1. (10 points) Let $\mathcal{T}=\mathcal{T}^{\Omega}$, where $\Omega=\{0,2,3\}$. So \mathcal{T} is the Ω-restricted class of plane trees such that each node has either 0,2 , or 3 children. The first few terms in the counting sequence for this class are $0,1,0,1,1,2,5$, $8,21,42,96,222$. Note: The size of each tree in \mathcal{T} is measured by the number of nodes.
(a) Sketch the two trees of size 5 and the five trees of size 6 .
(b) As usual, let $T(x)$ be the ordinary generating function for \mathcal{T}. Find the sum formula for $\left[x^{n}\right] T(x)$. Hint: What is the characteristic function for this class?

Solution:

Notice that $T(x)$ satisfies $T(x)=x \phi(T(x))$, with characteristic function $\phi(z)=1+z^{2}+z^{3}$. So by the Lagrange Inversion formula,

$$
\begin{aligned}
{\left[x^{n}\right] T(x) } & =\frac{1}{n}\left[z^{n-1}\right]\left(1+z^{2}+z^{3}\right)^{n} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} z^{2 n-2 k}(1+z)^{n-k} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} \sum_{j}\binom{n-k}{j} z^{2 n-2 k+j} \\
& =\frac{1}{n} \sum_{k}\binom{n}{k}\binom{n-k}{2 k-n-1}
\end{aligned}
$$

One of the reasons that I include the first few terms in these sequence questions is so that students can check to see if their solution actually works for early terms in the sequence. For example,

$$
\begin{aligned}
{\left[x^{5}\right] T(x) } & =\frac{1}{5} \sum_{k}\binom{5}{k}\binom{5-k}{2 k-5-1} \\
& =\frac{1}{5}\left(0+0+0+\binom{5}{3}\binom{5-3}{2(3)-6}+0+0\right) \\
& =\frac{10}{5}
\end{aligned}
$$

as expected.
2. (10 points) Let $\overline{\mathcal{T}}=\overline{\mathcal{T}}^{\Omega}$ where $\Omega=\{0,2,3\}$. However, this time we measure the size of each tree by the number of non-leaf nodes. Let $\bar{T}(x)$ be the ordinary generating function for $\overline{\mathcal{T}}$ and let $z(x)=\bar{T}(x)-1$. One can show that $z=x \phi(z)$ for some characteristic function $\phi(z)$. Find $\phi(z)$.
Hint: Such a tree is either \circ (a node of size zero since it has no children) or $\mathcal{Z}_{\bullet} \times \overline{\mathcal{T}} \times \overline{\mathcal{T}}$ or $\mathcal{Z} \bullet \times \overline{\mathcal{T}} \times \overline{\mathcal{T}} \times \overline{\mathcal{T}}$. Turn this into a class recursion and, once the recursion is established, take a look at Example 2 here.

Figure 1: Trees of size $0,1,2$, and 3.

Solution:

Figure 1 displays a few such trees. Nodes of weight zero are indicated using the symbol ○. It turns out that $\phi(z)=(1+z)^{2}(2+z)$ so that

$$
\begin{aligned}
{\left[x^{n}\right] T(x) } & =\frac{1}{n}\left[z^{n-1}\right](1+z)^{2 n}(2+z)^{n} \\
& =\frac{1}{n}\left[z^{n-1}\right]\left(2+5 z+4 z^{2}+z^{3}\right)^{n} \\
& =\frac{1}{n} \sum_{k}^{n}\binom{n}{k} \sum_{j}^{n-k}\binom{n-k}{j}\binom{n-k-j}{2 n-3 k-2 j+1} 2^{k} 5^{j} 4^{2 n-3 k-2 j+1}
\end{aligned}
$$

The first few terms of this sequence are

$$
1,2,10,66,498,4066,34970,312066,2862562,26824386,255680170,2471150402, \ldots
$$

Here are the details. According to the hint,

$$
\begin{equation*}
\overline{\mathcal{T}}=\mathcal{Z}_{\circ}+\mathcal{Z}_{\bullet} \times \overline{\mathcal{T}} \times \overline{\mathcal{T}}+\mathcal{Z}_{\bullet} \times \overline{\mathcal{T}} \times \overline{\mathcal{T}} \times \overline{\mathcal{T}} \tag{1}
\end{equation*}
$$

Notice that the ordinary generating functions of \mathcal{Z}_{\circ} and \mathcal{Z}_{\bullet} are x^{0} and x^{1}, respectively. It follows that

$$
\begin{equation*}
\bar{T}(x)=1+x \bar{T}(x)^{2}+x \bar{T}(x)^{3} \tag{2}
\end{equation*}
$$

Now let $z(x)=\bar{T}(x)-1$, then

$$
\begin{aligned}
z(x) & =x\left(\left(1+z(x)^{2}\right)+\left(1+z(x)^{3}\right)\right. \\
& =x\left(2+5 z(x)+4 z(x)^{2}+z(x)^{3}\right)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\phi(z)=\left(2+5 z+4 z^{2}+z^{3}\right) \tag{3}
\end{equation*}
$$

and we are done.

Solution:

The original problem asked for a sum formula for $\left[x^{n}\right] \bar{T}(x)$, so let's derive such a formula. Let $W(z)=1+z$. Then $W^{\prime}(z)=1$ and by the Lagrange Inversion formula

$$
\begin{aligned}
{\left[x^{n}\right] T(x)=\left[x^{n}\right] W(z(x)) } & =\frac{1}{n}\left[z^{n-1}\right] W^{\prime}(z) \phi(z)^{n} \\
& =\frac{1}{n}\left[z^{n-1}\right]\left(2+5 z+4 z^{2}+z^{3}\right)^{n} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} 2^{k} z^{n-k}\left(5+4 z+z^{2}\right)^{n-k} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} 2^{k} z^{n-k} \sum_{j}\binom{n-k}{j} 5^{j} z^{n-k-j}(4+z)^{n-k-j} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} 2^{k} z^{n-k} \sum_{j}\binom{n-k}{j} 5^{j} z^{n-k-j} \sum_{l} 4^{l}\binom{n-k-j}{l} z^{n-k-j-l} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} \sum_{j}\binom{n-k}{j} \sum_{l}\binom{n-k-j}{l} 2^{k} 5^{j} 4^{l} z^{n-k} z^{n-k-j} z^{n-k-j-l} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{n}{k} \sum_{j}\binom{n-k}{j} \sum_{l}\binom{n-k-j}{l} 2^{k} 5^{j} 4^{l} z^{3 n-3 k-2 j-l}
\end{aligned}
$$

Now $3 n-3 k-2 j-l=n-1$ implies that $l=2 n-3 k-2 j+1$, so that

$$
\left[x^{n}\right] T(x)=\frac{1}{n} \sum_{k}\binom{n}{k} \sum_{j}\binom{n-k}{j}\binom{n-k-j}{2 n-3 k-2 j+1} 2^{k} 5^{j} 4^{2 n-3 k-2 j+1}
$$

as desired.

