈ Sn is called an involution if π2 = id. Let in count the number of involutions in Sn (the set
of all permutations on [n]) and let i0 = 1.

(a) Show that i1 = 1 and for n ≥ 0,
in+2 = in+1 + (n+ 1)in (1)

Solution:
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An involution must consist entirely of 1-cycles and 2-cycles. Now the left-hand side counts the
number of involutions on [n+ 2]. For the right-hand side, there are in+1 involutions with n+ 2 in
a 1-cycle. Otherwise, there are

(
n+1
1

)
= n+ 1 ways to choose the element paired with n+ 2 and in

ways to permute the remaining items (as an involution). So by the product rule, there are
(n+ 1)in ways that n+ 2 can be in a 2-cycle. Since these cases are mutually exclusive, the result
now follows by the sum rule.

(b) Show that
∑

n≥0

in
xn

n!
= ex+x2/2

Solution:

Let A(x) =
∑

n in xn/n!. According to the Wilf rules, the recursion (1) is equivalent to the
following differential equation

A′′(x) = A′(x) + (xD + I)A(x) (D = derivative operator and I = identity map)

= (x+ 1)A′(x) +A(x) = D((x+ 1)A(x))

Integrating both sides yields

A′(x) = (x+ 1)A(x) + C (but C = 0 since A′(0) = A(0) = 1)

Rearranging and integrating gives

A′(x)

A(x)
= 1 + x

lnA(x) = x+ x2/2 + C (and once again C = 0 since A(0) = 1)

The result now follows.

3. Let {fn}n≥0 be a sequence and let ∆ be the forward difference operator. That is, ∆fj = fj+1 − fj . Show
that

∆nf0 =
∑

k

(
n

k

)

fk(−1)n−k (2)

Note: ∆nfk = ∆∆n−1fk and ∆0fk = fk.

Solution:
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We induct on n. Clearly (2) holds when n = 0 since both sides produce f0. Now suppose that (2)
holds. Then

∆n+1f0 = ∆∆nf0 = ∆

n∑

k=0

(
n

k

)

fk(−1)n−k

=
n∑

k=0

(
n

k

)

(fk+1 − fk)(−1)n−k

=
n∑

k=0

(
n

k

)

fk+1(−1)n−k −
n∑

k=0

(
n

k

)

fk(−1)n−k

= fn+1 +

n∑

k=1

(
n

k − 1

)

fk(−1)n+1−k +

n∑

k=1

(
n

k

)

fk(−1)n+1−k + (−1)n+1f0

= fn+1 +

n∑

k=1

((
n

k − 1

)

+

(
n

k

))

fk(−1)n+1−k + (−1)n+1f0

= fn+1 +
n∑

k=1

(
n+ 1

k

)

fk(−1)n+1−k + (−1)n+1f0

=

n+1∑

k=0

(
n+ 1

k

)

fk(−1)n+1−k

as expected.

01/15

1. Let c0 = 1 and for n > 0 let cn count the number of n-permutations in which each cycle is colored red,
green, or blue.

(a) Find a sum formula for cn.

Solution:

Let π ∈
[
[n]

k

]

. Then π can be colored in 3k ways. So by the product rule, there are

[
n

k

]

3k ways to

color n-permutations that consist of exactly k cycles. Summing across k yields

cn =
∑

k

[
n

k

]

3k

(b) Find a simple factorial formula for cn.

Solution:

Manual computation using the above formula produces the sequence 1, 3, 12, 60, . . .. So we guess
cn = (n+ 2)!/2, n ≥ 0. Fortunately, we don’t have to guess. In Math 481 we showed that

∑

k

[
n

k

]

xk = xn = x(x+ 1) · · · (x+ n− 1)

After the substitution x = 3, we obtain

cn = 3(3 + 1) · · · (3 + n− 1)

=
2

2

3(3 + 1) · · · (2 + n)

1
=

(n+ 2)!

2
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(c) Let C(x) =
∑

n cnx
n/n!. Find the closed form of C(x).

Solution:

C(x) =
∑

n≥0

(n+ 2)!

2

xn

n!

=
1

2

∑

n≥0

(n+ 2)(n+ 1)xn

= D2

(
1

1− x

)

=
1

(1− x)3

(d) Now let a0 = a1 = 1 and let an+2 = cn for n ≥ 0. Find the closed form for A(x) =
∑

n anx
n/n!. Note:

I will explain the reason for this part later.

