- 1.) Let $\mathcal{B} = \{\bullet, \bullet \bullet \bullet, \bullet \bullet \bullet\}$. So \mathcal{B} has 1 object of size one and 2 objects of size three. The first few terms in the counting sequence for the class $\mathcal{A} = SEQ(\mathcal{B})$ are $1, 1, 1, 3, 5, 7, 13, 23, \ldots$ Answer the questions below. *Note:* To be clear, $\bullet \bullet \notin \mathcal{A}$.
 - (a) (6 points) Notice that $(\bullet, \bullet \bullet \bullet, \bullet) \in \mathcal{A}$. Now list the other 6 elements of size five in \mathcal{A} .

Solution:

The 6 other elements are

(b) (7 points) Find the generating function of \mathcal{A} .

Solution:

$$A(x) = \frac{1}{1 - x - 2x^3}$$

(c) (7 points) Find the generating function of $\mathcal{C} = \text{SEQ}(\bullet \bullet \bullet \mathcal{A})$.

Solution:

$$C(x) = \frac{1}{1 - x^3 A(x)} = \frac{1}{1 - \frac{x^3}{1 - x - 2x^3}} = \frac{1 - x - 2x^3}{1 - x - 3x^3}$$

2. (7 points) Show that

(1)
$$x^{n} = \sum_{k=0}^{n} \binom{n}{k} (1+x)^{k} (-1)^{n-k}$$

Solution:

According to the Binomial Theorem

$$(1+x)^n = \sum_k \binom{n}{k} x^k$$

Now (1) follows by inversion.

We can also prove this directly. We have

$$\sum_{k} \binom{n}{k} (1+x)^{k} (-1)^{n-k} \stackrel{*}{=} \sum_{k} \binom{n}{k} (-1)^{n-k} \sum_{j} \binom{k}{j} x^{j}$$
$$= \sum_{j} x^{j} (-1)^{n} \sum_{k} \binom{n}{k} \binom{k}{j} (-1)^{k}$$
$$\stackrel{**}{=} \sum_{j} x^{j} (-1)^{n} (-1)^{n} \delta_{nj}$$
$$= x^{n}$$

as expected. Notice that we used the Binomial Theorem at step (*) and Proposition 1 at step (**).

3. (7 points) Let $A(x) \xleftarrow{\text{ogf}} \{a_n\}_n$ and $B(x) \xleftarrow{\text{ogf}} \{b_n\}_n$. Suppose that $a_n = \sum_k {n \choose k} \alpha^{n-k} b_k$ some nonzero real number α . Show that

(2)
$$A(x) = \frac{1}{1 - \alpha x} B\left(\frac{x}{1 - \alpha x}\right)$$

Solution:

$$A(x) = \sum_{n \ge 0} a_n x^n = \sum_{n \ge 0} \sum_k \binom{n}{k} \alpha^{n-k} b_k x^n$$
$$= \sum_{k \ge 0} b_k \alpha^{-k} \sum_{n \ge 0} \binom{n}{k} (\alpha x)^n$$
$$= \sum_{k \ge 0} b_k \alpha^{-k} \frac{\alpha^k x^k}{(1 - \alpha x)^{k+1}}$$
$$= \frac{1}{1 - \alpha x} \sum_{k \ge 0} b_k \left(\frac{x}{1 - \alpha x}\right)^k$$
$$= \frac{1}{1 - \alpha x} B\left(\frac{x}{1 - \alpha x}\right)$$

as desired.

- 4. (20 points) Let $S(\cdot) = {\binom{\cdot}{1}}$. Answer the questions below.
 - (a) Find the exponential generating function $F_{\mathcal{S}}(x) = \sum_{n \ge 0} {n \choose 1} x^n / n!$.

Solution:

This one is straightforward.

$$F_{\mathcal{S}}(x) = \sum_{n \ge 0} n \, \frac{x^n}{n!} = x D_x(e^x) = x e^x$$

(b) List the <u>distinct</u> elements in $(\mathcal{S} \times \mathcal{S})([3])$. Note: These elements should be written as ordered pairs.

