1. (10 points) Show that

$$
\sum_{n \geq 1} \frac{|\mu(n)|}{n^{s}}=\frac{\zeta(s)}{\zeta(2 s)}
$$

Note: So $|\mu(n)|=1$ if n is not divisible by a square and 0 otherwise.

Solution:

First, suppose that $|\mu(n)|$ is multiplicative. Then by Theorem 2.6.1 (Wilf)

$$
\begin{aligned}
\sum_{n} \frac{|\mu(n)|}{n^{s}} & =\prod_{p}\left\{1+\frac{|\mu(p)|}{p^{s}}+\frac{\left|\mu\left(p^{2}\right)\right|}{p^{2 s}}+\cdots\right\} \\
& =\prod_{p}\left(1+1 / p^{s}+0+0+\cdots\right) \\
& =\prod_{p}\left(1+1 / p^{s}\right) \frac{1-1 / p^{s}}{1-1 / p^{s}} \\
& =\prod_{p}\left(1-1 / p^{2 s}\right) \prod_{p} \frac{1}{\left(1-1 / p^{s}\right)} \\
& =\frac{1}{\zeta(2 s)} \zeta(s)
\end{aligned}
$$

Now if $f(n)$ is multiplicative and if $(m, n)=1$, then

$$
|f(m n)|=|f(m) f(n)|=|f(m)||f(n)|
$$

That is, $|f(n)|$ is multiplicative. Hence the application of Theorem 2.6.1 above is valid and the result follows.
2. (10 points) Let $\sigma(n)$ be the sum of the divisors of n. For example, $\sigma(6)=1+2+3+6$. Show that

$$
\begin{equation*}
\sum_{n \geq 1} \frac{\sigma(n)}{n^{s}}=\zeta(s) \zeta(s-1) \tag{1}
\end{equation*}
$$

The proof is not difficult, but it can be quite messy. Please work out your proof on scratch paper and work out all of the kinks before submitting an easy-to-read version below.

Solution:

By exercise 04/08.1, $\sigma(n)$ is multiplicative and we can apply Theorem 2.6.1 to prove (1), just as we did in problem 1. A far simpler way is to recognize that we may use Rule $1^{\prime \prime}$. We have

$$
\sigma(n)=\sum_{d \mid n} d \cdot 1
$$

so by Rule $1^{\prime \prime}$

$$
\begin{aligned}
\sum_{n} \frac{\sigma(n)}{n^{s}} & =\sum_{n} \frac{n}{n^{s}} \sum_{n} \frac{1}{n^{s}} \\
& =\sum_{n} \frac{1}{n^{s-1}} \zeta(s) \\
& =\zeta(s-1) \zeta(s)
\end{aligned}
$$