Solution:

According to the Wilf rules, A′′(x) = C(x). It follows that A(x) = (1− x)−1.

2. A coach wishes to break up her n-member team into 3 practice squads. Players on squad A will wear
either red, white, or blue jerseys, those on squad B will wear yellow or green jerseys, and squad C players
will wear black jerseys. Let t0 = 1 and for n > 0, let tn count the number of ways that she can do this.

(a) Find a simple formula for tn.

Solution:

There are 6 jersey colors, so this should just be 6n.

(b) Let T (x)
egf←−−→ {tn}. Find the closed form of T (x) and use it to confirm your answer in part (a).

Solution:

Let i, j, and k be the number of players resp. on squad A, squad B, and squad C. Then

tn =
∑

i+j+k=n

n!

i!j!k!
3i 2j 1k

So by the Wilf rules, we must have

T (x) =
∑

n

tn
xn

n!
=
∑

n

3n
xn

n!

∑

n

2n
xn

n!

∑

n

xn

n!

= e3x e2x ex = e6x

as expected.

(c) In addition to the initial conditions, suppose also that squad B has a captain and players on squad C
wear numbered black jerseys. Find the closed form for T (x) in this case.

Solution:
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tn =
∑

i+j+k=n

n!

i!j!k!
3i j2j k!

So by the Wilf rules, we must have

T (x) =
∑

n

tn
xn

n!
=
∑

n

3n
xn

n!

∑

n

n2n
xn

n!

∑

n

n!
xn

n!

= e3x 2xe2x
1

1− x
=

2xe5x

1− x

The first few terms of this sequence are

0, 2, 24, 222, 1888, 15690, 131640, 1140230, 10371840, . . .

01/17 Let λ = (λ1, λ2, . . . , λk) ⊢ n and define π : Pk([n])→ P≤k([n− k]) by π(λ) = (λ1 − 1, λ2 − 1, . . . , λk − 1). Here
we agree to collapse any zero entries. Show that π is a bijection.

01/22

1. We say that an integer partition λ is self-conjugate if λ = λt. Show that the number of self-conjugate λ ⊢ n
is equal the number of µ ⊢ n having distinct parts and odd. Hint: Use Young diagrams to find a bijection
between the collection of self-conjugate partitions Pelf([n]) and the collection of partitions with distinct
parts and odd, call it Pdo([n]).

Solution:

• • • • •
• • •
• •
•
•

⇐⇒

• • • • • • • • • •
• • •

2. For n ≥ m ≥ 0, show that
m∑

k=0

(
m

k

)

kn(−1)k = (−1)mm!

{
n

m

}

(3)

Solution:
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Recall that the Stirling numbers of the second kind can be defined as the numbers that allow
powers of x to expressed in terms of the falling factorial. We have

xn =

n∑

k=0

{
n

k

}

xk (4)

Thus

∑

k

(
m

k

)

kn(−1)k =

m∑

k=0

(
m

k

)
∑

j

{
n

j

}

(−1)kkj (by (4))

=
∑

j

j!

{
n

j

}
∑

k

(
m

k

)(
k

j

)

(−1)k

=
∑

j

j!

{
n

j

}

δjm(−1)m

= (−1)mm!

{
n

m

}

3. Let D(x) =
∏

j≥0(1 + x2j ). Find a combinatorial proof that D(x) = (1− x)−1.
Hint: Show that [xn]D(x) = 1 for all n.

Solution:

The basic idea is that there is exactly one way to write any positive integer in base 2.

4. Let g(n) count the number of partitions of n that have no part equal to 1 or 2. Express g(n) in terms of
p(n).

Solution:

Observe that this implies that n ≥ 3. Now let G(x) =
∑

n g(n)x
n. Then

G(x) =
∑

n≥0

f(n)xn =
1

1− x3
· 1

1− x4
· · ·

=
1− x

1− x
· 1− x2

1− x2
· 1

1− x3
· 1

1− x4
· · ·

= (1− x− x2 + x3)E(x)

It follows that

g(n) = [xn](1− x− x2 + x3)E(x)
= [xn]E(x)− [xn−1]E(x)− [xn−2]E(x) + [xn−3]E(x)
= p(n)− p(n− 1)− p(n− 2) + p(n− 3), n ≥ 3

01/24

1. Binary Words - Let B = {a, b} where |a| = |b| = 1. Find the first 6 terms in the counting sequence An of
A = SEQ(B).

**Exercises from the A Walk Through Combinatorics, 4th ed., Miklós Bóna, World Scientific 6
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2. Let I = SEQ (Z•) \ {�}. Find the generating function for A = SEQ(I).