Solution:

$$(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)$$

(c) Find the exponential generating function $F_{\mathcal{S}\times\mathcal{S}}(x)$. Note: $F_{\mathcal{S}\times\mathcal{S}}(x) \neq F_{(\cdot)}(x)$.

Solution:

By the Product Rule,

$$F_{\mathcal{S}\times\mathcal{S}}(x) = x^2 e^{2x}$$

(d) Use the exponential formula to find the exponential generating function for the partition structure $\Pi(S)$. In other words, find $F_{\Pi(S)}(x)$. Note: $S = \overline{S}$

Solution:

By the exponential formula

$$F_{\Pi(\mathcal{S})}(x) = e^{F_{\overline{\mathcal{S}}}(x)} = e^{xe^x}$$

The first few terms of the counting sequence are

1, 1, 3, 10, 41, 196, 1057, 6322, 41393, 293608, 2237921, 18210094

5. (16 points) Let n and k be integers. Let $\lfloor {n \brack k} \rfloor$ be the collection of all partitions of [n] into k linearly ordered blocks. As usual, let $\lfloor {0 \atop 0} \rfloor = 1$ and for n > 0, let $\lfloor {n \atop k} \rfloor = \left\lfloor {\lfloor {n \atop k} \rfloor} \right\rfloor$. As we noted in class, $\lfloor {n \atop k} \rfloor$ are called the Lah numbers (or Stirling Numbers of the 3rd kind). For example, $\lfloor {2 \atop 2} \rfloor = \{12/3, 21/3, 13/2, 31/2, 23/1, 32/1\}$. It follows that $\lfloor {3 \atop 2} \rfloor = 6$. Notice that only the ordering within each block matters, not the order of the blocks themselves, so 32/1 = 1/32, etc. It turns out that these numbers satisfy the following recursion.

together with additional boundary conditions $\binom{n}{k} = 0$ whenever n < 0 or $k \le 0$ or k > n.

(a) Find a combinatorial proof of the recursion (3).

Solution:

The left-hand side counts the number of partitions of [n + 1] into k linearly ordered blocks. Throughout the remainder of this proof, a partition means a partition with linearly ordered blocks.

Now for any partition in $\lfloor {n+1 \brack k}$, n+1 is either alone in a block or it is not. In the first case, we can append n+1 to any of the partitions in $\lfloor {n \brack k-1}$ to create a partition in $\lfloor {n+1 \brack k}$. Clearly there are $\lfloor {n \atop k-1}$ ways to do this.

Otherwise, we can choose $\lambda \in \lfloor {n \atop k} \rfloor$, say $\lambda = B_1/B_2/\cdots/B_k$. Now we can place n+1 at the beginning of any block, e.g., $\lambda^j = B_1/B_2/\cdots/(n+1)B_j/\cdots/B_k$, so there are $k \lfloor {n \atop k} \rfloor$ ways to do this. Or we can place n+1 after any element (within any block), so there must be $n \lfloor {n \atop k} \rfloor$ ways to do this.

Since the 3 cases are distinct, we have shown that

$$\begin{bmatrix} n+1\\k \end{bmatrix} = \begin{bmatrix} n\\k-1 \end{bmatrix} + k \begin{bmatrix} n\\k \end{bmatrix} + n \begin{bmatrix} n\\k \end{bmatrix}$$

which is (3).

(b) Let
$$F(x) = F_{\lfloor k \rfloor}(x) = \sum_{n \ge 0} \lfloor n \\ k \rfloor \frac{x^n}{n!}$$
. On Quiz 5 we showed that

(4)
$$F(x) = \frac{1}{k!} \left(\frac{x}{1-x}\right)^k$$

Use (4) to show that

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{n!}{k!} \binom{n-1}{k-1}$$

Solution:

This is straightforward.

6. (10 points) Let $\mathcal{S}(\cdot) = \binom{\cdot}{1}$. We saw in problem 4 above that $F_{\Pi(\mathcal{S})}(x) = e^{xe^x}$. Let

$$i_n = n! [x^n] F_{\Pi(\mathcal{S})}(x) = n! [x^n] e^{xe^x}$$

Find a sum formula for i_n . Note: The right-hand side of (5) below is an example of a sum formula.

