1. (8 points) Let P_{j} be the poset of all positive divisors of $2 \cdot 3^{j}$ and call $x \leq y$ if $x \mid y$. Find a simple formula for $\mu_{P_{j}}(x, y)$.

Solution:

In class we stated that $[x, y] \cong[1, y / x]$. It follows that

$$
\mu_{P_{j}}(x, y)= \begin{cases}1, & \text { if } y / x \in\{1,6\} \\ -1, & \text { if } y / x \in\{2,3\} \\ 0, & \text { otherwise }\end{cases}
$$

Step 1.

Figure 1: Product of posets, $Q \times P$.

To construct the Hasse diagram for $Q \times P$, complete the following steps (see Fig. 1).
Step 1. Replace the vertices of Q with identical (isomorphic) copies of P, labeled P_{a} and P_{b} in Fig. 1. For example, notice that $(a, x)<(b, x)$ in agreement with partial Hasse diagram shown in Step 1.

Step 2. Complete the Hasse diagram making sure that the covering relations are correct. For example, $(a, y)<(b, y)$ since $a \leq b$ and $y \leq y$. Also, (a, x) is not comparable with (b, y). Both of these relationships are correctly shown in Figure 1.
2. Let m and n be distinct positive integers and let D_{m} and D_{n} be the corresponding divisor lattices.
(a) (8 points) Under what condition(s) is $D_{m} \times D_{n} \cong D_{m n}$? Justify your claim.

Solution:

We claim that $D_{m} \times D_{n} \cong D_{m n}$ whenever m and n are relatively prime, i.e., $(m, n)=1$.
Let $\phi: D_{m} \times D_{n} \rightarrow D_{m n}$ be defined by $\phi(r, s)=r s$. The map is clearly surjective for if $w \in D_{m n}$, then $w \mid m n$ and we can write $w=a b$ where $a \mid m$ and $b \mid n$, so that $w=\phi(a, b)$. Now let $\tau(n)=\left|D_{n}\right|=\sum_{d \mid n} 1$ count the number of divisors of n. (In class, we denoted this function by $d(n)$, but τ is the more frequently used symbol.) Now by exercise $04 / 01.1, \tau$ is multiplicative. Thus

$$
\left|D_{m} \times D_{n}\right|=\left|D_{m}\right| \cdot\left|D_{n}\right|=\tau(m) \tau(n)=\tau(m n)=\left|D_{m n}\right|
$$

In other words, ϕ is a surjective map between two finite posets of the same size, so it must be a bijection. We leave it as an easy exercise to show that if $(a, b) \leq(x, y)$, then $a b \leq x y$.

It now follows that $D_{m} \times D_{n} \cong D_{m n}$ whenever $(m, n)=1$.
(b) (4 points) Show by example that $D_{m} \times D_{n} \nsubseteq D_{m n}$ when the above condition(s) are not met.

Solution:

For example, $D_{2} \times D_{2} \cong B_{2}$ and has 4 elements. On the other hand, D_{4} is a chain with only 3 elements, so the two are not isomorphic.