Solution:

Notice that I has one object of size 1, one object of size 2, etc. It follows that its generating
function is 1

1−x − 1 = x
1−x and the ordinary generating function of the class A is

A(x) =
1

1− x
1−x

=
1− x

1− 2x
(5)

and so, its counting sequence must be

[xn]A(x) = [xn]
1

1− 2x
− [xn]

x

1− 2x
(6)

= 2n − 2n−1 = 2n−1 (7)

In other words, A is combinatorially equivalent to the class of compositions since they have the
same counting sequences.

3. Let Z• = {•} and B(j,k) = Z• × · · · × Z•
︸ ︷︷ ︸

j factors

+Z• × · · · × Z•
︸ ︷︷ ︸

k factors

= Zj
• + Zk

• .

(a) Find the generating function of B(2,5) and C = SEQ
(
B(2,5)

)
.

Solution:

We have B(x) = x2 + x5 so that

C(x) =
∑

n

cn x
n =

1

1− x2 − x5

It is easy to confirm (by writing out the elements in C) that the first few terms of coefficient
sequence {cn} must be 1, 0, 1, 0, 1, 1, . . . in agreement with this.

(b) Find the generating function of B(1,k) and C = SEQ
(
B(1,k)

)
.

Solution:

We have B(x) = x+ xk so that

C(x) =
∑

n

cn x
n =

1

1− x− xk

(c) In class, we showed that the generating function of A = SEQ
(
B(1,2)

)
was A(x) = (1− x− x2)−1. Find

the generating function for C = SEQ(A \ E). The first few terms in the sequence of coefficients cn are
1, 1, 3, 8, 22, 60, . . .. Note: You will need to figure out what the generating function Aǫ(x) for the class
A \ E must be, but that shouldn’t be too difficult since Aǫ(x) = A(x)−A(0).
Using the symbols •, , also list the 8 elements of size three. For example,

b

b

b b

are the 3 elements of size two.

Solution:
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Since Aǫ(x) =
1

1−x−x2 − 1, the ordinary generating function for C is

C(x) =
1

1−Aǫ(x)
=

1− x− x2

1− 2x− 2x2

01/27

1. More on exponential generating functions.

(a) On Quiz 1 we used the identity in (3) to find a closed form for the exponential generating function
below.

Sk(x) =
∑

n≥0

{
n

k

}
xn

n!
=

(ex − 1)k

k!
(8)

Reprove (8) using the recursion for
{
n
k

}
. Hint: Try induction on k.

Solution:

Following the hint, we proceed by induction on k. For k = 0, we have

S0(x) =
∑

n≥0

{
n

0

}
xn

n!

=

{
0

0

}
x0

0!
+

{
1

0

}
x1

1!
+ · · ·+

{
n

0

}
xn

n!
+ · · ·

= 1 + 0 + 0 + · · ·

in agreement with (8) and the base case is established. Now suppose (8) holds for all j < k. Then

S′
k(x) =

∑

n≥0

{
n+ 1

k

}
xn

n!
(Wilf Rule 1′)

= k
∑

n≥0

{
n

k

}
xn

n!
+
∑

n≥0

{
n

k − 1

}
xn

n!
(by recursion)

= kSk(x) +
(ex − 1)k−1

(k − 1)!
(by induction)

Rearranging produces the differential equation

S′
k(x)− kSk(x) =

(ex − 1)k−1

(k − 1)!

which can be evaluated by elementary techniques. We try multiplying by the integrating factor
e−kx to obtain

Dx

(
e−kxSk(x)

)
=

(1− e−x)k−1

ex(k − 1)!

Integrating both sides produces

e−kxSk(x) =
(1− e−x)k

k!
+ C (but C = 0 since Sk(0) = 0)

Now this last equation is equivalent to (8).