Solution:

$$\begin{aligned} \frac{i_n}{n!} &= [x^n]e^{xe^x} \\ &= [x^n]\sum_m x^m \frac{e^{mx}}{m!} \\ &= \sum_m \frac{1}{m!} [x^{n-m}]e^{mx} \\ &= \sum_m \frac{1}{m!} [x^{n-m}]\sum_k m^k \frac{x^k}{k!} \\ &= \sum_m \frac{1}{m!} \frac{m^{n-m}}{(n-m)!} \end{aligned}$$

It follows that

$$i_n = \sum_m \frac{n!}{m!(n-m)!} m^{n-m}$$
$$= \sum_m \binom{n}{m} m^{n-m}$$

It is worth mentioning that $i_0 = 1$ since $F_{\Pi(S)}(0) = 1$, but the sum formula above returns the indeterminate expression 0^0 . In this case, we should specify that we define $0^0 = 1$. 7. (10 points) Let $l_0 = 1$ and for n > 0 let l_n count the number of ways to partition [n] into an arbitrary number of nonempty linearly ordered blocks. In other words,

(5)
$$l_n = \sum_k \begin{bmatrix} n \\ k \end{bmatrix}, \quad n \ge 0$$

Prove that the closed form of the exponential generating function $L(x) = \sum_{n} l_n x^n / n!$ is

(6)
$$L(x) = e^{\frac{x}{1-x}}$$

Note: For this problem you may freely use my posted lecture notes or any of the other references listed on my Math 482 pages, but please do not use OEIS.

Solution:

Let $\mathcal{S}(\cdot) = \begin{bmatrix} \cdot \\ 1 \end{bmatrix}$. As we saw in problem 4 above,

$$F_{\mathcal{S}}(x) = L_1(x) = \frac{x}{1-x} = F_{\overline{\mathcal{S}}}(x)$$

Notice that the last equality holds since $\overline{S} = S$.

So the problem is asking us to partition [n] in all possible ways and to linearly order each block in all possible ways. In other words, this problem is describing the partition structure $\Pi(S)$. Thus

$$L(x) = \sum_{n} l_n \frac{x^n}{n!} = F_{\Pi(S)}(x)$$

It now follows by the exponential formula that

$$F_{\Pi(S)}(x) = e^{F_{\overline{S}(x)}} = e^{\frac{x}{1-x}}$$

8. (10 points) Let $A(x) \xleftarrow{\text{ogf}} \{a_n\}_n$ and $B(x) \xleftarrow{\text{ogf}} \{b_n\}_n$. Suppose that $a_n = \sum_k {n \choose k} \alpha^{n-k} b_k$ some nonzero real number α . In problem 3, we showed that

(7)
$$A(x) = \frac{1}{1 - \alpha x} B\left(\frac{x}{1 - \alpha x}\right)$$

Use (7) to show that

$$b_n = \sum_k \binom{n}{k} (-\alpha)^{n-k} a_k$$

Solution:

Notice that (7) implies that

$$B(x) = \frac{1}{1 + \alpha x} A\left(\frac{x}{1 + \alpha x}\right)$$

Thus

$$b_n = [x^n]B(x) = [x^n]\frac{1}{1+\alpha x}A\left(\frac{x}{1+\alpha x}\right)$$
$$= [x^n]\frac{1}{1+\alpha x}\sum_k a_k\left(\frac{x}{1+\alpha x}\right)^k$$
$$= [x^n]\sum_k a_k\frac{x^k}{(1+\alpha x)^{k+1}}$$
$$= [x^n]\sum_k \frac{a_k}{(-\alpha)^k}\frac{(-\alpha x)^k}{(1-(-\alpha x))^{k+1}}$$
$$= [x^n]\sum_k \frac{a_k}{(-\alpha)^k}\sum_n \binom{n}{k}(-\alpha)^n x^n$$
$$= [x^n]\sum_n \sum_k \binom{n}{k}a_k(-\alpha)^{n-k}x^n$$
$$= \sum_k \binom{n}{k}a_k(-\alpha)^{n-k}$$

as desired.