1. (10 points) Let $\mathcal{S}(\cdot)=2$ and $\mathcal{T}(\cdot)=\left\{\begin{array}{l}\dot{c} \\ 2\end{array}\right\}$. Let $s_{n}=\left|2^{[n]}\right|=2^{n}$ and let $t_{n}=\left|\left\{\begin{array}{c}{[n]} \\ 2\end{array}\right\}\right|$. According to a theorem that we discussed in class today,

$$
\begin{equation*}
|(\mathcal{S} \times \mathcal{T})([3])|=\sum_{k=0}^{3}\binom{3}{k} s_{k} t_{3-k}=\binom{3}{0} \cdot 1 \cdot 3+\binom{3}{1} \cdot 2 \cdot 1+0+0=9 \tag{1}
\end{equation*}
$$

List all 9 elements in $(\mathcal{S} \times \mathcal{T})([3])$.

Solution:

Looking at (1), we should find 3 ordered pairs of the form $(\emptyset, \cdot / \cdot)$ where $\cdot / \cdot \in\left\{\begin{array}{c}{[3]} \\ 2\end{array}\right\}$. We should also have 6 ordered pairs of the form $(\emptyset \mid k, \cdot / \cdot)$. Here $a \mid b$ means either a or b and $\cdot / \cdot \in\left\{\begin{array}{l}L \\ 2\end{array}\right\}$ with $L \subset[3]$ and $|L|=2$. Thus
$(\mathcal{S} \times \mathcal{T})([3])=\underbrace{\{(\emptyset, 1 / 23),(\emptyset, 12 / 3),(\emptyset, 13 / 2)\}}_{\text {first form }} \cup \underbrace{\{(\emptyset, 2 / 3),(1,2 / 3),(\emptyset, 1 / 3),(2,1 / 3),(\emptyset, 1 / 2),(3,1 / 2)\}}_{\text {second form }}$

We can actually say a bit more about this example. According to the product rule for exponential generating functions, we must have

$$
\begin{array}{rlr}
F_{\mathcal{S} \times \mathcal{T}}(x) & =F_{\mathcal{S}}(x) \cdot F_{\mathcal{T}}(x) \\
& =e^{2 x} \cdot \frac{\left(e^{x}-1\right)^{2}}{2!} \quad \quad \text { (See exercise 02/07 Problem 1) } \\
& =\frac{1}{2}\left(e^{4 x}-2 e^{3 x}+e^{2 x}\right) &
\end{array}
$$

It follows that

$$
\begin{aligned}
3!\left[x^{3}\right] F_{\mathcal{S} \times \mathcal{T}}(x) & =\frac{6}{2}\left[x^{3}\right]\left(e^{4 x}-2 e^{3 x}+e^{2 x}\right) \\
& =3\left(\frac{4^{3}-2 \cdot 3^{3}+2^{3}}{3!}\right) \\
& =9
\end{aligned}
$$

in agreement with (1). The first 12 terms in the counting sequence of the exponential generating function $F_{\mathcal{S} \times \mathcal{T}}(x)$ are

$$
0,0,1,9,55,285,1351,6069,26335,111645,465751,1921029, \ldots
$$