Remark. Notice that S1(x) =
∑

n≥1

{
n
1

}
xn

n! =
∑

n≥1
xn

n! = ex − 1. One could then determine that

S2(x) = (ex − 1)2/2, as we do in part (b) below, to “guess” the general formula in (8).
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(b) Find a formula for Ck(x) =
∑

n≥0

[
n
k

]
xn

n! and then use the recursion for
[
n
k

]
to verify your formula.

Solution:

We claim that

Ck(x) =
∑

n≥k

[
n

k

]
xn

n!
=

1

k!

(

ln
1

1− x

)k

(9)

We outline the proof below.

(i) First recall that
[
n
1

]
= (n− 1)!. Thus

C1(x) =
∑

n

[
n

1

]
xn

n!
=
∑

n≥1

xn

n

It follows that

C ′
1(x) =

∑

n≥1

xn−1 =
1

1− x

so that

C1(x) = ln
1

1− x

(ii) Before we try to guess a general pattern, let’s try to find the closed form of C2(x). Taking
derivatives in part (i) turned out to be useful. If we apply Wilf Rule 1′ together with the
recursion formula for

[
n
k

]
, we obtain

C ′
2(x) =

∑

n

[
n+ 1

2

]
xn

n!

=
∑

n

n

[
n

2

]
xn

n!
+
∑

n

[
n

1

]
xn

n!

= xC ′
2(x) + C1(x)

Rearranging yields the differential equation,

C ′
2(x) =

1

1− x
ln

1

1− x

which admits the solution,

C2(x) =
1

2

(

ln
1

1− x

)2

(iii) We claim that the general form appears to be

Ck(x) =
1

k!

(

ln
1

1− x

)k

The proof of this fact is nearly identical to part (ii) and we leave it as an exercise. See also
part (a) above.

**Exercises from the A Walk Through Combinatorics, 4th ed., Miklós Bóna, World Scientific 9
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2. Consider the sequence {an} satisfies the following recursion. a0 = a1 = 1, a2 = 2 and for n > 2

an+1 = (n+ 1)an −
(
n

2

)

an−2

The first few terms of this sequence are 1, 1, 2, 5, 17, 73, . . .. Show the exponential generating function
A(x) =

∑

n an x
n/n! satisfies the ordinary differential equation

(1− x)A′(x) =

(

1− x2

2

)

A(x)

and is given by

A(x) =
ex/2+x2/4

√
1− x

01/29

(a) Prove that Subset ∼= SEQ({0, 1}) with |0| = |1| = 1 (see Example 1 here).

(b) Use equation (1) from here to prove the Binomial theorem. That is, prove that (1 + y)n =
∑

k

(
n
k

)
yk.

(c) Convince yourself that Definition 2 from here makes sense by generating all of the terms in the expansion
of the right-hand side of equation (1) for 0 ≤ n ≤ 3.

01/31

1. List at least 8 elements in each of the following classes. Also, find the corresponding generating functions.

(a) b SEQ(a)

Solution:

The ordinary generating function is
x

1− x

(b) SEQ(b SEQ(a))

Solution:

The ordinary generating function is
1

1− x
1−x

Notice that we used the generating function from part (a).

(c) SEQ(a) SEQ(b SEQ(a))

Solution:

The ordinary generating function is

1

1− x

1

1− x
1−x

=
1

1− 2x

Notice that we used the generating function from part (b).
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2. Let W2 = SEQ(a) SEQ(b SEQ(a)).

(a) Identify W2. List enough elements to see what is going on and find a more direct description.

Solution:

Should be words of arbitrary length using the alphabet {a, b}, in agreement with the generating
function that we found in problem 1(c) above.

(b) What is W1? Express W3 in two different ways.

Solution:

W1 = ε+ a+ aa+ aaa+ · · ·. In other words (no pun intended), words of arbitrary length using
the alphabet {a}.
W3 should be words of arbitrary length using the alphabet {a, b, c}.

01/31

1. Let B = {•, • , }. So B has 1 object of size one and 2 objects of size three. The first few terms in
the counting sequence for the class A = SEQ(B) are 1, 1, 1, 3, 5, 7, 13, 23, . . . Answer the questions below.

(a) List the 5 elements of size four and the 7 elements of size five in A.

