

Figure 1: Poset P

1. The Hasse diagram for the poset P is shown in Figure 1. Answer the questions below.
(a) (3 points) Compute $\mu(b, h)$.

Figure 2: Poset Q

Solution:

See Figure 2.
(b) (7 points) Find $\mu(\hat{0}, x)$ for all $x \in P$. Indicate these values in Figure 1 as we have done in class.

Solution:

See Figure 1.
2. (10 points) Let P be a locally finite poset with a minimum element $\hat{0}$ and suppose that $y \in P$ covers just one element $x \in P$. If $x \neq \hat{0}$, show that $\mu(\hat{0}, y)=0$.

Solution:

First observe that if $x \neq \hat{0}$ we have

$$
\begin{equation*}
0=\sum_{z \in[\hat{0}, x]} \mu(\hat{0}, z) \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\mu(\hat{0}, y) & =-\sum_{\hat{0} \leq z<y} \mu(\hat{0}, z) \\
& =-\sum_{\hat{0} \leq z \leq x<y} \mu(\hat{0}, z) \quad(\text { since } y \text { covers } x) \\
& =-\sum_{z \in[\hat{0}, x]} \mu(\hat{0}, z) \\
& =0
\end{aligned}
$$

Here the last line follows from (1).