Solution:

We list the 5 elements of size 4:

(•, •, •, •), (•, • ), (• , •), (•, ), ( , •)

Notice that the first element is an (ordered) 4-tuple, the second and third are ordered triples, and
the last two are ordered pairs.

(b) Find the generating function of A.

Solution:

The ordinary generating function of B is B(x) = x+ 2x3. It follows that

A(x) =
1

1− x− 2x3

(c) Find the generating function of SEQ( A). List all objects of size five.

Solution:

The ordinary generating function is

1

1− x2A(x)
=

1

1− x2

1−x−2x3

The first 12 terms of the counting sequence of this class are 1, 0, 1, 1, 2, 5, 9, 18, 37, 73, 146, 293.
As you can see, there should be 5 elements of size five and they are

( , ), ( , • ), ( , , •), ( , •, ), ( , •, •, •)

The first two elements are ordered pairs, the next two are ordered triples, and the last item is an
ordered 4-tuple.
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2. Let N(x) = x(1− x)−2 and notice that the counting sequence is {n}n≥0.

(a) Let
∑

n fnx
n = E(x) = (1−N(x))−1 − 1 and find the first 6 terms of {en}n.

Solution:

Using a CAS, the first 11 terms are 0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765.

(b) The sequence above is actually the even numbered terms of a very famous sequence. Identify the
sequence and prove your claim.

Solution:

These look like the even terms from the (shifted) Fibonacci sequence, 0, 1, 1, 2, 3, 5, 8, 13, 21. So
let F (x) = x(1− x− x2)−1 (the ordinary generating of the shifted Fibonacci sequence). Then the
even part of F (x) is

F (x) + F (−x)
2

=
1

2

(
x

1− x− x2
+

−x
1 + x− x2

)

=
1

2

(
x+ x2 − x3 − x+ x2 + x3

(1− x− x2)(1 + x− x2)

)

=
x2

1− 3x2 + x4

= E(x2)

02/05 Let k be a fixed nonnegative integer and let L be a finite label set. Find the exponential generating functions
of each of the following labeled structures.

Solution:

Most of these were done in class or in section 4.3 of Sagan’s book here.

(a) L→ B(L), set partitions on L.

(b) L→
{
L
k

}
, set partitions on L of size k.

(c) L→
{
L
k

}

o
, ordered set partitions on L of size k. Note: The blocks are ordered. So, for example,

12/3 6= 3/12.

(d) L→ G(L), permutations on L.

(e) L→
[
L
k

]
, permutations on L with exactly k cycles.

(f) L→
[
L
k

]

o
, permutations on L with exactly k ordered cycles.
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02/07

1. Show that
[
·
2

]

o
= (
[
·
1

]

o
×
[
·
1

]

o
)(·).

Solution:

Done in class.

2. Show that
{
·
2

}

o
= (E × E)(·). More generally, show that

{
·
k

}

o
= E

k
(·).

Solution:

Similar to problem 1 above.

02/07

1. Find the exponential generating function for FS , FT , and FS×T for each of the following.

(a) S(·) = 2· and T (·) =
{
·
2

}
.

Solution:

In class we showed that FS(x) = e2x and FT (x) = (ex − 1)2/2. So by the Product Rule,

FS×T (x) =
e2x(ex − 1)2

2

(b) S(·) = 2· and T (·) =
[
·
3

]
.

Solution:

In class we showed that FS(x) = e2x and FT (x) =
1
3!

(

ln 1
1−x

)3

. So by the Product Rule,

FS×T (x) =
e2x

3!

(

ln
1

1− x

)3

2. Show the following.

(a)
{
n
2

}
= 2n−1 − 1

Solution:

We appeal directly to the fact that F{·2}(x) =
(ex−1)2

2 . Thus

{
n

2

}

= n![xn]
(ex − 1)2

2
=

n!

2
[xn](e2x − 2ex + 1) =

n!

2

(
2n

n!
− 2

1

n!

)

= 2n−1 − 1
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(b)
[
n+1
2

]
= n!

∑n
k=1

1
k

Solution:

According to Table 4.3.1

F[·2]
(x) =

1

2!

(

ln
1

1− x

)2

Thus
[
n+ 1

2

]

= (n+ 1)![xn+1]F[·2]
(x)

= (n+ 1)![xn+1]
1

2!

(

ln
1

1− x

)2

=
(n+ 1)!

2
[xn+1]




∑

n≥1

xn

n





2

∗
=

(n+ 1)!

2
[xn+1]

∑

n≥1

n−1∑

k=1

1

k

1

n− k
xn

=
(n+ 1)!

2

n∑

k=1

1

k

1

n+ 1− k

∗∗
=

(n+ 1)!

2

n∑

k=1

1

n+ 1

(
1

k
+

1

n+ 1− k

)

=
n!

2

(
n∑

k=1

1

k
+

n∑

k=1

1

k

)

= n!

n∑

k=1

1

k

Here we used Wilf Rule 3 at step (*) and a partial fraction decomposition at step (**).
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Solution:

Here’s another approach. Let cn =

[
n+ 1

2

]

and let C(x) =
∑

n cn x
n/n!. It is routine (using

either the Wilf Rules or the recursion for cycle numbers) to show that

C(x) =
1

1− x
ln

1

1− x

It follows that
[
n+ 1

2

]

= n![xn]C(x) = n![xn]
1

1− x
ln

1

1− x

= n![xn]
1

1− x

∑

n≥1

xn

n

(∗)
= n![xn]

∑

n≥1

n∑

k=1

1

k
xn

= n!
n∑

k=1

1

k

Here (*) follows by Wilf Rule 5 and we are done.

02/10

1. Show that S([4]) = Π(c)([4]). Here c(·) =
[
·
1

]
.

Solution:

Outlined in class.

2. Find Π(
{
·
k

}
)([5]) for k ∈ {2, 3}.

3. Let jn count the number of involutions in Sn that have no fixed points. Give combinatorial proofs that
j2n+1 = 0 and j2n = 1 · 3 · 5 · · · (2n− 1), n > 0.

Solution:
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In exercise 01/13-2(b), we showed that involutions must be made up of 1-cycles and 2-cycles only.
So if π is an involution with no fixed points, then π must only contain 2-cycles. In other words,
j2n+1 = 0. Let J([2n]) be the collection of all involutions in S([2n]) with no fixed points.

Now let n > 0. Then there are
(
2n
2

)
ways to choose two elements for the first cycle, followed by

(
2n−2

2

)
to choose two elements for the second cycle, and so on. So by the product rule, there are

(
2n
2

)
·
(
2n−2

2

)
· · ·
(
2
2

)
ways to create an ordered involution with no fixed points. Since the order of

the cycles is irrelevant, we have

j2n = |J([2n])| = 1

n!

(
2n

2

)

·
(
2n− 2

2

)

· · ·
(
2

2

)

=
2n(2n− 1) · · · 2 · 1

n!2n

=
2n(2n− 2) · · · 4 · 2

n!2n
(2n− 1)(2n− 3) · · · 5 · 3 · 1

= 1 · 3 · 5 · · · (2n− 1)

as desired.

02/12 This a continuation of problem 3 from 02/10.

(a) Use the exponential formula to find the closed form of the exponential generating function
∑

n jn xn/n!.
(C.f. 01/13-2(b) above)

Solution:

An involution is a permutation made up only of cycles of length 1 or 2. If fixed points are
forbidden, then jn must count only permutations made up of 2-cycles. So let S(L) =

[
L
1

]
if |L| = 2

and S(L) = ∅ otherwise. It follows that sn = δ2(n) and the exponential generating function of
S(·) is

FS(x) =
∑

n

δ2(n)
xn

n!
=

x2

2

It follows that

∑

n

jn
xn

n!
= FΠ(S)(x) = eFS(x)

= ex
2/2

(b) Use the function from part (a) to give a generating function derivation of the formula in problem 3.

Solution:
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Notice that

ex
2/2 =

∑

n

2−n x2n

n!
(10)

It is then easy to see that j2n+1 = (2n+ 1)![x2n]ex
2/2 = 0 since the function in (10) is even. On

the other hand,

j2n = (2n)! [x2n]
∑

n

2−n x2n

n!

=
(2n)!

n!

1

2n

which is equivalent to the formula given in problem 3 above.

(c) Let tn count the number of permutations in Sn with no fixed points whose cube is the identity. For
example, let π = (132) ∈ S3. Then π has no fixed points and π3 = id. Find the closed form of the
exponential generating function

∑

n tn x
n/n!.

Solution:

Such a permutation must be made up only of cycles of length 3. So let S(L) =
[
L
1

]
if |L| = 3 and

S(L) = ∅ otherwise. It follows that sn = 2δ3(n) and the exponential generating function of
FS(x) = 2x3/3!. It follows by the exponential formula that

∑

n

tn
xn

n!
= e2x

3/6

Note: The reason that s3 = 2 is because (132) and (123) are the only permutations in S3 whose
cube is the identity with no fixed points. We leave any remaining details to the student.

(d) What happens if we allow fixed points in part (c)?

Solution:

∑

n

tn
xn

n!
= ex+2x3/6
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MTH 482 Exercises - Exam 1 Spring 2025

02/17

1. Let fn =
∑n

k=1(−1)k+1
(
n
k

)
1
k . Answer the questions below.

(a) Use binomial recursion to show that

fn =

n∑

k=1

1

k
(11)

Solution:

We proceed by induction on n. Clearly f1 = 1 in agreement with (11). Now suppose that (11)
holds. Then

fn+1 =

n+1∑

k=1

(−1)k+1

(
n+ 1

k

)
1

k

(1)
=

n+1∑

k=1

(−1)k+1

(
n

k

)
1

k
+

n+1∑

k=1

(−1)k+1

(
n

k − 1

)
1

k

(2)
=

n∑

k=1

(−1)k+1

(
n

k

)
1

k
+

1

n+ 1

n+1∑

k=1

(−1)k+1

(
n+ 1

k

)

= fn −
1

n+ 1

(
n+1∑

k=0

(−1)k
(
n+ 1

k

)

− 1

)

(3)
=

n∑

k=1

1

k
− 1

n+ 1
(0− 1)

=

n+1∑

k=1

1

k

as desired. Here we used the absorbtion/extraction property of the binomial coefficients on the
right-hand sum in step (2). We also used binomial recursion in step (1) and Proposition 1 on the
right-hand sum in step (3).

(b) Let gn =
∑n

k=1(−1)k+1
(
n
k

)
fk. Use binomial inversion to conclude that gn = 1/n.

Solution:

This is immediate.

(c) Verify by direct calculation that gn = 1/n.

2. Let an =
∑

k(−1)n−k
(
n
k

)
bk. Use a CAS and/or problem 1 from Quiz 5 to find the first 6 terms in each of

the following sequences. Also, use the OEIS to determine whether any of these new sequences are
“interesting”.

(a) bn are the Bell numbers. That is, bn = 1, 1, 2, 5, 14, 42, 132, 429, . . .

(b) bn are the Motzkin numbers, bn = 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, . . .

Note: The ordinary generating function for the Motzkin numbers is
1−

√

(1− x)2 − 4x2

2x2
.
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(c) bn are the Schröder numbers, bn = 1, 1, 3, 11, 45, 197, 903, 4279, . . .

Note: The ordinary generating function for the Schröder numbers is
1 + x−

√
1− 6x+ x2

4x
.

(d) bn are the Riordan numbers, bn = 1, 0, 1, 1, 3, 6, 15, 36, 91, 232, 603, . . .

Note: The ordinary generating function for the Riordan numbers is
1 + x−

√

(1− x)2 − 4x2

2x(1 + x)
.

3. In class we mentioned that the transformation F (x)→ 1

1− x
F

(
x

1− x

)

is called Euler’s series

transformation formula. Use this transformation formula to prove that

an =
n∑

k=0

(
n

k

)

bk iff bn =
n∑

k=0

(−1)n−k

(
n

k

)

ak (12)

Hint: Mimic the transformation proof we did to prove the Stirling Inversion Theorem in class on Monday.

Solution:

Done in class.

4. On Quiz 5, we showed that the exponential generating function for the Lah numbers
⌊
n
k

⌋
was

F⌊ ·k⌋(x) =
1

k!

(
x

1− x

)k

(13)

(a) Use (13) to discover a closed formula for
⌊
n
k

⌋
.

(b) Use (13) to show the following.

⌊
n+ 1

k

⌋

=
n!

(k − 1)!

n∑

j=0

(
j

k − 1

)

(14)

Hint: Wilf Rule 1′ should help.

Solution:

Done in class.
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